1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2009, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Willow Garage nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/** Authors: Ethan Rublee, Vincent Rabaud, Gary Bradski */
#include "precomp.hpp"
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
namespace
{
/** Function that computes the Harris response in a 9 x 9 patch at a given point in an image
* @param patch the 9 x 9 patch
* @param k the k in the Harris formula
* @param dX_offsets pre-computed offset to get all the interesting dX values
* @param dY_offsets pre-computed offset to get all the interesting dY values
* @return
*/
template<typename PatchType, typename SumType>
inline float harris(const cv::Mat& patch, float k, const std::vector<int> &dX_offsets,
const std::vector<int> &dY_offsets)
{
float a = 0, b = 0, c = 0;
static cv::Mat_<SumType> dX(9, 7), dY(7, 9);
SumType * dX_data = reinterpret_cast<SumType*> (dX.data), *dY_data = reinterpret_cast<SumType*> (dY.data);
SumType * dX_data_end = dX_data + 9 * 7;
PatchType * patch_data = reinterpret_cast<PatchType*> (patch.data);
int two_row_offset = 2 * patch.step1();
std::vector<int>::const_iterator dX_offset = dX_offsets.begin(), dY_offset = dY_offsets.begin();
// Compute the differences
for (; dX_data != dX_data_end; ++dX_data, ++dY_data, ++dX_offset, ++dY_offset)
{
*dX_data = (SumType)(*(patch_data + *dX_offset)) - (SumType)(*(patch_data + *dX_offset - 2));
*dY_data = (SumType)(*(patch_data + *dY_offset)) - (SumType)(*(patch_data + *dY_offset - two_row_offset));
}
// Compute the Scharr result
dX_data = reinterpret_cast<SumType*> (dX.data);
dY_data = reinterpret_cast<SumType*> (dY.data);
for (size_t v = 0; v <= 6; v++, dY_data += 2)
{
for (size_t u = 0; u <= 6; u++, ++dX_data, ++dY_data)
{
// 1, 2 for Sobel, 3 and 10 for Scharr
float Ix = (float)(1 * (*dX_data + *(dX_data + 14)) + 2 * (*(dX_data + 7)));
float Iy = (float)(1 * (*dY_data + *(dY_data + 2)) + 2 * (*(dY_data + 1)));
a += Ix * Ix;
b += Iy * Iy;
c += Ix * Iy;
}
}
return ((a * b - c * c) - (k * ((a + b) * (a + b))));
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Class used to compute the cornerness of specific points in an image */
struct HarrisResponse
{
/** Constructor
* @param image the image on which the cornerness will be computed (only its step is used
* @param k the k in the Harris formula
*/
explicit HarrisResponse(const cv::Mat& image, double k = 0.04);
/** Compute the cornerness for given keypoints
* @param kpts points at which the cornerness is computed and stored
*/
void operator()(std::vector<cv::KeyPoint>& kpts) const;
private:
/** The cached image to analyze */
cv::Mat image_;
/** The k factor in the Harris corner detection */
double k_;
/** The offset in X to compute the differences */
std::vector<int> dX_offsets_;
/** The offset in Y to compute the differences */
std::vector<int> dY_offsets_;
};
/** Constructor
* @param image the image on which the cornerness will be computed (only its step is used
* @param k the k in the Harris formula
*/
HarrisResponse::HarrisResponse(const cv::Mat& image, double k) :
image_(image), k_(k)
{
// Compute the offsets for the Harris corners once and for all
dX_offsets_.resize(7 * 9);
dY_offsets_.resize(7 * 9);
std::vector<int>::iterator dX_offsets = dX_offsets_.begin(), dY_offsets = dY_offsets_.begin();
unsigned int image_step = (unsigned int)image.step1();
for (size_t y = 0; y <= 6 * image_step; y += image_step)
{
int dX_offset = y + 2, dY_offset = y + 2 * image_step;
for (size_t x = 0; x <= 6; ++x)
{
*(dX_offsets++) = dX_offset++;
*(dY_offsets++) = dY_offset++;
}
for (size_t x = 7; x <= 8; ++x)
*(dY_offsets++) = dY_offset++;
}
for (size_t y = 7 * image_step; y <= 8 * image_step; y += image_step)
{
int dX_offset = y + 2;
for (size_t x = 0; x <= 6; ++x)
*(dX_offsets++) = dX_offset++;
}
