orb.cpp 31.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
/*********************************************************************
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2009, Willow Garage, Inc.
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the Willow Garage nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *********************************************************************/

/** Authors: Ethan Rublee, Vincent Rabaud, Gary Bradski */

#include "precomp.hpp"

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

namespace
{

/** Function that computes the Harris response in a 9 x 9 patch at a given point in an image
 * @param patch the 9 x 9 patch
 * @param k the k in the Harris formula
 * @param dX_offsets pre-computed offset to get all the interesting dX values
 * @param dY_offsets pre-computed offset to get all the interesting dY values
 * @return
 */
template<typename PatchType, typename SumType>
  inline float harris(const cv::Mat& patch, float k, const std::vector<int> &dX_offsets,
                      const std::vector<int> &dY_offsets)
  {
    float a = 0, b = 0, c = 0;

    static cv::Mat_<SumType> dX(9, 7), dY(7, 9);
    SumType * dX_data = reinterpret_cast<SumType*> (dX.data), *dY_data = reinterpret_cast<SumType*> (dY.data);
    SumType * dX_data_end = dX_data + 9 * 7;
    PatchType * patch_data = reinterpret_cast<PatchType*> (patch.data);
    int two_row_offset = 2 * patch.step1();
    std::vector<int>::const_iterator dX_offset = dX_offsets.begin(), dY_offset = dY_offsets.begin();
    // Compute the differences
    for (; dX_data != dX_data_end; ++dX_data, ++dY_data, ++dX_offset, ++dY_offset)
    {
      *dX_data = (SumType)(*(patch_data + *dX_offset)) - (SumType)(*(patch_data + *dX_offset - 2));
      *dY_data = (SumType)(*(patch_data + *dY_offset)) - (SumType)(*(patch_data + *dY_offset - two_row_offset));
    }

    // Compute the Scharr result
    dX_data = reinterpret_cast<SumType*> (dX.data);
    dY_data = reinterpret_cast<SumType*> (dY.data);
    for (size_t v = 0; v <= 6; v++, dY_data += 2)
    {
      for (size_t u = 0; u <= 6; u++, ++dX_data, ++dY_data)
      {
        // 1, 2 for Sobel, 3 and 10 for Scharr
        float Ix = (float)(1 * (*dX_data + *(dX_data + 14)) + 2 * (*(dX_data + 7)));
        float Iy = (float)(1 * (*dY_data + *(dY_data + 2)) + 2 * (*(dY_data + 1)));

        a += Ix * Ix;
        b += Iy * Iy;
        c += Ix * Iy;
      }
    }

    return ((a * b - c * c) - (k * ((a + b) * (a + b))));
  }

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** Class used to compute the cornerness of specific points in an image */
struct HarrisResponse
{
  /** Constructor
   * @param image the image on which the cornerness will be computed (only its step is used
   * @param k the k in the Harris formula
   */
  explicit HarrisResponse(const cv::Mat& image, double k = 0.04);

  /** Compute the cornerness for given keypoints
   * @param kpts points at which the cornerness is computed and stored
   */
  void operator()(std::vector<cv::KeyPoint>& kpts) const;
private:
  /** The cached image to analyze */
  cv::Mat image_;

  /** The k factor in the Harris corner detection */
  double k_;

  /** The offset in X to compute the differences */
  std::vector<int> dX_offsets_;

  /** The offset in Y to compute the differences */
  std::vector<int> dY_offsets_;
};

