• Vladislav Vinogradov's avatar
    optimizations: · 281d036f
    Vladislav Vinogradov authored
    - new reduce implementation (with kepler optimizations)
    - saturate_cast via asm command
    - video SIMD instructions in element operations
    - float arithmetics instead of double
    - new deviceSupports function
    281d036f
imgproc.cpp 60.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::gpu;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

void cv::gpu::meanShiftFiltering(const GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_nogpu(); }
void cv::gpu::meanShiftProc(const GpuMat&, GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_nogpu(); }
void cv::gpu::drawColorDisp(const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::reprojectImageTo3D(const GpuMat&, GpuMat&, const Mat&, int, Stream&) { throw_nogpu(); }
void cv::gpu::copyMakeBorder(const GpuMat&, GpuMat&, int, int, int, int, int, const Scalar&, Stream&) { throw_nogpu(); }
void cv::gpu::buildWarpPlaneMaps(Size, Rect, const Mat&, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::buildWarpCylindricalMaps(Size, Rect, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::buildWarpSphericalMaps(Size, Rect, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::rotate(const GpuMat&, GpuMat&, Size, double, double, double, int, Stream&) { throw_nogpu(); }
void cv::gpu::integral(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::integralBuffered(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::sqrIntegral(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::columnSum(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::rectStdDev(const GpuMat&, const GpuMat&, GpuMat&, const Rect&, Stream&) { throw_nogpu(); }
void cv::gpu::evenLevels(GpuMat&, int, int, int) { throw_nogpu(); }
void cv::gpu::histEven(const GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); }
void cv::gpu::histEven(const GpuMat&, GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); }
void cv::gpu::histEven(const GpuMat&, GpuMat*, int*, int*, int*, Stream&) { throw_nogpu(); }
void cv::gpu::histEven(const GpuMat&, GpuMat*, GpuMat&, int*, int*, int*, Stream&) { throw_nogpu(); }
void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*, Stream&) { throw_nogpu(); }
void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::calcHist(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::calcHist(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, int, int, double, int) { throw_nogpu(); }
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, double, int) { throw_nogpu(); }
void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, double, int, Stream&) { throw_nogpu(); }
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); }
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); }
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); }
void cv::gpu::mulSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, bool, Stream&) { throw_nogpu(); }
void cv::gpu::mulAndScaleSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, float, bool, Stream&) { throw_nogpu(); }
void cv::gpu::dft(const GpuMat&, GpuMat&, Size, int, Stream&) { throw_nogpu(); }
void cv::gpu::ConvolveBuf::create(Size, Size) { throw_nogpu(); }
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool, ConvolveBuf&, Stream&) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int, bool) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, CannyBuf&, GpuMat&, double, double, int, bool) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, double, double, bool) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, const GpuMat&, CannyBuf&, GpuMat&, double, double, bool) { throw_nogpu(); }
cv::gpu::CannyBuf::CannyBuf(const GpuMat&, const GpuMat&) { throw_nogpu(); }
void cv::gpu::CannyBuf::create(const Size&, int) { throw_nogpu(); }
void cv::gpu::CannyBuf::release() { throw_nogpu(); }

#else /* !defined (HAVE_CUDA) */

////////////////////////////////////////////////////////////////////////
// meanShiftFiltering_GPU

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void meanShiftFiltering_gpu(const PtrStepSzb& src, PtrStepSzb dst, int sp, int sr, int maxIter, float eps, cudaStream_t stream);
    }
}}}

void cv::gpu::meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr, TermCriteria criteria, Stream& stream)
{
    using namespace ::cv::gpu::device::imgproc;

    if( src.empty() )
        CV_Error( CV_StsBadArg, "The input image is empty" );

    if( src.depth() != CV_8U || src.channels() != 4 )
        CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );

    dst.create( src.size(), CV_8UC4 );

    if( !(criteria.type & TermCriteria::MAX_ITER) )
        criteria.maxCount = 5;

    int maxIter = std::min(std::max(criteria.maxCount, 1), 100);

    float eps;
    if( !(criteria.type & TermCriteria::EPS) )
        eps = 1.f;
    eps = (float)std::max(criteria.epsilon, 0.0);

    meanShiftFiltering_gpu(src, dst, sp, sr, maxIter, eps, StreamAccessor::getStream(stream));
}

////////////////////////////////////////////////////////////////////////
// meanShiftProc_GPU

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void meanShiftProc_gpu(const PtrStepSzb& src, PtrStepSzb dstr, PtrStepSzb dstsp, int sp, int sr, int maxIter, float eps, cudaStream_t stream);
    }
}}}

void cv::gpu::meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, TermCriteria criteria, Stream& stream)
{
    using namespace ::cv::gpu::device::imgproc;

    if( src.empty() )
        CV_Error( CV_StsBadArg, "The input image is empty" );

    if( src.depth() != CV_8U || src.channels() != 4 )
        CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );

    dstr.create( src.size(), CV_8UC4 );
    dstsp.create( src.size(), CV_16SC2 );

    if( !(criteria.type & TermCriteria::MAX_ITER) )
        criteria.maxCount = 5;

    int maxIter = std::min(std::max(criteria.maxCount, 1), 100);

    float eps;
    if( !(criteria.type & TermCriteria::EPS) )
        eps = 1.f;
    eps = (float)std::max(criteria.epsilon, 0.0);

    meanShiftProc_gpu(src, dstr, dstsp, sp, sr, maxIter, eps, StreamAccessor::getStream(stream));
}

////////////////////////////////////////////////////////////////////////
// drawColorDisp

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void drawColorDisp_gpu(const PtrStepSzb& src, const PtrStepSzb& dst, int ndisp, const cudaStream_t& stream);
        void drawColorDisp_gpu(const PtrStepSz<short>& src, const PtrStepSzb& dst, int ndisp, const cudaStream_t& stream);
    }
}}}

namespace
{
    template <typename T>
    void drawColorDisp_caller(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream)
    {
        using namespace ::cv::gpu::device::imgproc;

        dst.create(src.size(), CV_8UC4);

        drawColorDisp_gpu((PtrStepSz<T>)src, dst, ndisp, stream);
    }

    typedef void (*drawColorDisp_caller_t)(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream);

    const drawColorDisp_caller_t drawColorDisp_callers[] = {drawColorDisp_caller<unsigned char>, 0, 0, drawColorDisp_caller<short>, 0, 0, 0, 0};
}

void cv::gpu::drawColorDisp(const GpuMat& src, GpuMat& dst, int ndisp, Stream& stream)
{
    CV_Assert(src.type() == CV_8U || src.type() == CV_16S);

    drawColorDisp_callers[src.type()](src, dst, ndisp, StreamAccessor::getStream(stream));
}