}
/** Compute the cornerness for given keypoints
* @param kpts points at which the cornerness is computed and stored
*/
void HarrisResponse::operator()(std::vector<cv::KeyPoint>& kpts) const
{
// Those parameters are used to match the OpenCV computation of Harris corners
float scale = (1 << 2) * 7.0f * 255.0f;
scale = 1.0f / scale;
float scale_sq_sq = scale * scale * scale * scale;
// define it to 1 if you want to compare to what OpenCV computes
#define HARRIS_TEST 0
#if HARRIS_TEST
cv::Mat_<float> dst;
cv::cornerHarris(image_, dst, 7, 3, k_);
#endif
for (std::vector<cv::KeyPoint>::iterator kpt = kpts.begin(), kpt_end = kpts.end(); kpt != kpt_end; ++kpt)
{
cv::Mat patch = image_(cv::Rect(cvRound(kpt->pt.x) - 4, cvRound(kpt->pt.y) - 4, 9, 9));
// Compute the response
kpt->response = harris<uchar, int> (patch, (float)k_, dX_offsets_, dY_offsets_) * scale_sq_sq;
#if HARRIS_TEST
cv::Mat_<float> Ix(9, 9), Iy(9, 9);
cv::Sobel(patch, Ix, CV_32F, 1, 0, 3, scale);
cv::Sobel(patch, Iy, CV_32F, 0, 1, 3, scale);
float a = 0, b = 0, c = 0;
for (unsigned int y = 1; y <= 7; ++y)
{
for (unsigned int x = 1; x <= 7; ++x)
{
a += Ix(y, x) * Ix(y, x);
b += Iy(y, x) * Iy(y, x);
c += Ix(y, x) * Iy(y, x);
}
}
//[ a c ]
//[ c b ]
float response = (float)((a * b - c * c) - k_ * ((a + b) * (a + b)));
std::cout << kpt->response << " " << response << " " << dst(kpt->pt.y,kpt->pt.x) << std::endl;
#endif
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
inline bool keypointResponseGreater(const cv::KeyPoint& lhs, const cv::KeyPoint& rhs)
{
return lhs.response > rhs.response;
}
struct KeypointResponseGreaterThanEqual
{
KeypointResponseGreaterThanEqual(float value) :
value(value)
{
}
inline bool operator()(const cv::KeyPoint& kpt)
{
return kpt.response >= value;
}
float value;
};
/** Simple function that returns the area in the rectangle x1<=x<=x2, y1<=y<=y2 given an integral image
* @param integral_image
* @param x1
* @param y1
* @param x2
* @param y2
* @return
*/
template<typename SumType>
inline SumType integral_rectangle(const SumType * val_ptr, std::vector<int>::const_iterator offset)
{
return *(val_ptr + *offset) - *(val_ptr + *(offset + 1)) - *(val_ptr + *(offset + 2)) + *(val_ptr + *(offset + 3));
}
template<typename SumType>
void IC_Angle_Integral(const cv::Mat& integral_image, const int half_k, cv::KeyPoint& kpt,
const std::vector<int> &horizontal_offsets, const std::vector<int> &vertical_offsets)
{
SumType m_01 = 0, m_10 = 0;
// Go line by line in the circular patch
std::vector<int>::const_iterator horizontal_iterator = horizontal_offsets.begin(), vertical_iterator =
vertical_offsets.begin();
const SumType* val_ptr = &(integral_image.at<SumType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x)));
for (int uv = 1; uv <= half_k; ++uv)
{
// Do the horizontal lines
m_01 += uv * (-integral_rectangle(val_ptr, horizontal_iterator) + integral_rectangle(val_ptr,
horizontal_iterator + 4));
horizontal_iterator += 8;
// Do the vertical lines
m_10 += uv * (-integral_rectangle(val_ptr, vertical_iterator)
+ integral_rectangle(val_ptr, vertical_iterator + 4));
vertical_iterator += 8;
}
float x = (float)m_10;
float y = (float)m_01;
kpt.angle = cv::fastAtan2(y, x);
}
template<typename PatchType, typename SumType>
void IC_Angle(const cv::Mat& image, const int half_k, cv::KeyPoint& kpt, const std::vector<int> & u_max)
{
SumType m_01 = 0, m_10 = 0/*, m_00 = 0*/;
const PatchType* val_center_ptr_plus = &(image.at<PatchType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x))),
*val_center_ptr_minus;
// Treat the center line differently, v=0
{
const PatchType* val = val_center_ptr_plus - half_k;
for (int u = -half_k; u <= half_k; ++u, ++val)
m_10 += u * (SumType)(*val);
}
// Go line by line in the circular patch
val_center_ptr_minus = val_center_ptr_plus - image.step1();
val_center_ptr_plus += image.step1();