/** Constructor
 * @param image the image on which the cornerness will be computed (only its step is used
 * @param k the k in the Harris formula
 */
HarrisResponse::HarrisResponse(const cv::Mat& image, double k) :
  image_(image), k_(k)
{
  // Compute the offsets for the Harris corners once and for all
  dX_offsets_.resize(7 * 9);
  dY_offsets_.resize(7 * 9);
  std::vector<int>::iterator dX_offsets = dX_offsets_.begin(), dY_offsets = dY_offsets_.begin();
  unsigned int image_step = (unsigned int)image.step1();
  for (size_t y = 0; y <= 6 * image_step; y += image_step)
  {
    int dX_offset = y + 2, dY_offset = y + 2 * image_step;
    for (size_t x = 0; x <= 6; ++x)
    {
      *(dX_offsets++) = dX_offset++;
      *(dY_offsets++) = dY_offset++;
    }
    for (size_t x = 7; x <= 8; ++x)
      *(dY_offsets++) = dY_offset++;
  }

  for (size_t y = 7 * image_step; y <= 8 * image_step; y += image_step)
  {
    int dX_offset = y + 2;
    for (size_t x = 0; x <= 6; ++x)
      *(dX_offsets++) = dX_offset++;
  }
}

/** Compute the cornerness for given keypoints
 * @param kpts points at which the cornerness is computed and stored
 */
void HarrisResponse::operator()(std::vector<cv::KeyPoint>& kpts) const
{
  // Those parameters are used to match the OpenCV computation of Harris corners
  float scale = (1 << 2) * 7.0f * 255.0f;
  scale = 1.0f / scale;
  float scale_sq_sq = scale * scale * scale * scale;

  // define it to 1 if you want to compare to what OpenCV computes
#define HARRIS_TEST 0
#if HARRIS_TEST
  cv::Mat_<float> dst;
  cv::cornerHarris(image_, dst, 7, 3, k_);
#endif
  for (std::vector<cv::KeyPoint>::iterator kpt = kpts.begin(), kpt_end = kpts.end(); kpt != kpt_end; ++kpt)
  {
    cv::Mat patch = image_(cv::Rect(cvRound(kpt->pt.x) - 4, cvRound(kpt->pt.y) - 4, 9, 9));

    // Compute the response
    kpt->response = harris<uchar, int> (patch, (float)k_, dX_offsets_, dY_offsets_) * scale_sq_sq;

#if HARRIS_TEST
    cv::Mat_<float> Ix(9, 9), Iy(9, 9);

    cv::Sobel(patch, Ix, CV_32F, 1, 0, 3, scale);
    cv::Sobel(patch, Iy, CV_32F, 0, 1, 3, scale);
    float a = 0, b = 0, c = 0;
    for (unsigned int y = 1; y <= 7; ++y)
    {
      for (unsigned int x = 1; x <= 7; ++x)
      {
        a += Ix(y, x) * Ix(y, x);
        b += Iy(y, x) * Iy(y, x);
        c += Ix(y, x) * Iy(y, x);
      }
    }
    //[ a c ]
    //[ c b ]
    float response = (float)((a * b - c * c) - k_ * ((a + b) * (a + b)));

    std::cout << kpt->response << " " << response << " " << dst(kpt->pt.y,kpt->pt.x) << std::endl;
#endif
  }
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

inline bool keypointResponseGreater(const cv::KeyPoint& lhs, const cv::KeyPoint& rhs)
{
  return lhs.response > rhs.response;
}

struct KeypointResponseGreaterThanEqual
{
  KeypointResponseGreaterThanEqual(float value) :
    value(value)
  {
  }
  inline bool operator()(const cv::KeyPoint& kpt)
  {
    return kpt.response >= value;
  }
  float value;
};

/** Simple function that returns the area in the rectangle x1<=x<=x2, y1<=y<=y2 given an integral image
 * @param integral_image
 * @param x1
 * @param y1
 * @param x2
 * @param y2
 * @return
 */
template<typename SumType>
  inline SumType integral_rectangle(const SumType * val_ptr, std::vector<int>::const_iterator offset)
  {
    return *(val_ptr + *offset) - *(val_ptr + *(offset + 1)) - *(val_ptr + *(offset + 2)) + *(val_ptr + *(offset + 3));
  }

template<typename SumType>
  void IC_Angle_Integral(const cv::Mat& integral_image, const int half_k, cv::KeyPoint& kpt,
                         const std::vector<int> &horizontal_offsets, const std::vector<int> &vertical_offsets)
  {
    SumType m_01 = 0, m_10 = 0;