////////////////////////////////////////////////////////////////////////
// reprojectImageTo3D

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        template <typename T, typename D>
        void reprojectImageTo3D_gpu(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream);
    }
}}}

void cv::gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyz, const Mat& Q, int dst_cn, Stream& stream)
{
    using namespace cv::gpu::device::imgproc;

    typedef void (*func_t)(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream);
    static const func_t funcs[2][4] =
    {
        {reprojectImageTo3D_gpu<uchar, float3>, 0, 0, reprojectImageTo3D_gpu<short, float3>},
        {reprojectImageTo3D_gpu<uchar, float4>, 0, 0, reprojectImageTo3D_gpu<short, float4>}
    };

    CV_Assert(disp.type() == CV_8U || disp.type() == CV_16S);
    CV_Assert(Q.type() == CV_32F && Q.rows == 4 && Q.cols == 4 && Q.isContinuous());
    CV_Assert(dst_cn == 3 || dst_cn == 4);

    xyz.create(disp.size(), CV_MAKE_TYPE(CV_32F, dst_cn));

    funcs[dst_cn == 4][disp.type()](disp, xyz, Q.ptr<float>(), StreamAccessor::getStream(stream));
}

////////////////////////////////////////////////////////////////////////
// copyMakeBorder

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        template <typename T, int cn> void copyMakeBorder_gpu(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderMode, const T* borderValue, cudaStream_t stream);
    }
}}}

namespace
{
    template <typename T, int cn> void copyMakeBorder_caller(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream)
    {
        using namespace ::cv::gpu::device::imgproc;

        Scalar_<T> val(saturate_cast<T>(value[0]), saturate_cast<T>(value[1]), saturate_cast<T>(value[2]), saturate_cast<T>(value[3]));

        copyMakeBorder_gpu<T, cn>(src, dst, top, left, borderType, val.val, stream);
    }
}

#if defined __GNUC__ && __GNUC__ > 2 && __GNUC_MINOR__  > 4
typedef Npp32s __attribute__((__may_alias__)) Npp32s_a;
#else
typedef Npp32s Npp32s_a;
#endif

void cv::gpu::copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, int borderType, const Scalar& value, Stream& s)
{
    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
    CV_Assert(borderType == BORDER_REFLECT101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP);

    dst.create(src.rows + top + bottom, src.cols + left + right, src.type());

    cudaStream_t stream = StreamAccessor::getStream(s);

    if (borderType == BORDER_CONSTANT && (src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1 || src.type() == CV_32FC1))
    {
        NppiSize srcsz;
        srcsz.width  = src.cols;
        srcsz.height = src.rows;

        NppiSize dstsz;
        dstsz.width  = dst.cols;
        dstsz.height = dst.rows;

        NppStreamHandler h(stream);

        switch (src.type())
        {
        case CV_8UC1:
            {
                Npp8u nVal = saturate_cast<Npp8u>(value[0]);
                nppSafeCall( nppiCopyConstBorder_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        case CV_8UC4:
            {
                Npp8u nVal[] = {saturate_cast<Npp8u>(value[0]), saturate_cast<Npp8u>(value[1]), saturate_cast<Npp8u>(value[2]), saturate_cast<Npp8u>(value[3])};
                nppSafeCall( nppiCopyConstBorder_8u_C4R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        case CV_32SC1:
            {
                Npp32s nVal = saturate_cast<Npp32s>(value[0]);
                nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        case CV_32FC1:
            {
                Npp32f val = saturate_cast<Npp32f>(value[0]);
                Npp32s nVal = *(reinterpret_cast<Npp32s_a*>(&val));
                nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        }

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
    else
    {
        typedef void (*caller_t)(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream);
        static const caller_t callers[6][4] =
        {
            {   copyMakeBorder_caller<uchar, 1>  ,    copyMakeBorder_caller<uchar, 2>   ,    copyMakeBorder_caller<uchar, 3>  ,    copyMakeBorder_caller<uchar, 4>},
            {0/*copyMakeBorder_caller<schar, 1>*/, 0/*copyMakeBorder_caller<schar, 2>*/ , 0/*copyMakeBorder_caller<schar, 3>*/, 0/*copyMakeBorder_caller<schar, 4>*/},
            {   copyMakeBorder_caller<ushort, 1> , 0/*copyMakeBorder_caller<ushort, 2>*/,    copyMakeBorder_caller<ushort, 3> ,    copyMakeBorder_caller<ushort, 4>},
            {   copyMakeBorder_caller<short, 1>  , 0/*copyMakeBorder_caller<short, 2>*/ ,    copyMakeBorder_caller<short, 3>  ,    copyMakeBorder_caller<short, 4>},
            {0/*copyMakeBorder_caller<int,   1>*/, 0/*copyMakeBorder_caller<int,   2>*/ , 0/*copyMakeBorder_caller<int,   3>*/, 0/*copyMakeBorder_caller<int  , 4>*/},
            {   copyMakeBorder_caller<float, 1>  , 0/*copyMakeBorder_caller<float, 2>*/ ,    copyMakeBorder_caller<float, 3>  ,    copyMakeBorder_caller<float ,4>}
        };

        caller_t func = callers[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        int gpuBorderType;
        CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));

        func(src, dst, top, left, gpuBorderType, value, stream);
    }
}

//////////////////////////////////////////////////////////////////////////////
// buildWarpPlaneMaps

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void buildWarpPlaneMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
                                const float k_rinv[9], const float r_kinv[9], const float t[3], float scale,
                                cudaStream_t stream);
    }
}}}

void cv::gpu::buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T,
                                 float scale, GpuMat& map_x, GpuMat& map_y, Stream& stream)
{
    (void)src_size;
    using namespace ::cv::gpu::device::imgproc;

    CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F);
    CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F);
    CV_Assert((T.size() == Size(3,1) || T.size() == Size(1,3)) && T.type() == CV_32F && T.isContinuous());

    Mat K_Rinv = K * R.t();
    Mat R_Kinv = R * K.inv();
    CV_Assert(K_Rinv.isContinuous());
    CV_Assert(R_Kinv.isContinuous());

    map_x.create(dst_roi.size(), CV_32F);
    map_y.create(dst_roi.size(), CV_32F);
    device::imgproc::buildWarpPlaneMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(),
                       T.ptr<float>(), scale, StreamAccessor::getStream(stream));
}