for (int v = 1; v <= half_k; ++v, val_center_ptr_plus += image.step1(), val_center_ptr_minus -= image.step1())
{
// The beginning of the two lines
const PatchType* val_ptr_plus = val_center_ptr_plus - u_max[v];
const PatchType* val_ptr_minus = val_center_ptr_minus - u_max[v];
// Proceed over the two lines
SumType v_sum = 0;
for (int u = -u_max[v]; u <= u_max[v]; ++u, ++val_ptr_plus, ++val_ptr_minus)
{
SumType val_plus = *val_ptr_plus, val_minus = *val_ptr_minus;
v_sum += (val_plus - val_minus);
m_10 += u * (val_plus + val_minus);
}
m_01 += v * v_sum;
}
float x = (float)m_10;// / float(m_00);// / m_00;
float y = (float)m_01;// / float(m_00);// / m_00;
kpt.angle = cv::fastAtan2(y, x);
}
inline int smoothedSum(const int *center, const int* int_diff)
{
// Points in order 01
// 32
return *(center + int_diff[2]) - *(center + int_diff[3]) - *(center + int_diff[1]) + *(center + int_diff[0]);
}
inline uchar smoothed_comparison(const int * center, const int* diff, int l, int m)
{
static const uchar score[] = {1 << 0, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7};
return (smoothedSum(center, diff + l) < smoothedSum(center, diff + l + 4)) ? score[m] : 0;
}
}
namespace cv
{
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
class ORB::OrbPatterns
{
public:
// We divide in 30 wedges
static const int kNumAngles = 30;
/** Constructor
* Add +1 to the step as this is the step of the integral image, not image
* @param sz
* @param normalized_step
* @return
*/
OrbPatterns(int sz, unsigned int normalized_step_size) :
normalized_step_(normalized_step_size)
{
relative_patterns_.resize(kNumAngles);
for (int i = 0; i < kNumAngles; i++)
generateRelativePattern(i, sz, relative_patterns_[i]);
}
/** Generate the patterns and relative patterns
* @param sz
* @param normalized_step
* @return
*/
static std::vector<cv::Mat> generateRotatedPatterns()
{
std::vector<cv::Mat> rotated_patterns(kNumAngles);
cv::Mat_<cv::Vec2i> pattern = cv::Mat(512, 1, CV_32SC2, bit_pattern_31_);
for (int i = 0; i < kNumAngles; i++)
{
const cv::Mat rotation_matrix = getRotationMat(i);
transform(pattern, rotated_patterns[i], rotation_matrix);
// Make sure the pattern is now one channel, and 512*2
rotated_patterns[i] = rotated_patterns[i].reshape(1, 512);
}
return rotated_patterns;
}
/** Compute the brief pattern for a given keypoint
* @param angle the orientation of the keypoint
* @param sum the integral image
* @param pt the keypoint
* @param descriptor the descriptor
*/
void compute(const cv::KeyPoint& kpt, const cv::Mat& sum, unsigned char * desc) const
{
float angle = kpt.angle;
// Compute the pointer to the center of the feature
int img_y = (int)(kpt.pt.y + 0.5);
int img_x = (int)(kpt.pt.x + 0.5);
const int * center = reinterpret_cast<const int *> (sum.ptr(img_y)) + img_x;
// Compute the pointer to the absolute pattern row
const int * diff = relative_patterns_[angle2Wedge(angle)].ptr<int> (0);
for (int i = 0, j = 0; i < 32; ++i, j += 64)
{
desc[i] = smoothed_comparison(center, diff, j, 7) | smoothed_comparison(center, diff, j + 8, 6)
| smoothed_comparison(center, diff, j + 16, 5) | smoothed_comparison(center, diff, j + 24, 4)
| smoothed_comparison(center, diff, j + 32, 3) | smoothed_comparison(center, diff, j + 40, 2)
| smoothed_comparison(center, diff, j + 48, 1) | smoothed_comparison(center, diff, j + 56, 0);
}
}
private:
static inline int angle2Wedge(float angle)
{
static float scale = float(kNumAngles) / 360.0f;
return std::min(int(std::floor(angle * scale)), kNumAngles - 1);
}
void generateRelativePattern(int angle_idx, int /*sz*/, cv::Mat & relative_pattern)
{
// Create the relative pattern
relative_pattern.create(512, 4, CV_32SC1);
int * relative_pattern_data = reinterpret_cast<int*> (relative_pattern.data);
// Get the original rotated pattern
const int * pattern_data;
//switch (sz)
{
//default:
if( rotated_patterns_.empty() )
rotated_patterns_ = OrbPatterns::generateRotatedPatterns();
pattern_data = reinterpret_cast<int*> (rotated_patterns_[angle_idx].data);
//break;
}
int half_kernel = ORB::kKernelWidth / 2;
for (unsigned int i = 0; i < 512; ++i)
{
int center = *(pattern_data + 2 * i) + normalized_step_ * (*(pattern_data + 2 * i + 1));
// Points in order 01
// 32
// +1 is added for certain coordinates for the integral image
*(relative_pattern_data++) = center - half_kernel - half_kernel * normalized_step_;
*(relative_pattern_data++) = center + (half_kernel + 1) - half_kernel * normalized_step_;
*(relative_pattern_data++) = center + (half_kernel + 1) + (half_kernel + 1) * normalized_step_;
*(relative_pattern_data++) = center - half_kernel + (half_kernel + 1) * normalized_step_;
}
}
static cv::Mat getRotationMat(int angle_idx)
{
float a = float(float(angle_idx) / kNumAngles * CV_PI * 2);
return (cv::Mat_<float>(2, 2) << cos(a), -sin(a), sin(a), cos(a));
}
/** Contains the relative patterns (rotated ones in relative coordinates)
*/
std::vector<cv::Mat_<int> > relative_patterns_;
/** The step of the integral image
*/
size_t normalized_step_;
/** Pattern loaded from the include files
*/
static std::vector<cv::Mat> rotated_patterns_;
static int bit_pattern_31_[256 * 4]; //number of tests * 4 (x1,y1,x2,y2)
};
std::vector<cv::Mat> ORB::OrbPatterns::rotated_patterns_;
//this is the definition for BIT_PATTERN
#include "orb_pattern.hpp"
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Constructor
* @param detector_params parameters to use
*/
ORB::ORB(size_t n_features, const CommonParams & detector_params) :
params_(detector_params), n_features_(n_features)
{
// fill the extractors and descriptors for the corresponding scales
float factor = (float)(1.0 / params_.scale_factor_ / params_.scale_factor_);
int n_desired_features_per_scale = cvRound(n_features / ((std::pow(factor, int(params_.n_levels_)) - 1)
/ (factor - 1)));
n_features_per_level_.resize(detector_params.n_levels_);
for (unsigned int level = 0; level < detector_params.n_levels_; level++)
{
n_features_per_level_[level] = n_desired_features_per_scale;
n_desired_features_per_scale = cvRound(n_desired_features_per_scale * factor);
}
// Make sure we forget about what is too close to the boundary
params_.edge_threshold_ = std::max(params_.edge_threshold_, params_.patch_size_ + kKernelWidth / 2 + 2);
// pre-compute the end of a row in a circular patch
half_patch_size_ = params_.patch_size_ / 2;
u_max_.resize(half_patch_size_ + 1);
for (int v = 0; v <= half_patch_size_ * sqrt(2.f) / 2 + 1; ++v)
u_max_[v] = cvRound(sqrt(float(half_patch_size_ * half_patch_size_ - v * v)));
// Make sure we are symmetric
for (int v = half_patch_size_, v_0 = 0; v >= half_patch_size_ * sqrt(2.f) / 2; --v)
{
while (u_max_[v_0] == u_max_[v_0 + 1])
++v_0;
u_max_[v] = v_0;
++v_0;
}
}
/** destructor to empty the patterns */
ORB::~ORB()
{
for (std::vector<OrbPatterns*>::const_iterator pattern = patterns_.begin(), pattern_end = patterns_.end(); pattern
!= pattern_end; ++pattern)
if (*pattern)
delete *pattern;
}
/** returns the descriptor size in bytes */
int ORB::descriptorSize() const
{
return kBytes;
}
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
*/
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints)
{
cv::Mat empty_descriptors;
this->operator ()(image, mask, keypoints, empty_descriptors, true, false);
}
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
* @param descriptors the resulting descriptors
* @param useProvidedKeypoints if true, the keypoints are used as an input
*/
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints,
cv::Mat & descriptors, bool useProvidedKeypoints)
{
this->operator ()(image, mask, keypoints, descriptors, !useProvidedKeypoints, true);
}
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