    // Go line by line in the circular patch
    std::vector<int>::const_iterator horizontal_iterator = horizontal_offsets.begin(), vertical_iterator =
        vertical_offsets.begin();
    const SumType* val_ptr = &(integral_image.at<SumType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x)));
    for (int uv = 1; uv <= half_k; ++uv)
    {
      // Do the horizontal lines
      m_01 += uv * (-integral_rectangle(val_ptr, horizontal_iterator) + integral_rectangle(val_ptr,
                                                                                           horizontal_iterator + 4));
      horizontal_iterator += 8;

      // Do the vertical lines
      m_10 += uv * (-integral_rectangle(val_ptr, vertical_iterator)
          + integral_rectangle(val_ptr, vertical_iterator + 4));
      vertical_iterator += 8;
    }

    float x = (float)m_10;
    float y = (float)m_01;
    kpt.angle = cv::fastAtan2(y, x);
  }

template<typename PatchType, typename SumType>
  void IC_Angle(const cv::Mat& image, const int half_k, cv::KeyPoint& kpt, const std::vector<int> & u_max)
  {
    SumType m_01 = 0, m_10 = 0/*, m_00 = 0*/;

    const PatchType* val_center_ptr_plus = &(image.at<PatchType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x))),
                   *val_center_ptr_minus;

    // Treat the center line differently, v=0

    {
      const PatchType* val = val_center_ptr_plus - half_k;
      for (int u = -half_k; u <= half_k; ++u, ++val)
        m_10 += u * (SumType)(*val);
    }

    // Go line by line in the circular patch
    val_center_ptr_minus = val_center_ptr_plus - image.step1();
    val_center_ptr_plus += image.step1();
    for (int v = 1; v <= half_k; ++v, val_center_ptr_plus += image.step1(), val_center_ptr_minus -= image.step1())
    {
      // The beginning of the two lines
      const PatchType* val_ptr_plus = val_center_ptr_plus - u_max[v];
      const PatchType* val_ptr_minus = val_center_ptr_minus - u_max[v];

      // Proceed over the two lines
      SumType v_sum = 0;
      for (int u = -u_max[v]; u <= u_max[v]; ++u, ++val_ptr_plus, ++val_ptr_minus)
      {
        SumType val_plus = *val_ptr_plus, val_minus = *val_ptr_minus;
        v_sum += (val_plus - val_minus);
        m_10 += u * (val_plus + val_minus);
      }
      m_01 += v * v_sum;
    }

    float x = (float)m_10;// / float(m_00);// / m_00;
    float y = (float)m_01;// / float(m_00);// / m_00;
    kpt.angle = cv::fastAtan2(y, x);
  }

inline int smoothedSum(const int *center, const int* int_diff)
{
  // Points in order 01
  //                 32
  return *(center + int_diff[2]) - *(center + int_diff[3]) - *(center + int_diff[1]) + *(center + int_diff[0]);
}

inline uchar smoothed_comparison(const int * center, const int* diff, int l, int m)
{
  static const uchar score[] = {1 << 0, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7};
  return (smoothedSum(center, diff + l) < smoothedSum(center, diff + l + 4)) ? score[m] : 0;
}
}

namespace cv
{

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

class ORB::OrbPatterns
{
public:
  // We divide in 30 wedges
  static const int kNumAngles = 30;

  /** Constructor
   * Add +1 to the step as this is the step of the integral image, not image
   * @param sz
   * @param normalized_step
   * @return
   */
  OrbPatterns(int sz, unsigned int normalized_step_size) :
    normalized_step_(normalized_step_size)
  {
    relative_patterns_.resize(kNumAngles);
    for (int i = 0; i < kNumAngles; i++)
      generateRelativePattern(i, sz, relative_patterns_[i]);
  }