//////////////////////////////////////////////////////////////////////////////
// buildWarpCylyndricalMaps

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void buildWarpCylindricalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
                                      const float k_rinv[9], const float r_kinv[9], float scale,
                                      cudaStream_t stream);
    }
}}}

void cv::gpu::buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
                                       GpuMat& map_x, GpuMat& map_y, Stream& stream)
{
    (void)src_size;
    using namespace ::cv::gpu::device::imgproc;

    CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F);
    CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F);

    Mat K_Rinv = K * R.t();
    Mat R_Kinv = R * K.inv();
    CV_Assert(K_Rinv.isContinuous());
    CV_Assert(R_Kinv.isContinuous());

    map_x.create(dst_roi.size(), CV_32F);
    map_y.create(dst_roi.size(), CV_32F);
    device::imgproc::buildWarpCylindricalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream));
}


//////////////////////////////////////////////////////////////////////////////
// buildWarpSphericalMaps

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void buildWarpSphericalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
                                    const float k_rinv[9], const float r_kinv[9], float scale,
                                    cudaStream_t stream);
    }
}}}

void cv::gpu::buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
                                     GpuMat& map_x, GpuMat& map_y, Stream& stream)
{
    (void)src_size;
    using namespace ::cv::gpu::device::imgproc;

    CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F);
    CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F);

    Mat K_Rinv = K * R.t();
    Mat R_Kinv = R * K.inv();
    CV_Assert(K_Rinv.isContinuous());
    CV_Assert(R_Kinv.isContinuous());

    map_x.create(dst_roi.size(), CV_32F);
    map_y.create(dst_roi.size(), CV_32F);
    device::imgproc::buildWarpSphericalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream));
}

////////////////////////////////////////////////////////////////////////
// rotate

namespace
{
    template<int DEPTH> struct NppTypeTraits;
    template<> struct NppTypeTraits<CV_8U>  { typedef Npp8u npp_t; };
    template<> struct NppTypeTraits<CV_8S>  { typedef Npp8s npp_t; };
    template<> struct NppTypeTraits<CV_16U> { typedef Npp16u npp_t; };
    template<> struct NppTypeTraits<CV_16S> { typedef Npp16s npp_t; };
    template<> struct NppTypeTraits<CV_32S> { typedef Npp32s npp_t; };
    template<> struct NppTypeTraits<CV_32F> { typedef Npp32f npp_t; };
    template<> struct NppTypeTraits<CV_64F> { typedef Npp64f npp_t; };

    template <int DEPTH> struct NppRotateFunc
    {
        typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;

        typedef NppStatus (*func_t)(const npp_t* pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI,
                                    npp_t* pDst, int nDstStep, NppiRect oDstROI,
                                    double nAngle, double nShiftX, double nShiftY, int eInterpolation);
    };

    template <int DEPTH, typename NppRotateFunc<DEPTH>::func_t func> struct NppRotate
    {
        typedef typename NppRotateFunc<DEPTH>::npp_t npp_t;

        static void call(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream)
        {
            (void)dsize;
            static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};

            NppStreamHandler h(stream);

            NppiSize srcsz;
            srcsz.height = src.rows;
            srcsz.width = src.cols;
            NppiRect srcroi;
            srcroi.x = srcroi.y = 0;
            srcroi.height = src.rows;
            srcroi.width = src.cols;
            NppiRect dstroi;
            dstroi.x = dstroi.y = 0;
            dstroi.height = dst.rows;
            dstroi.width = dst.cols;

            nppSafeCall( func(src.ptr<npp_t>(), srcsz, static_cast<int>(src.step), srcroi,
                dst.ptr<npp_t>(), static_cast<int>(dst.step), dstroi, angle, xShift, yShift, npp_inter[interpolation]) );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
}

void cv::gpu::rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, Stream& stream)
{
    typedef void (*func_t)(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream);

    static const func_t funcs[6][4] =
    {
        {NppRotate<CV_8U, nppiRotate_8u_C1R>::call, 0, NppRotate<CV_8U, nppiRotate_8u_C3R>::call, NppRotate<CV_8U, nppiRotate_8u_C4R>::call},
        {0,0,0,0},
        {NppRotate<CV_16U, nppiRotate_16u_C1R>::call, 0, NppRotate<CV_16U, nppiRotate_16u_C3R>::call, NppRotate<CV_16U, nppiRotate_16u_C4R>::call},
        {0,0,0,0},
        {0,0,0,0},
        {NppRotate<CV_32F, nppiRotate_32f_C1R>::call, 0, NppRotate<CV_32F, nppiRotate_32f_C3R>::call, NppRotate<CV_32F, nppiRotate_32f_C4R>::call}
    };

    CV_Assert(src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32F);
    CV_Assert(src.channels() == 1 || src.channels() == 3 || src.channels() == 4);
    CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);

    dst.create(dsize, src.type());

    funcs[src.depth()][src.channels() - 1](src, dst, dsize, angle, xShift, yShift, interpolation, StreamAccessor::getStream(stream));
}

////////////////////////////////////////////////////////////////////////
// integral

void cv::gpu::integral(const GpuMat& src, GpuMat& sum, Stream& s)
{
    GpuMat buffer;
    integralBuffered(src, sum, buffer, s);
}

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void shfl_integral_gpu(const PtrStepSzb& img, PtrStepSz<unsigned int> integral, cudaStream_t stream);
    }
}}}

void cv::gpu::integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& s)
{
    CV_Assert(src.type() == CV_8UC1);

    cudaStream_t stream = StreamAccessor::getStream(s);

    cv::Size whole;
    cv::Point offset;

    src.locateROI(whole, offset);

    if (deviceSupports(WARP_SHUFFLE_FUNCTIONS) && src.cols <= 2048
        && offset.x % 16 == 0 && ((src.cols + 63) / 64) * 64 <= (static_cast<int>(src.step) - offset.x))
    {
        ensureSizeIsEnough(((src.rows + 7) / 8) * 8, ((src.cols + 63) / 64) * 64, CV_32SC1, buffer);

        cv::gpu::device::imgproc::shfl_integral_gpu(src, buffer, stream);

        sum.create(src.rows + 1, src.cols + 1, CV_32SC1);
        if (s)
            s.enqueueMemSet(sum, Scalar::all(0));
        else
            sum.setTo(Scalar::all(0));