* @param descriptors the resulting descriptors
* @param do_keypoints if true, the keypoints are computed, otherwise used as an input
* @param do_descriptors if true, also computes the descriptors
*/
void ORB::operator()(const cv::Mat &image_in, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints_in_out,
cv::Mat & descriptors, bool do_keypoints, bool do_descriptors)
{
if (((!do_keypoints) && (!do_descriptors)) || (image_in.empty()))
return;
cv::Mat image;
if (image_in.type() != CV_8UC1)
cvtColor(image_in, image, CV_BGR2GRAY);
else
image = image_in;
if (do_descriptors)
descriptors.release();
// Pre-compute the scale pyramids
std::vector<cv::Mat> image_pyramid(params_.n_levels_), mask_pyramid(params_.n_levels_);
for (unsigned int level = 0; level < params_.n_levels_; ++level)
{
// Compute the resized image
if (level != params_.first_level_)
{
float scale = 1 / std::pow(params_.scale_factor_, float(level) - float(params_.first_level_));
cv::resize(image, image_pyramid[level], cv::Size(), scale, scale, cv::INTER_AREA);
if (!mask.empty())
cv::resize(mask, mask_pyramid[level], cv::Size(), scale, scale, cv::INTER_AREA);
}
else
{
image_pyramid[level] = image;
mask_pyramid[level] = mask;
}
}
// Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
std::vector < std::vector<cv::KeyPoint> > all_keypoints;
if (do_keypoints)
// Get keypoints, those will be far enough from the border that no check will be required for the descriptor
computeKeyPoints(image_pyramid, mask_pyramid, all_keypoints);
else
{
// Remove keypoints very close to the border
cv::KeyPointsFilter::runByImageBorder(keypoints_in_out, image.size(), params_.edge_threshold_);
// Cluster the input keypoints depending on the level they were computed at
all_keypoints.resize(params_.n_levels_);
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints_in_out.begin(), keypoint_end = keypoints_in_out.end(); keypoint
!= keypoint_end; ++keypoint)
all_keypoints[keypoint->octave].push_back(*keypoint);
// Make sure we rescale the coordinates
for (unsigned int level = 0; level < params_.n_levels_; ++level)
{
if (level == params_.first_level_)
continue;
std::vector<cv::KeyPoint> & keypoints = all_keypoints[level];
float scale = 1.0f / std::pow(params_.scale_factor_, float(level) - float(params_.first_level_));
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
!= keypoint_end; ++keypoint)
keypoint->pt *= scale;
}
}
keypoints_in_out.clear();
for (unsigned int level = 0; level < params_.n_levels_; ++level)
{
// Compute the resized image
cv::Mat & working_mat = image_pyramid[level];
// Compute the integral image
cv::Mat integral_image;
if (do_descriptors)
// if we don't do the descriptors (and therefore, we only do the keypoints, it is faster to not compute the
// integral image
computeIntegralImage(working_mat, level, integral_image);
// Get the features and compute their orientation
std::vector<cv::KeyPoint> & keypoints = all_keypoints[level];
computeOrientation(working_mat, integral_image, level, keypoints);
// Compute the descriptors
cv::Mat desc;
if (do_descriptors)
computeDescriptors(working_mat, integral_image, level, keypoints, desc);
// Copy to the output data
if (level != params_.first_level_)
{
float scale = std::pow(params_.scale_factor_, float(level) - float(params_.first_level_));
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
!= keypoint_end; ++keypoint)
keypoint->pt *= scale;
}
// And add the keypoints to the output
keypoints_in_out.insert(keypoints_in_out.end(), keypoints.begin(), keypoints.end());
if (do_descriptors)
{
if (descriptors.empty())
desc.copyTo(descriptors);
else
descriptors.push_back(desc);
}
}
}
//takes keypoints and culls them by the response
inline void cull(std::vector<cv::KeyPoint>& keypoints, size_t n_points)
{
//this is only necessary if the keypoints size is greater than the number of desired points.
