1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
//
// 2D dense optical flow algorithm from the following paper:
// Michael Tao, Jiamin Bai, Pushmeet Kohli, and Sylvain Paris.
// "SimpleFlow: A Non-iterative, Sublinear Optical Flow Algorithm"
// Computer Graphics Forum (Eurographics 2012)
// http://graphics.berkeley.edu/papers/Tao-SAN-2012-05/
//
namespace cv
{
static const uchar MASK_TRUE_VALUE = (uchar)255;
inline static float dist(const Vec3b& p1, const Vec3b& p2) {
return (float)((p1[0] - p2[0]) * (p1[0] - p2[0]) +
(p1[1] - p2[1]) * (p1[1] - p2[1]) +
(p1[2] - p2[2]) * (p1[2] - p2[2]));
}
inline static float dist(const Vec2f& p1, const Vec2f& p2) {
return (p1[0] - p2[0]) * (p1[0] - p2[0]) +
(p1[1] - p2[1]) * (p1[1] - p2[1]);
}
inline static float dist(const Point2f& p1, const Point2f& p2) {
return (p1.x - p2.x) * (p1.x - p2.x) +
(p1.y - p2.y) * (p1.y - p2.y);
}
inline static float dist(float x1, float y1, float x2, float y2) {
return (x1 - x2) * (x1 - x2) +
(y1 - y2) * (y1 - y2);
}
inline static int dist(int x1, int y1, int x2, int y2) {
return (x1 - x2) * (x1 - x2) +
(y1 - y2) * (y1 - y2);
}
template<class T>
inline static T min(T t1, T t2, T t3) {
return (t1 <= t2 && t1 <= t3) ? t1 : min(t2, t3);
}
static void removeOcclusions(const Mat& flow,
const Mat& flow_inv,
float occ_thr,
Mat& confidence) {
const int rows = flow.rows;
const int cols = flow.cols;
if (!confidence.data) {
confidence = Mat::zeros(rows, cols, CV_32F);
}
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
if (dist(flow.at<Vec2f>(r, c), -flow_inv.at<Vec2f>(r, c)) > occ_thr) {
confidence.at<float>(r, c) = 0;
} else {
confidence.at<float>(r, c) = 1;
}
}
}
}
static void wd(Mat& d, int top_shift, int bottom_shift, int left_shift, int right_shift, float sigma) {
for (int dr = -top_shift, r = 0; dr <= bottom_shift; ++dr, ++r) {
for (int dc = -left_shift, c = 0; dc <= right_shift; ++dc, ++c) {
d.at<float>(r, c) = (float)-(dr*dr + dc*dc);
}
}
d *= 1.0 / (2.0 * sigma * sigma);
exp(d, d);
}
static void wc(const Mat& image, Mat& d, int r0, int c0,
int top_shift, int bottom_shift, int left_shift, int right_shift, float sigma) {
const Vec3b centeral_point = image.at<Vec3b>(r0, c0);
int left_border = c0-left_shift, right_border = c0+right_shift;
for (int dr = r0-top_shift, r = 0; dr <= r0+bottom_shift; ++dr, ++r) {
const Vec3b *row = image.ptr<Vec3b>(dr);
float *d_row = d.ptr<float>(r);
for (int dc = left_border, c = 0; dc <= right_border; ++dc, ++c) {
d_row[c] = -dist(centeral_point, row[dc]);
}
}
d *= 1.0 / (2.0 * sigma * sigma);
exp(d, d);
}
static void crossBilateralFilter(const Mat& image,
const Mat& edge_image,
const Mat confidence,
Mat& dst, int d,
float sigma_color, float sigma_space,
bool flag=false) {
const int rows = image.rows;
const int cols = image.cols;
Mat image_extended, edge_image_extended, confidence_extended;
copyMakeBorder(image, image_extended, d, d, d, d, BORDER_DEFAULT);
copyMakeBorder(edge_image, edge_image_extended, d, d, d, d, BORDER_DEFAULT);
copyMakeBorder(confidence, confidence_extended, d, d, d, d, BORDER_CONSTANT, Scalar(0));
Mat weights_space(2*d+1, 2*d+1, CV_32F);
wd(weights_space, d, d, d, d, sigma_space);
Mat weights(2*d+1, 2*d+1, CV_32F);
Mat weighted_sum(2*d+1, 2*d+1, CV_32F);
std::vector<Mat> image_extended_channels;
split(image_extended, image_extended_channels);