        GpuMat inner = sum(Rect(1, 1, src.cols, src.rows));
        GpuMat res = buffer(Rect(0, 0, src.cols, src.rows));

        if (s)
            s.enqueueCopy(res, inner);
        else
            res.copyTo(inner);
    }
    else
    {
        sum.create(src.rows + 1, src.cols + 1, CV_32SC1);

        NcvSize32u roiSize;
        roiSize.width = src.cols;
        roiSize.height = src.rows;

        cudaDeviceProp prop;
        cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );

        Ncv32u bufSize;
        ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) );
        ensureSizeIsEnough(1, bufSize, CV_8UC1, buffer);


        NppStStreamHandler h(stream);

        ncvSafeCall( nppiStIntegral_8u32u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>()), static_cast<int>(src.step),
            sum.ptr<Ncv32u>(), static_cast<int>(sum.step), roiSize, buffer.ptr<Ncv8u>(), bufSize, prop) );

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
}

//////////////////////////////////////////////////////////////////////////////
// sqrIntegral

void cv::gpu::sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& s)
{
    CV_Assert(src.type() == CV_8U);

    NcvSize32u roiSize;
    roiSize.width = src.cols;
    roiSize.height = src.rows;

    cudaDeviceProp prop;
    cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) );

    Ncv32u bufSize;
    ncvSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize, prop));
    GpuMat buf(1, bufSize, CV_8U);

    cudaStream_t stream = StreamAccessor::getStream(s);

    NppStStreamHandler h(stream);

    sqsum.create(src.rows + 1, src.cols + 1, CV_64F);
    ncvSafeCall(nppiStSqrIntegral_8u64u_C1R(const_cast<Ncv8u*>(src.ptr<Ncv8u>(0)), static_cast<int>(src.step),
            sqsum.ptr<Ncv64u>(0), static_cast<int>(sqsum.step), roiSize, buf.ptr<Ncv8u>(0), bufSize, prop));

    if (stream == 0)
        cudaSafeCall( cudaDeviceSynchronize() );
}

//////////////////////////////////////////////////////////////////////////////
// columnSum

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void columnSum_32F(const PtrStepSzb src, const PtrStepSzb dst);
    }
}}}

void cv::gpu::columnSum(const GpuMat& src, GpuMat& dst)
{
    using namespace ::cv::gpu::device::imgproc;

    CV_Assert(src.type() == CV_32F);

    dst.create(src.size(), CV_32F);

    device::imgproc::columnSum_32F(src, dst);
}

void cv::gpu::rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect, Stream& s)
{
    CV_Assert(src.type() == CV_32SC1 && sqr.type() == CV_64FC1);

    dst.create(src.size(), CV_32FC1);

    NppiSize sz;
    sz.width = src.cols;
    sz.height = src.rows;

    NppiRect nppRect;
    nppRect.height = rect.height;
    nppRect.width = rect.width;
    nppRect.x = rect.x;
    nppRect.y = rect.y;

    cudaStream_t stream = StreamAccessor::getStream(s);

    NppStreamHandler h(stream);

    nppSafeCall( nppiRectStdDev_32s32f_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), sqr.ptr<Npp64f>(), static_cast<int>(sqr.step),
                dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz, nppRect) );

    if (stream == 0)
        cudaSafeCall( cudaDeviceSynchronize() );
}


////////////////////////////////////////////////////////////////////////
// Histogram

namespace
{
    typedef NppStatus (*get_buf_size_c1_t)(NppiSize oSizeROI, int nLevels, int* hpBufferSize);
    typedef NppStatus (*get_buf_size_c4_t)(NppiSize oSizeROI, int nLevels[], int* hpBufferSize);

    template<int SDEPTH> struct NppHistogramEvenFuncC1
    {
        typedef typename NppTypeTraits<SDEPTH>::npp_t src_t;

    typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist,
            int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer);
    };
    template<int SDEPTH> struct NppHistogramEvenFuncC4
    {
        typedef typename NppTypeTraits<SDEPTH>::npp_t src_t;

        typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI,
            Npp32s * pHist[4], int nLevels[4], Npp32s nLowerLevel[4], Npp32s nUpperLevel[4], Npp8u * pBuffer);
    };

    template<int SDEPTH, typename NppHistogramEvenFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
    struct NppHistogramEvenC1
    {
        typedef typename NppHistogramEvenFuncC1<SDEPTH>::src_t src_t;

        static void hist(const GpuMat& src, GpuMat& hist, GpuMat& buffer, int histSize, int lowerLevel, int upperLevel, cudaStream_t stream)
        {
            int levels = histSize + 1;
            hist.create(1, histSize, CV_32S);

            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            int buf_size;
            get_buf_size(sz, levels, &buf_size);

            ensureSizeIsEnough(1, buf_size, CV_8U, buffer);

            NppStreamHandler h(stream);

            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels,
                lowerLevel, upperLevel, buffer.ptr<Npp8u>()) );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
    template<int SDEPTH, typename NppHistogramEvenFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
    struct NppHistogramEvenC4
    {
        typedef typename NppHistogramEvenFuncC4<SDEPTH>::src_t src_t;

        static void hist(const GpuMat& src, GpuMat hist[4], GpuMat& buffer, int histSize[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream)
        {
            int levels[] = {histSize[0] + 1, histSize[1] + 1, histSize[2] + 1, histSize[3] + 1};
            hist[0].create(1, histSize[0], CV_32S);
            hist[1].create(1, histSize[1], CV_32S);
            hist[2].create(1, histSize[2], CV_32S);
            hist[3].create(1, histSize[3], CV_32S);

            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};

            int buf_size;
            get_buf_size(sz, levels, &buf_size);

            ensureSizeIsEnough(1, buf_size, CV_8U, buffer);

            NppStreamHandler h(stream);