  /** Generate the patterns and relative patterns
   * @param sz
   * @param normalized_step
   * @return
   */
  static std::vector<cv::Mat> generateRotatedPatterns()
  {
    std::vector<cv::Mat> rotated_patterns(kNumAngles);
    cv::Mat_<cv::Vec2i> pattern = cv::Mat(512, 1, CV_32SC2, bit_pattern_31_);
    for (int i = 0; i < kNumAngles; i++)
    {
      const cv::Mat rotation_matrix = getRotationMat(i);
      transform(pattern, rotated_patterns[i], rotation_matrix);
      // Make sure the pattern is now one channel, and 512*2
      rotated_patterns[i] = rotated_patterns[i].reshape(1, 512);
    }
    return rotated_patterns;
  }

  /** Compute the brief pattern for a given keypoint
   * @param angle the orientation of the keypoint
   * @param sum the integral image
   * @param pt the keypoint
   * @param descriptor the descriptor
   */
  void compute(const cv::KeyPoint& kpt, const cv::Mat& sum, unsigned char * desc) const
  {
    float angle = kpt.angle;

    // Compute the pointer to the center of the feature
    int img_y = (int)(kpt.pt.y + 0.5);
    int img_x = (int)(kpt.pt.x + 0.5);
    const int * center = reinterpret_cast<const int *> (sum.ptr(img_y)) + img_x;
    // Compute the pointer to the absolute pattern row
    const int * diff = relative_patterns_[angle2Wedge(angle)].ptr<int> (0);
    for (int i = 0, j = 0; i < 32; ++i, j += 64)
    {
      desc[i] = smoothed_comparison(center, diff, j, 7) | smoothed_comparison(center, diff, j + 8, 6)
          | smoothed_comparison(center, diff, j + 16, 5) | smoothed_comparison(center, diff, j + 24, 4)
          | smoothed_comparison(center, diff, j + 32, 3) | smoothed_comparison(center, diff, j + 40, 2)
          | smoothed_comparison(center, diff, j + 48, 1) | smoothed_comparison(center, diff, j + 56, 0);
    }
  }

private:
  static inline int angle2Wedge(float angle)
  {
    static float scale = float(kNumAngles) / 360.0f;
    return std::min(int(std::floor(angle * scale)), kNumAngles - 1);
  }

  void generateRelativePattern(int angle_idx, int /*sz*/, cv::Mat & relative_pattern)
  {
    // Create the relative pattern
    relative_pattern.create(512, 4, CV_32SC1);
    int * relative_pattern_data = reinterpret_cast<int*> (relative_pattern.data);
    // Get the original rotated pattern
    const int * pattern_data;
    //switch (sz)
    {
      //default:
      if( rotated_patterns_.empty() )
          rotated_patterns_ = OrbPatterns::generateRotatedPatterns();
      pattern_data = reinterpret_cast<int*> (rotated_patterns_[angle_idx].data);
      //break;
    }

    int half_kernel = ORB::kKernelWidth / 2;
    for (unsigned int i = 0; i < 512; ++i)
    {
      int center = *(pattern_data + 2 * i) + normalized_step_ * (*(pattern_data + 2 * i + 1));
      // Points in order 01
      //                 32
      // +1 is added for certain coordinates for the integral image
      *(relative_pattern_data++) = center - half_kernel - half_kernel * normalized_step_;
      *(relative_pattern_data++) = center + (half_kernel + 1) - half_kernel * normalized_step_;
      *(relative_pattern_data++) = center + (half_kernel + 1) + (half_kernel + 1) * normalized_step_;
      *(relative_pattern_data++) = center - half_kernel + (half_kernel + 1) * normalized_step_;
    }
  }

  static cv::Mat getRotationMat(int angle_idx)
  {
    float a = float(float(angle_idx) / kNumAngles * CV_PI * 2);
    return (cv::Mat_<float>(2, 2) << cos(a), -sin(a), sin(a), cos(a));
  }

  /** Contains the relative patterns (rotated ones in relative coordinates)
   */
  std::vector<cv::Mat_<int> > relative_patterns_;

  /** The step of the integral image
   */
  size_t normalized_step_;