if (keypoints.size() > n_points)
{
if (n_points==0) {
keypoints.clear();
return;
}
//first use nth element to partition the keypoints into the best and worst.
std::nth_element(keypoints.begin(), keypoints.begin() + n_points, keypoints.end(), keypointResponseGreater);
//this is the boundary response, and in the case of FAST may be ambigous
float ambiguous_response = keypoints[n_points - 1].response;
//use std::partition to grab all of the keypoints with the boundary response.
std::vector<cv::KeyPoint>::const_iterator new_end =
std::partition(keypoints.begin() + n_points, keypoints.end(),
KeypointResponseGreaterThanEqual(ambiguous_response));
//resize the keypoints, given this new end point. nth_element and partition reordered the points inplace
keypoints.resize(new_end - keypoints.begin());
}
}
/** Compute the ORB keypoints on an image
* @param image_pyramid the image pyramid to compute the features and descriptors on
* @param mask_pyramid the masks to apply at every level
* @param keypoints the resulting keypoints, clustered per level
*/
void ORB::computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std::vector<cv::Mat>& mask_pyramid,
std::vector<std::vector<cv::KeyPoint> >& all_keypoints_out) const
{
all_keypoints_out.resize(params_.n_levels_);
// half_patch_size_ for orientation, 4 for Harris
unsigned int edge_threshold = std::max(std::max(half_patch_size_, 4), params_.edge_threshold_);
for (unsigned int level = 0; level < params_.n_levels_; ++level)
{
all_keypoints_out[level].reserve(n_features_per_level_[level]);
std::vector<cv::KeyPoint> & keypoints = all_keypoints_out[level];
// Detect FAST features, 20 is a good threshold
cv::FastFeatureDetector fd(20, true);
fd.detect(image_pyramid[level], keypoints, mask_pyramid[level]);
// Remove keypoints very close to the border
cv::KeyPointsFilter::runByImageBorder(keypoints, image_pyramid[level].size(), edge_threshold);
// Keep more points than necessary as FAST does not give amazing corners
cull(keypoints, 2 * n_features_per_level_[level]);
// Compute the Harris cornerness (better scoring than FAST)
HarrisResponse h(image_pyramid[level]);
h(keypoints);
//cull to the final desired level, using the new Harris scores.