            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, levels, lowerLevel, upperLevel, buffer.ptr<Npp8u>()) );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };

    template<int SDEPTH> struct NppHistogramRangeFuncC1
    {
        typedef typename NppTypeTraits<SDEPTH>::npp_t src_t;
        typedef Npp32s level_t;
        enum {LEVEL_TYPE_CODE=CV_32SC1};

        typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
            const Npp32s* pLevels, int nLevels, Npp8u* pBuffer);
    };
    template<> struct NppHistogramRangeFuncC1<CV_32F>
    {
        typedef Npp32f src_t;
        typedef Npp32f level_t;
        enum {LEVEL_TYPE_CODE=CV_32FC1};

        typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
            const Npp32f* pLevels, int nLevels, Npp8u* pBuffer);
    };
    template<int SDEPTH> struct NppHistogramRangeFuncC4
    {
        typedef typename NppTypeTraits<SDEPTH>::npp_t src_t;
        typedef Npp32s level_t;
        enum {LEVEL_TYPE_CODE=CV_32SC1};

        typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
            const Npp32s* pLevels[4], int nLevels[4], Npp8u* pBuffer);
    };
    template<> struct NppHistogramRangeFuncC4<CV_32F>
    {
        typedef Npp32f src_t;
        typedef Npp32f level_t;
        enum {LEVEL_TYPE_CODE=CV_32FC1};

        typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
            const Npp32f* pLevels[4], int nLevels[4], Npp8u* pBuffer);
    };

    template<int SDEPTH, typename NppHistogramRangeFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
    struct NppHistogramRangeC1
    {
        typedef typename NppHistogramRangeFuncC1<SDEPTH>::src_t src_t;
        typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
        enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};

        static void hist(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buffer, cudaStream_t stream)
        {
            CV_Assert(levels.type() == LEVEL_TYPE_CODE && levels.rows == 1);

            hist.create(1, levels.cols - 1, CV_32S);

            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            int buf_size;
            get_buf_size(sz, levels.cols, &buf_size);

            ensureSizeIsEnough(1, buf_size, CV_8U, buffer);

            NppStreamHandler h(stream);

            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels.ptr<level_t>(), levels.cols, buffer.ptr<Npp8u>()) );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
    template<int SDEPTH, typename NppHistogramRangeFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
    struct NppHistogramRangeC4
    {
        typedef typename NppHistogramRangeFuncC4<SDEPTH>::src_t src_t;
        typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
        enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};

        static void hist(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buffer, cudaStream_t stream)
        {
            CV_Assert(levels[0].type() == LEVEL_TYPE_CODE && levels[0].rows == 1);
            CV_Assert(levels[1].type() == LEVEL_TYPE_CODE && levels[1].rows == 1);
            CV_Assert(levels[2].type() == LEVEL_TYPE_CODE && levels[2].rows == 1);
            CV_Assert(levels[3].type() == LEVEL_TYPE_CODE && levels[3].rows == 1);

            hist[0].create(1, levels[0].cols - 1, CV_32S);
            hist[1].create(1, levels[1].cols - 1, CV_32S);
            hist[2].create(1, levels[2].cols - 1, CV_32S);
            hist[3].create(1, levels[3].cols - 1, CV_32S);

            Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
            int nLevels[] = {levels[0].cols, levels[1].cols, levels[2].cols, levels[3].cols};
            const level_t* pLevels[] = {levels[0].ptr<level_t>(), levels[1].ptr<level_t>(), levels[2].ptr<level_t>(), levels[3].ptr<level_t>()};

            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            int buf_size;
            get_buf_size(sz, nLevels, &buf_size);

            ensureSizeIsEnough(1, buf_size, CV_8U, buffer);

            NppStreamHandler h(stream);

            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, pLevels, nLevels, buffer.ptr<Npp8u>()) );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
}

void cv::gpu::evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel)
{
    Mat host_levels(1, nLevels, CV_32SC1);
    nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr<Npp32s>(), nLevels, lowerLevel, upperLevel) );
    levels.upload(host_levels);
}

void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream)
{
    GpuMat buf;
    histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream);
}

void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream)
{
    CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 );

    typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, GpuMat& buf, int levels, int lowerLevel, int upperLevel, cudaStream_t stream);
    static const hist_t hist_callers[] =
    {
        NppHistogramEvenC1<CV_8U , nppiHistogramEven_8u_C1R , nppiHistogramEvenGetBufferSize_8u_C1R >::hist,
        0,
        NppHistogramEvenC1<CV_16U, nppiHistogramEven_16u_C1R, nppiHistogramEvenGetBufferSize_16u_C1R>::hist,
        NppHistogramEvenC1<CV_16S, nppiHistogramEven_16s_C1R, nppiHistogramEvenGetBufferSize_16s_C1R>::hist
    };

    hist_callers[src.depth()](src, hist, buf, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream));
}

void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
{
    GpuMat buf;
    histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream);
}

void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
{
    CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 );

    typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int levels[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream);
    static const hist_t hist_callers[] =
    {
        NppHistogramEvenC4<CV_8U , nppiHistogramEven_8u_C4R , nppiHistogramEvenGetBufferSize_8u_C4R >::hist,
        0,
        NppHistogramEvenC4<CV_16U, nppiHistogramEven_16u_C4R, nppiHistogramEvenGetBufferSize_16u_C4R>::hist,
        NppHistogramEvenC4<CV_16S, nppiHistogramEven_16s_C4R, nppiHistogramEvenGetBufferSize_16s_C4R>::hist
    };

    hist_callers[src.depth()](src, hist, buf, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream));
}

void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream)
{
    GpuMat buf;
    histRange(src, hist, levels, buf, stream);
}

void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream)
{
    CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 || src.type() == CV_32FC1);

    typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, cudaStream_t stream);
    static const hist_t hist_callers[] =
    {
        NppHistogramRangeC1<CV_8U , nppiHistogramRange_8u_C1R , nppiHistogramRangeGetBufferSize_8u_C1R >::hist,
        0,
        NppHistogramRangeC1<CV_16U, nppiHistogramRange_16u_C1R, nppiHistogramRangeGetBufferSize_16u_C1R>::hist,
        NppHistogramRangeC1<CV_16S, nppiHistogramRange_16s_C1R, nppiHistogramRangeGetBufferSize_16s_C1R>::hist,
        0,
        NppHistogramRangeC1<CV_32F, nppiHistogramRange_32f_C1R, nppiHistogramRangeGetBufferSize_32f_C1R>::hist
    };

    hist_callers[src.depth()](src, hist, levels, buf, StreamAccessor::getStream(stream));
}

void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream)
{
    GpuMat buf;
    histRange(src, hist, levels, buf, stream);
}

void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, Stream& stream)
{
    CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 || src.type() == CV_32FC4);

    typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, cudaStream_t stream);
    static const hist_t hist_callers[] =
    {
        NppHistogramRangeC4<CV_8U , nppiHistogramRange_8u_C4R , nppiHistogramRangeGetBufferSize_8u_C4R >::hist,
        0,
        NppHistogramRangeC4<CV_16U, nppiHistogramRange_16u_C4R, nppiHistogramRangeGetBufferSize_16u_C4R>::hist,
        NppHistogramRangeC4<CV_16S, nppiHistogramRange_16s_C4R, nppiHistogramRangeGetBufferSize_16s_C4R>::hist,
        0,
        NppHistogramRangeC4<CV_32F, nppiHistogramRange_32f_C4R, nppiHistogramRangeGetBufferSize_32f_C4R>::hist
    };

    hist_callers[src.depth()](src, hist, levels, buf, StreamAccessor::getStream(stream));
}

namespace hist
{
    void histogram256(PtrStepSzb src, int* hist, cudaStream_t stream);
    void equalizeHist(PtrStepSzb src, PtrStepSzb dst, const int* lut, cudaStream_t stream);
}

void cv::gpu::calcHist(const GpuMat& src, GpuMat& hist, Stream& stream)
{
    CV_Assert(src.type() == CV_8UC1);

    hist.create(1, 256, CV_32SC1);
    hist.setTo(Scalar::all(0));

    hist::histogram256(src, hist.ptr<int>(), StreamAccessor::getStream(stream));
}

void cv::gpu::calcHist(const GpuMat& src, GpuMat& hist, GpuMat& buf, Stream& stream)
{
    (void) buf;
    calcHist(src, hist, stream);
}

void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream)
{
    GpuMat hist;
    GpuMat buf;
    equalizeHist(src, dst, hist, buf, stream);
}

void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream)
{
    GpuMat buf;
    equalizeHist(src, dst, hist, buf, stream);
}

void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& s)
{
    CV_Assert(src.type() == CV_8UC1);

    dst.create(src.size(), src.type());

    int intBufSize;
    nppSafeCall( nppsIntegralGetBufferSize_32s(256, &intBufSize) );

    ensureSizeIsEnough(1, intBufSize + 256 * sizeof(int), CV_8UC1, buf);

    GpuMat intBuf(1, intBufSize, CV_8UC1, buf.ptr());
    GpuMat lut(1, 256, CV_32S, buf.ptr() + intBufSize);

    calcHist(src, hist, s);

    cudaStream_t stream = StreamAccessor::getStream(s);

    NppStreamHandler h(stream);

    nppSafeCall( nppsIntegral_32s(hist.ptr<Npp32s>(), lut.ptr<Npp32s>(), 256, intBuf.ptr<Npp8u>()) );

    hist::equalizeHist(src, dst, lut.ptr<int>(), stream);
}

////////////////////////////////////////////////////////////////////////
// cornerHarris & minEgenVal

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void cornerHarris_gpu(int block_size, float k, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream);
        void cornerMinEigenVal_gpu(int block_size, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream);
    }
}}}

namespace
{
    void extractCovData(const GpuMat& src, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream)
    {
        double scale = static_cast<double>(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize;

        if (ksize < 0)
            scale *= 2.;

        if (src.depth() == CV_8U)
            scale *= 255.;

        scale = 1./scale;

        Dx.create(src.size(), CV_32F);
        Dy.create(src.size(), CV_32F);

        if (ksize > 0)
        {
            Sobel(src, Dx, CV_32F, 1, 0, buf, ksize, scale, borderType, -1, stream);
            Sobel(src, Dy, CV_32F, 0, 1, buf, ksize, scale, borderType, -1, stream);
        }
        else
        {
            Scharr(src, Dx, CV_32F, 1, 0, buf, scale, borderType, -1, stream);
            Scharr(src, Dy, CV_32F, 0, 1, buf, scale, borderType, -1, stream);
        }
    }
}

void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType)
{
    GpuMat Dx, Dy;
    cornerHarris(src, dst, Dx, Dy, blockSize, ksize, k, borderType);
}

void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType)
{
    GpuMat buf;
    cornerHarris(src, dst, Dx, Dy, buf, blockSize, ksize, k, borderType);
}

void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, double k, int borderType, Stream& stream)
{
    using namespace cv::gpu::device::imgproc;

    CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);

    int gpuBorderType;
    CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));

    extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream);

    dst.create(src.size(), CV_32F);

    cornerHarris_gpu(blockSize, static_cast<float>(k), Dx, Dy, dst, gpuBorderType, StreamAccessor::getStream(stream));
}

void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType)
{
    GpuMat Dx, Dy;
    cornerMinEigenVal(src, dst, Dx, Dy, blockSize, ksize, borderType);
}

void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType)
{
    GpuMat buf;
    cornerMinEigenVal(src, dst, Dx, Dy, buf, blockSize, ksize, borderType);
}

void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream)
{
    using namespace ::cv::gpu::device::imgproc;

    CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);

    int gpuBorderType;
    CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType));

    extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream);

    dst.create(src.size(), CV_32F);

    cornerMinEigenVal_gpu(blockSize, Dx, Dy, dst, gpuBorderType, StreamAccessor::getStream(stream));
}

//////////////////////////////////////////////////////////////////////////////
// mulSpectrums

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void mulSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c, cudaStream_t stream);

        void mulSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, PtrStepSz<cufftComplex> c, cudaStream_t stream);
    }
}}}

void cv::gpu::mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, bool conjB, Stream& stream)
{
    (void)flags;
    using namespace ::cv::gpu::device::imgproc;

    typedef void (*Caller)(const PtrStep<cufftComplex>, const PtrStep<cufftComplex>, PtrStepSz<cufftComplex>, cudaStream_t stream);

    static Caller callers[] = { device::imgproc::mulSpectrums, device::imgproc::mulSpectrums_CONJ };

    CV_Assert(a.type() == b.type() && a.type() == CV_32FC2);
    CV_Assert(a.size() == b.size());

    c.create(a.size(), CV_32FC2);

    Caller caller = callers[(int)conjB];
    caller(a, b, c, StreamAccessor::getStream(stream));
}

//////////////////////////////////////////////////////////////////////////////
// mulAndScaleSpectrums