  /** Pattern loaded from the include files
   */
  static std::vector<cv::Mat> rotated_patterns_;
  static int bit_pattern_31_[256 * 4]; //number of tests * 4 (x1,y1,x2,y2)

};

std::vector<cv::Mat> ORB::OrbPatterns::rotated_patterns_;

//this is the definition for BIT_PATTERN
#include "orb_pattern.hpp"

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** Constructor
 * @param detector_params parameters to use
 */
ORB::ORB(size_t n_features, const CommonParams & detector_params) :
  params_(detector_params), n_features_(n_features)
{
  // fill the extractors and descriptors for the corresponding scales
  float factor = (float)(1.0 / params_.scale_factor_ / params_.scale_factor_);
  int n_desired_features_per_scale = cvRound(n_features / ((std::pow(factor, int(params_.n_levels_)) - 1)
                                                 / (factor - 1)));
  n_features_per_level_.resize(detector_params.n_levels_);
  for (unsigned int level = 0; level < detector_params.n_levels_; level++)
  {
    n_features_per_level_[level] = n_desired_features_per_scale;
    n_desired_features_per_scale = cvRound(n_desired_features_per_scale * factor);
  }

  // Make sure we forget about what is too close to the boundary
  params_.edge_threshold_ = std::max(params_.edge_threshold_, params_.patch_size_ + kKernelWidth / 2 + 2);

  // pre-compute the end of a row in a circular patch
  half_patch_size_ = params_.patch_size_ / 2;
  u_max_.resize(half_patch_size_ + 1);
  for (int v = 0; v <= half_patch_size_ * sqrt(2.f) / 2 + 1; ++v)
    u_max_[v] = cvRound(sqrt(float(half_patch_size_ * half_patch_size_ - v * v)));

  // Make sure we are symmetric
  for (int v = half_patch_size_, v_0 = 0; v >= half_patch_size_ * sqrt(2.f) / 2; --v)
  {
    while (u_max_[v_0] == u_max_[v_0 + 1])
      ++v_0;
    u_max_[v] = v_0;
    ++v_0;
  }
}

/** destructor to empty the patterns */
ORB::~ORB()
{
  for (std::vector<OrbPatterns*>::const_iterator pattern = patterns_.begin(), pattern_end = patterns_.end(); pattern
      != pattern_end; ++pattern)
    if (*pattern)
      delete *pattern;
}

/** returns the descriptor size in bytes */
int ORB::descriptorSize() const
{
  return kBytes;
}

/** Compute the ORB features and descriptors on an image
 * @param img the image to compute the features and descriptors on
 * @param mask the mask to apply
 * @param keypoints the resulting keypoints
 */
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints)
{
  cv::Mat empty_descriptors;
  this->operator ()(image, mask, keypoints, empty_descriptors, true, false);
}

/** Compute the ORB features and descriptors on an image
 * @param img the image to compute the features and descriptors on
 * @param mask the mask to apply
 * @param keypoints the resulting keypoints
 * @param descriptors the resulting descriptors
 * @param useProvidedKeypoints if true, the keypoints are used as an input
 */
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints,
                     cv::Mat & descriptors, bool useProvidedKeypoints)
{
  this->operator ()(image, mask, keypoints, descriptors, !useProvidedKeypoints, true);
}

/** Compute the ORB features and descriptors on an image
 * @param img the image to compute the features and descriptors on
 * @param mask the mask to apply
 * @param keypoints the resulting keypoints
 * @param descriptors the resulting descriptors
 * @param do_keypoints if true, the keypoints are computed, otherwise used as an input
 * @param do_descriptors if true, also computes the descriptors
 */
void ORB::operator()(const cv::Mat &image_in, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints_in_out,
                     cv::Mat & descriptors, bool do_keypoints, bool do_descriptors)
{
  if (((!do_keypoints) && (!do_descriptors)) || (image_in.empty()))
    return;

  cv::Mat image;
  if (image_in.type() != CV_8UC1)
    cvtColor(image_in, image, CV_BGR2GRAY);
  else
    image = image_in;

  if (do_descriptors)
    descriptors.release();