cull(keypoints, n_features_per_level_[level]);
// Set the level of the coordinates
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
!= keypoint_end; ++keypoint)
keypoint->octave = level;
}
}
/** Compute the ORB keypoint orientations
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the iamge (can be empty, but the computation will be slower)
* @param scale the scale at which we compute the orientation
* @param keypoints the resulting keypoints
*/
void ORB::computeOrientation(const cv::Mat& image, const cv::Mat& integral_image, unsigned int scale,
std::vector<cv::KeyPoint>& keypoints) const
{
// Process each keypoint
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
!= keypoint_end; ++keypoint)
{
//get a patch at the keypoint
if (integral_image.empty())
{
switch (image.depth())
{
case CV_8U:
IC_Angle<uchar, int> (image, half_patch_size_, *keypoint, u_max_);
break;
case CV_32S:
IC_Angle<int, int> (image, half_patch_size_, *keypoint, u_max_);
break;
case CV_32F:
IC_Angle<float, float> (image, half_patch_size_, *keypoint, u_max_);
break;
case CV_64F:
IC_Angle<double, double> (image, half_patch_size_, *keypoint, u_max_);
break;
}
}
else
{
// use the integral image if you can
switch (integral_image.depth())
{
case CV_32S:
IC_Angle_Integral<int> (integral_image, half_patch_size_, *keypoint, orientation_horizontal_offsets_[scale],
orientation_vertical_offsets_[scale]);
break;
case CV_32F:
IC_Angle_Integral<float> (integral_image, half_patch_size_, *keypoint,
orientation_horizontal_offsets_[scale], orientation_vertical_offsets_[scale]);
break;
case CV_64F:
IC_Angle_Integral<double> (integral_image, half_patch_size_, *keypoint,
orientation_horizontal_offsets_[scale], orientation_vertical_offsets_[scale]);
break;
}
}
}
}
/** Compute the integral image and upadte the cached values
* @param image the image to compute the features and descriptors on
* @param level the scale at which we compute the orientation
* @param descriptors the resulting descriptors
*/
void ORB::computeIntegralImage(const cv::Mat & image, unsigned int level, cv::Mat &integral_image)
{
integral(image, integral_image, CV_32S);
integral_image_steps_.resize(params_.n_levels_, 0);
unsigned int integral_image_step = integral_image.step1();
if (integral_image_steps_[level] == integral_image_step)
return;
// If the integral image dimensions have changed, recompute everything
// Cache the step sizes
integral_image_steps_[level] = integral_image_step;
// Cache the offsets for the orientation
orientation_horizontal_offsets_.resize(params_.n_levels_);
orientation_vertical_offsets_.resize(params_.n_levels_);
orientation_horizontal_offsets_[level].resize(8 * half_patch_size_);
orientation_vertical_offsets_[level].resize(8 * half_patch_size_);
for (int v = 1, offset_index = 0; v <= half_patch_size_; ++v)
{
// Compute the offsets to use if using the integral image
for (int signed_v = -v; signed_v <= v; signed_v += 2 * v)
{
// the offsets are computed so that we can compute the integral image
// elem at 0 - eleme at 1 - elem at 2 + elem at 3
orientation_horizontal_offsets_[level][offset_index] = (signed_v + 1) * integral_image_step + u_max_[v] + 1;
orientation_vertical_offsets_[level][offset_index] = (u_max_[v] + 1) * integral_image_step + signed_v + 1;
++offset_index;
orientation_horizontal_offsets_[level][offset_index] = signed_v * integral_image_step + u_max_[v] + 1;
orientation_vertical_offsets_[level][offset_index] = -u_max_[v] * integral_image_step + signed_v + 1;
++offset_index;
orientation_horizontal_offsets_[level][offset_index] = (signed_v + 1) * integral_image_step - u_max_[v];
orientation_vertical_offsets_[level][offset_index] = (u_max_[v] + 1) * integral_image_step + signed_v;
++offset_index;
orientation_horizontal_offsets_[level][offset_index] = signed_v * integral_image_step - u_max_[v];
orientation_vertical_offsets_[level][offset_index] = -u_max_[v] * integral_image_step + signed_v;
++offset_index;
}
}
// Remove the previous version if dimensions are different
patterns_.resize(params_.n_levels_, 0);
if (patterns_[level])
delete patterns_[level];
patterns_[level] = new OrbPatterns(params_.patch_size_, integral_image_step);
}
/** Compute the ORB decriptors
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the image (can be empty, but the computation will be slower)
* @param level the scale at which we compute the orientation
* @param keypoints the keypoints to use
* @param descriptors the resulting descriptors
*/
void ORB::computeDescriptors(const cv::Mat& image, const cv::Mat& integral_image, unsigned int level,
std::vector<cv::KeyPoint>& keypoints, cv::Mat & descriptors) const
{
//convert to grayscale if more than one color
cv::Mat gray_image = image;
if (image.type() != CV_8UC1)
cv::cvtColor(image, gray_image, CV_BGR2GRAY);
// Get the patterns to apply
OrbPatterns* patterns = patterns_[level];
//create the descriptor mat, keypoints.size() rows, BYTES cols
descriptors = cv::Mat::zeros(keypoints.size(), kBytes, CV_8UC1);
for (size_t i = 0; i < keypoints.size(); i++)
// look up the test pattern
patterns->compute(keypoints[i], integral_image, descriptors.ptr(i));
}
}