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void mulAndScaleSpectrums(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c, cudaStream_t stream);

        void mulAndScaleSpectrums_CONJ(const PtrStep<cufftComplex> a, const PtrStep<cufftComplex> b, float scale, PtrStepSz<cufftComplex> c, cudaStream_t stream);
    }
}}}

void cv::gpu::mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, float scale, bool conjB, Stream& stream)
{
    (void)flags;
    using namespace ::cv::gpu::device::imgproc;

    typedef void (*Caller)(const PtrStep<cufftComplex>, const PtrStep<cufftComplex>, float scale, PtrStepSz<cufftComplex>, cudaStream_t stream);
    static Caller callers[] = { device::imgproc::mulAndScaleSpectrums, device::imgproc::mulAndScaleSpectrums_CONJ };

    CV_Assert(a.type() == b.type() && a.type() == CV_32FC2);
    CV_Assert(a.size() == b.size());

    c.create(a.size(), CV_32FC2);

    Caller caller = callers[(int)conjB];
    caller(a, b, scale, c, StreamAccessor::getStream(stream));
}

//////////////////////////////////////////////////////////////////////////////
// dft

void cv::gpu::dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags, Stream& stream)
{
#ifndef HAVE_CUFFT

    OPENCV_GPU_UNUSED(src);
    OPENCV_GPU_UNUSED(dst);
    OPENCV_GPU_UNUSED(dft_size);
    OPENCV_GPU_UNUSED(flags);
    OPENCV_GPU_UNUSED(stream);

    throw_nogpu();

#else

    CV_Assert(src.type() == CV_32F || src.type() == CV_32FC2);

    // We don't support unpacked output (in the case of real input)
    CV_Assert(!(flags & DFT_COMPLEX_OUTPUT));

    bool is_1d_input = (dft_size.height == 1) || (dft_size.width == 1);
    int is_row_dft = flags & DFT_ROWS;
    int is_scaled_dft = flags & DFT_SCALE;
    int is_inverse = flags & DFT_INVERSE;
    bool is_complex_input = src.channels() == 2;
    bool is_complex_output = !(flags & DFT_REAL_OUTPUT);

    // We don't support real-to-real transform
    CV_Assert(is_complex_input || is_complex_output);

    GpuMat src_data;

    // Make sure here we work with the continuous input,
    // as CUFFT can't handle gaps
    src_data = src;
    createContinuous(src.rows, src.cols, src.type(), src_data);
    if (src_data.data != src.data)
        src.copyTo(src_data);

    Size dft_size_opt = dft_size;
    if (is_1d_input && !is_row_dft)
    {
        // If the source matrix is single column handle it as single row
        dft_size_opt.width = std::max(dft_size.width, dft_size.height);
        dft_size_opt.height = std::min(dft_size.width, dft_size.height);
    }

    cufftType dft_type = CUFFT_R2C;
    if (is_complex_input)
        dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R;

    CV_Assert(dft_size_opt.width > 1);

    cufftHandle plan;
    if (is_1d_input || is_row_dft)
        cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height);
    else
        cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type);

    cufftSafeCall( cufftSetStream(plan, StreamAccessor::getStream(stream)) );

    if (is_complex_input)
    {
        if (is_complex_output)
        {
            createContinuous(dft_size, CV_32FC2, dst);
            cufftSafeCall(cufftExecC2C(
                    plan, src_data.ptr<cufftComplex>(), dst.ptr<cufftComplex>(),
                    is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD));
        }
        else
        {
            createContinuous(dft_size, CV_32F, dst);
            cufftSafeCall(cufftExecC2R(
                    plan, src_data.ptr<cufftComplex>(), dst.ptr<cufftReal>()));
        }
    }
    else
    {
        // We could swap dft_size for efficiency. Here we must reflect it
        if (dft_size == dft_size_opt)
            createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, dst);
        else
            createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, dst);

        cufftSafeCall(cufftExecR2C(
                plan, src_data.ptr<cufftReal>(), dst.ptr<cufftComplex>()));
    }

    cufftSafeCall(cufftDestroy(plan));

    if (is_scaled_dft)
        multiply(dst, Scalar::all(1. / dft_size.area()), dst, 1, -1, stream);

#endif
}

//////////////////////////////////////////////////////////////////////////////
// convolve

void cv::gpu::ConvolveBuf::create(Size image_size, Size templ_size)
{
    result_size = Size(image_size.width - templ_size.width + 1,
                       image_size.height - templ_size.height + 1);

    block_size = user_block_size;
    if (user_block_size.width == 0 || user_block_size.height == 0)
        block_size = estimateBlockSize(result_size, templ_size);

    dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.)));
    dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.)));

    // CUFFT has hard-coded kernels for power-of-2 sizes (up to 8192),
    // see CUDA Toolkit 4.1 CUFFT Library Programming Guide
    if (dft_size.width > 8192)
        dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1);
    if (dft_size.height > 8192)
        dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1);

    // To avoid wasting time doing small DFTs
    dft_size.width = std::max(dft_size.width, 512);
    dft_size.height = std::max(dft_size.height, 512);

    createContinuous(dft_size, CV_32F, image_block);
    createContinuous(dft_size, CV_32F, templ_block);
    createContinuous(dft_size, CV_32F, result_data);

    spect_len = dft_size.height * (dft_size.width / 2 + 1);
    createContinuous(1, spect_len, CV_32FC2, image_spect);
    createContinuous(1, spect_len, CV_32FC2, templ_spect);
    createContinuous(1, spect_len, CV_32FC2, result_spect);

    // Use maximum result matrix block size for the estimated DFT block size
    block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width);
    block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height);
}


Size cv::gpu::ConvolveBuf::estimateBlockSize(Size result_size, Size /*templ_size*/)
{
    int width = (result_size.width + 2) / 3;
    int height = (result_size.height + 2) / 3;
    width = std::min(width, result_size.width);
    height = std::min(height, result_size.height);
    return Size(width, height);
}


void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr)
{
    ConvolveBuf buf;
    convolve(image, templ, result, ccorr, buf);
}

void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf, Stream& stream)
{
    using namespace ::cv::gpu::device::imgproc;

#ifndef HAVE_CUFFT
    throw_nogpu();
#else
    StaticAssert<sizeof(float) == sizeof(cufftReal)>::check();
    StaticAssert<sizeof(float) * 2 == sizeof(cufftComplex)>::check();

    CV_Assert(image.type() == CV_32F);
    CV_Assert(templ.type() == CV_32F);

    buf.create(image.size(), templ.size());
    result.create(buf.result_size, CV_32F);

    Size& block_size = buf.block_size;
    Size& dft_size = buf.dft_size;

    GpuMat& image_block = buf.image_block;
    GpuMat& templ_block = buf.templ_block;
    GpuMat& result_data = buf.result_data;