  // Pre-compute the scale pyramids
  std::vector<cv::Mat> image_pyramid(params_.n_levels_), mask_pyramid(params_.n_levels_);
  for (unsigned int level = 0; level < params_.n_levels_; ++level)
  {
    // Compute the resized image
    if (level != params_.first_level_)
    {
      float scale = 1 / std::pow(params_.scale_factor_, float(level) - float(params_.first_level_));
      cv::resize(image, image_pyramid[level], cv::Size(), scale, scale, cv::INTER_AREA);
      if (!mask.empty())
        cv::resize(mask, mask_pyramid[level], cv::Size(), scale, scale, cv::INTER_AREA);
    }
    else
    {
      image_pyramid[level] = image;
      mask_pyramid[level] = mask;
    }
  }

  // Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
  std::vector < std::vector<cv::KeyPoint> > all_keypoints;
  if (do_keypoints)
    // Get keypoints, those will be far enough from the border that no check will be required for the descriptor
    computeKeyPoints(image_pyramid, mask_pyramid, all_keypoints);
  else
  {
    // Remove keypoints very close to the border
    cv::KeyPointsFilter::runByImageBorder(keypoints_in_out, image.size(), params_.edge_threshold_);

    // Cluster the input keypoints depending on the level they were computed at
    all_keypoints.resize(params_.n_levels_);
    for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints_in_out.begin(), keypoint_end = keypoints_in_out.end(); keypoint
        != keypoint_end; ++keypoint)
      all_keypoints[keypoint->octave].push_back(*keypoint);

    // Make sure we rescale the coordinates
    for (unsigned int level = 0; level < params_.n_levels_; ++level)
    {
      if (level == params_.first_level_)
        continue;

      std::vector<cv::KeyPoint> & keypoints = all_keypoints[level];
      float scale = 1.0f / std::pow(params_.scale_factor_, float(level) - float(params_.first_level_));
      for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
          != keypoint_end; ++keypoint)
        keypoint->pt *= scale;
    }
  }

  keypoints_in_out.clear();
  for (unsigned int level = 0; level < params_.n_levels_; ++level)
  {
    // Compute the resized image
    cv::Mat & working_mat = image_pyramid[level];

    // Compute the integral image
    cv::Mat integral_image;
    if (do_descriptors)
      // if we don't do the descriptors (and therefore, we only do the keypoints, it is faster to not compute the
      // integral image
      computeIntegralImage(working_mat, level, integral_image);

    // Get the features and compute their orientation
    std::vector<cv::KeyPoint> & keypoints = all_keypoints[level];
    computeOrientation(working_mat, integral_image, level, keypoints);

    // Compute the descriptors
    cv::Mat desc;
    if (do_descriptors)
      computeDescriptors(working_mat, integral_image, level, keypoints, desc);

    // Copy to the output data
    if (level != params_.first_level_)
    {
      float scale = std::pow(params_.scale_factor_, float(level) - float(params_.first_level_));
      for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
          != keypoint_end; ++keypoint)
        keypoint->pt *= scale;
    }
    // And add the keypoints to the output
    keypoints_in_out.insert(keypoints_in_out.end(), keypoints.begin(), keypoints.end());

    if (do_descriptors)
    {
      if (descriptors.empty())
        desc.copyTo(descriptors);
      else
        descriptors.push_back(desc);
    }
  }
}

//takes keypoints and culls them by the response
inline void cull(std::vector<cv::KeyPoint>& keypoints, size_t n_points)
{
  //this is only necessary if the keypoints size is greater than the number of desired points.
  if (keypoints.size() > n_points)
  {
    if (n_points==0) {
      keypoints.clear();
      return;
    }
    //first use nth element to partition the keypoints into the best and worst.
    std::nth_element(keypoints.begin(), keypoints.begin() + n_points, keypoints.end(), keypointResponseGreater);
    //this is the boundary response, and in the case of FAST may be ambigous
    float ambiguous_response = keypoints[n_points - 1].response;
    //use std::partition to grab all of the keypoints with the boundary response.
    std::vector<cv::KeyPoint>::const_iterator new_end =
        std::partition(keypoints.begin() + n_points, keypoints.end(),
                       KeypointResponseGreaterThanEqual(ambiguous_response));
    //resize the keypoints, given this new end point. nth_element and partition reordered the points inplace
    keypoints.resize(new_end - keypoints.begin());
  }
}

/** Compute the ORB keypoints on an image
 * @param image_pyramid the image pyramid to compute the features and descriptors on
 * @param mask_pyramid the masks to apply at every level
 * @param keypoints the resulting keypoints, clustered per level
 */
void ORB::computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std::vector<cv::Mat>& mask_pyramid,
                           std::vector<std::vector<cv::KeyPoint> >& all_keypoints_out) const
{
  all_keypoints_out.resize(params_.n_levels_);

  // half_patch_size_ for orientation, 4 for Harris
  unsigned int edge_threshold = std::max(std::max(half_patch_size_, 4), params_.edge_threshold_);

  for (unsigned int level = 0; level < params_.n_levels_; ++level)
  {
    all_keypoints_out[level].reserve(n_features_per_level_[level]);

    std::vector<cv::KeyPoint> & keypoints = all_keypoints_out[level];

    // Detect FAST features, 20 is a good threshold
    cv::FastFeatureDetector fd(20, true);
    fd.detect(image_pyramid[level], keypoints, mask_pyramid[level]);

    // Remove keypoints very close to the border
    cv::KeyPointsFilter::runByImageBorder(keypoints, image_pyramid[level].size(), edge_threshold);

    // Keep more points than necessary as FAST does not give amazing corners
    cull(keypoints, 2 * n_features_per_level_[level]);

    // Compute the Harris cornerness (better scoring than FAST)
    HarrisResponse h(image_pyramid[level]);
    h(keypoints);
    //cull to the final desired level, using the new Harris scores.
    cull(keypoints, n_features_per_level_[level]);

    // Set the level of the coordinates
    for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
        != keypoint_end; ++keypoint)
      keypoint->octave = level;
  }
}

/** Compute the ORB keypoint orientations
 * @param image the image to compute the features and descriptors on
 * @param integral_image the integral image of the iamge (can be empty, but the computation will be slower)
 * @param scale the scale at which we compute the orientation
 * @param keypoints the resulting keypoints
 */
void ORB::computeOrientation(const cv::Mat& image, const cv::Mat& integral_image, unsigned int scale,
                             std::vector<cv::KeyPoint>& keypoints) const
{
  // Process each keypoint
  for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
      != keypoint_end; ++keypoint)
  {
    //get a patch at the keypoint
    if (integral_image.empty())
    {
      switch (image.depth())
      {
        case CV_8U:
          IC_Angle<uchar, int> (image, half_patch_size_, *keypoint, u_max_);
          break;
        case CV_32S:
          IC_Angle<int, int> (image, half_patch_size_, *keypoint, u_max_);
          break;
        case CV_32F:
          IC_Angle<float, float> (image, half_patch_size_, *keypoint, u_max_);
          break;
        case CV_64F:
          IC_Angle<double, double> (image, half_patch_size_, *keypoint, u_max_);
          break;
      }
    }
    else
    {
      // use the integral image if you can
      switch (integral_image.depth())
      {
        case CV_32S:
          IC_Angle_Integral<int> (integral_image, half_patch_size_, *keypoint, orientation_horizontal_offsets_[scale],
                                  orientation_vertical_offsets_[scale]);
          break;
        case CV_32F:
          IC_Angle_Integral<float> (integral_image, half_patch_size_, *keypoint,
                                    orientation_horizontal_offsets_[scale], orientation_vertical_offsets_[scale]);
          break;
        case CV_64F:
          IC_Angle_Integral<double> (integral_image, half_patch_size_, *keypoint,
                                     orientation_horizontal_offsets_[scale], orientation_vertical_offsets_[scale]);
          break;
      }
    }
  }
}