    GpuMat& image_spect = buf.image_spect;
    GpuMat& templ_spect = buf.templ_spect;
    GpuMat& result_spect = buf.result_spect;

    cufftHandle planR2C, planC2R;
    cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R));
    cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C));

    cufftSafeCall( cufftSetStream(planR2C, StreamAccessor::getStream(stream)) );
    cufftSafeCall( cufftSetStream(planC2R, StreamAccessor::getStream(stream)) );

    GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step);
    copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
                   templ_block.cols - templ_roi.cols, 0, Scalar(), stream);

    cufftSafeCall(cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(),
                               templ_spect.ptr<cufftComplex>()));

    // Process all blocks of the result matrix
    for (int y = 0; y < result.rows; y += block_size.height)
    {
        for (int x = 0; x < result.cols; x += block_size.width)
        {
            Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
                                std::min(y + dft_size.height, image.rows) - y);
            GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
                             image.step);
            copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
                           0, image_block.cols - image_roi.cols, 0, Scalar(), stream);

            cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
                                       image_spect.ptr<cufftComplex>()));
            mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
                                 1.f / dft_size.area(), ccorr, stream);
            cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
                                       result_data.ptr<cufftReal>()));

            Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
                                 std::min(y + block_size.height, result.rows) - y);
            GpuMat result_roi(result_roi_size, result.type(),
                              (void*)(result.ptr<float>(y) + x), result.step);
            GpuMat result_block(result_roi_size, result_data.type(),
                                result_data.ptr(), result_data.step);

            if (stream)
                stream.enqueueCopy(result_block, result_roi);
            else
                result_block.copyTo(result_roi);
        }
    }

    cufftSafeCall(cufftDestroy(planR2C));
    cufftSafeCall(cufftDestroy(planC2R));
#endif
}


//////////////////////////////////////////////////////////////////////////////
// Canny

cv::gpu::CannyBuf::CannyBuf(const GpuMat& dx_, const GpuMat& dy_)
{
    (void) dx_;
    (void) dy_;
}

void cv::gpu::CannyBuf::create(const Size& image_size, int apperture_size)
{
    if (apperture_size > 0)
    {
        ensureSizeIsEnough(image_size, CV_32SC1, dx);
        ensureSizeIsEnough(image_size, CV_32SC1, dy);

        if (apperture_size != 3)
        {
            filterDX = createDerivFilter_GPU(CV_8UC1, CV_32S, 1, 0, apperture_size, BORDER_REPLICATE);
            filterDY = createDerivFilter_GPU(CV_8UC1, CV_32S, 0, 1, apperture_size, BORDER_REPLICATE);
        }
    }

    ensureSizeIsEnough(image_size, CV_32FC1, edgeBuf);
    ensureSizeIsEnough(image_size, CV_32SC1, dx_buf);

    ensureSizeIsEnough(1, image_size.area(), CV_16UC2, trackBuf1);
    ensureSizeIsEnough(1, image_size.area(), CV_16UC2, trackBuf2);
}

void cv::gpu::CannyBuf::release()
{
    dx.release();
    dy.release();
    dx_buf.release();
    dy_buf.release();
    edgeBuf.release();
    trackBuf1.release();
    trackBuf2.release();
}

namespace canny
{
    void calcMagnitude(PtrStepSzb srcWhole, int xoff, int yoff, PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad);
    void calcMagnitude(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad);

    void calcMap(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, PtrStepSzi map, float low_thresh, float high_thresh);

    void edgesHysteresisLocal(PtrStepSzi map, ushort2* st1);

    void edgesHysteresisGlobal(PtrStepSzi map, ushort2* st1, ushort2* st2);

    void getEdges(PtrStepSzi map, PtrStepSzb dst);
}

namespace
{
    void CannyCaller(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, float low_thresh, float high_thresh)
    {
        using namespace canny;

        calcMap(dx, dy, buf.edgeBuf, buf.dx_buf, low_thresh, high_thresh);

        edgesHysteresisLocal(buf.dx_buf, buf.trackBuf1.ptr<ushort2>());

        edgesHysteresisGlobal(buf.dx_buf, buf.trackBuf1.ptr<ushort2>(), buf.trackBuf2.ptr<ushort2>());

        getEdges(buf.dx_buf, dst);
    }
}

void cv::gpu::Canny(const GpuMat& src, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
{
    CannyBuf buf;
    Canny(src, buf, dst, low_thresh, high_thresh, apperture_size, L2gradient);
}

void cv::gpu::Canny(const GpuMat& src, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
{
    using namespace canny;

    CV_Assert(src.type() == CV_8UC1);

    if (!deviceSupports(SHARED_ATOMICS))
        CV_Error(CV_StsNotImplemented, "The device doesn't support shared atomics");

    if( low_thresh > high_thresh )
        std::swap( low_thresh, high_thresh);

    dst.create(src.size(), CV_8U);
    buf.create(src.size(), apperture_size);

    if (apperture_size == 3)
    {
        Size wholeSize;
        Point ofs;
        src.locateROI(wholeSize, ofs);
        GpuMat srcWhole(wholeSize, src.type(), src.datastart, src.step);

        calcMagnitude(srcWhole, ofs.x, ofs.y, buf.dx, buf.dy, buf.edgeBuf, L2gradient);
    }
    else
    {
        buf.filterDX->apply(src, buf.dx, Rect(0, 0, src.cols, src.rows));
        buf.filterDY->apply(src, buf.dy, Rect(0, 0, src.cols, src.rows));

        calcMagnitude(buf.dx, buf.dy, buf.edgeBuf, L2gradient);
    }

    CannyCaller(buf.dx, buf.dy, buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
}

void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient)
{
    CannyBuf buf;
    Canny(dx, dy, buf, dst, low_thresh, high_thresh, L2gradient);
}

void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient)
{
    using namespace canny;

    CV_Assert(TargetArchs::builtWith(SHARED_ATOMICS) && DeviceInfo().supports(SHARED_ATOMICS));
    CV_Assert(dx.type() == CV_32SC1 && dy.type() == CV_32SC1 && dx.size() == dy.size());

    if( low_thresh > high_thresh )
        std::swap( low_thresh, high_thresh);

    dst.create(dx.size(), CV_8U);
    buf.create(dx.size(), -1);

    calcMagnitude(dx, dy, buf.edgeBuf, L2gradient);

    CannyCaller(dx, dy, buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
}

#endif /* !defined (HAVE_CUDA) */