/** Compute the integral image and upadte the cached values
 * @param image the image to compute the features and descriptors on
 * @param level the scale at which we compute the orientation
 * @param descriptors the resulting descriptors
 */
void ORB::computeIntegralImage(const cv::Mat & image, unsigned int level, cv::Mat &integral_image)
{
  integral(image, integral_image, CV_32S);
  integral_image_steps_.resize(params_.n_levels_, 0);

  unsigned int integral_image_step = integral_image.step1();
  if (integral_image_steps_[level] == integral_image_step)
    return;

  // If the integral image dimensions have changed, recompute everything

  // Cache the step sizes
  integral_image_steps_[level] = integral_image_step;

  // Cache the offsets for the orientation
  orientation_horizontal_offsets_.resize(params_.n_levels_);
  orientation_vertical_offsets_.resize(params_.n_levels_);
  orientation_horizontal_offsets_[level].resize(8 * half_patch_size_);
  orientation_vertical_offsets_[level].resize(8 * half_patch_size_);
  for (int v = 1, offset_index = 0; v <= half_patch_size_; ++v)
  {
    // Compute the offsets to use if using the integral image
    for (int signed_v = -v; signed_v <= v; signed_v += 2 * v)
    {
      // the offsets are computed so that we can compute the integral image
      // elem at 0 - eleme at 1 - elem at 2 + elem at 3
      orientation_horizontal_offsets_[level][offset_index] = (signed_v + 1) * integral_image_step + u_max_[v] + 1;
      orientation_vertical_offsets_[level][offset_index] = (u_max_[v] + 1) * integral_image_step + signed_v + 1;
      ++offset_index;
      orientation_horizontal_offsets_[level][offset_index] = signed_v * integral_image_step + u_max_[v] + 1;
      orientation_vertical_offsets_[level][offset_index] = -u_max_[v] * integral_image_step + signed_v + 1;
      ++offset_index;
      orientation_horizontal_offsets_[level][offset_index] = (signed_v + 1) * integral_image_step - u_max_[v];
      orientation_vertical_offsets_[level][offset_index] = (u_max_[v] + 1) * integral_image_step + signed_v;
      ++offset_index;
      orientation_horizontal_offsets_[level][offset_index] = signed_v * integral_image_step - u_max_[v];
      orientation_vertical_offsets_[level][offset_index] = -u_max_[v] * integral_image_step + signed_v;
      ++offset_index;
    }
  }

  // Remove the previous version if dimensions are different
  patterns_.resize(params_.n_levels_, 0);
  if (patterns_[level])
    delete patterns_[level];

  patterns_[level] = new OrbPatterns(params_.patch_size_, integral_image_step);
}

/** Compute the ORB decriptors
 * @param image the image to compute the features and descriptors on
 * @param integral_image the integral image of the image (can be empty, but the computation will be slower)
 * @param level the scale at which we compute the orientation
 * @param keypoints the keypoints to use
 * @param descriptors the resulting descriptors
 */
void ORB::computeDescriptors(const cv::Mat& image, const cv::Mat& integral_image, unsigned int level,
                             std::vector<cv::KeyPoint>& keypoints, cv::Mat & descriptors) const
{
  //convert to grayscale if more than one color
  cv::Mat gray_image = image;
  if (image.type() != CV_8UC1)
    cv::cvtColor(image, gray_image, CV_BGR2GRAY);

  // Get the patterns to apply
  OrbPatterns* patterns = patterns_[level];

  //create the descriptor mat, keypoints.size() rows, BYTES cols
  descriptors = cv::Mat::zeros(keypoints.size(), kBytes, CV_8UC1);

  for (size_t i = 0; i < keypoints.size(); i++)
    // look up the test pattern
    patterns->compute(keypoints[i], integral_image, descriptors.ptr(i));
}

}