for (int row = 0; row < rows; ++row) {
for (int col = 0; col < cols; ++col) {
wc(edge_image_extended, weights, row+d, col+d, d, d, d, d, sigma_color);
Range window_rows(row,row+2*d+1);
Range window_cols(col,col+2*d+1);
multiply(weights, confidence_extended(window_rows, window_cols), weights);
multiply(weights, weights_space, weights);
float weights_sum = (float)sum(weights)[0];
for (int ch = 0; ch < 2; ++ch) {
multiply(weights, image_extended_channels[ch](window_rows, window_cols), weighted_sum);
float total_sum = (float)sum(weighted_sum)[0];
dst.at<Vec2f>(row, col)[ch] = (flag && fabs(weights_sum) < 1e-9)
? image.at<float>(row, col)
: total_sum / weights_sum;
}
}
}
}
static void calcConfidence(const Mat& prev,
const Mat& next,
const Mat& flow,
Mat& confidence,
int max_flow) {
const int rows = prev.rows;
const int cols = prev.cols;
confidence = Mat::zeros(rows, cols, CV_32F);
for (int r0 = 0; r0 < rows; ++r0) {
for (int c0 = 0; c0 < cols; ++c0) {
Vec2f flow_at_point = flow.at<Vec2f>(r0, c0);
int u0 = cvRound(flow_at_point[0]);
if (r0 + u0 < 0) { u0 = -r0; }
if (r0 + u0 >= rows) { u0 = rows - 1 - r0; }
int v0 = cvRound(flow_at_point[1]);
if (c0 + v0 < 0) { v0 = -c0; }
if (c0 + v0 >= cols) { v0 = cols - 1 - c0; }
const int top_row_shift = -std::min(r0 + u0, max_flow);
const int bottom_row_shift = std::min(rows - 1 - (r0 + u0), max_flow);
const int left_col_shift = -std::min(c0 + v0, max_flow);
const int right_col_shift = std::min(cols - 1 - (c0 + v0), max_flow);
bool first_flow_iteration = true;
float sum_e = 0, min_e = 0;
for (int u = top_row_shift; u <= bottom_row_shift; ++u) {
for (int v = left_col_shift; v <= right_col_shift; ++v) {
float e = dist(prev.at<Vec3b>(r0, c0), next.at<Vec3b>(r0 + u0 + u, c0 + v0 + v));
if (first_flow_iteration) {
sum_e = e;
min_e = e;
first_flow_iteration = false;
} else {
sum_e += e;
min_e = std::min(min_e, e);
}
}
}
int windows_square = (bottom_row_shift - top_row_shift + 1) *
(right_col_shift - left_col_shift + 1);
confidence.at<float>(r0, c0) = (windows_square == 0) ? 0
: sum_e / windows_square - min_e;
CV_Assert(confidence.at<float>(r0, c0) >= 0);
}
}
}
static void calcOpticalFlowSingleScaleSF(const Mat& prev_extended,
const Mat& next_extended,
const Mat& mask,
Mat& flow,
int averaging_radius,
int max_flow,
float sigma_dist,
float sigma_color) {
const int averaging_radius_2 = averaging_radius << 1;
const int rows = prev_extended.rows - averaging_radius_2;
const int cols = prev_extended.cols - averaging_radius_2;
Mat weight_window(averaging_radius_2 + 1, averaging_radius_2 + 1, CV_32F);
Mat space_weight_window(averaging_radius_2 + 1, averaging_radius_2 + 1, CV_32F);
wd(space_weight_window, averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_dist);
for (int r0 = 0; r0 < rows; ++r0) {
for (int c0 = 0; c0 < cols; ++c0) {
if (!mask.at<uchar>(r0, c0)) {
continue;
}
// TODO: do smth with this creepy staff
Vec2f flow_at_point = flow.at<Vec2f>(r0, c0);
int u0 = cvRound(flow_at_point[0]);
if (r0 + u0 < 0) { u0 = -r0; }
if (r0 + u0 >= rows) { u0 = rows - 1 - r0; }
int v0 = cvRound(flow_at_point[1]);
if (c0 + v0 < 0) { v0 = -c0; }
if (c0 + v0 >= cols) { v0 = cols - 1 - c0; }
const int top_row_shift = -std::min(r0 + u0, max_flow);
const int bottom_row_shift = std::min(rows - 1 - (r0 + u0), max_flow);
const int left_col_shift = -std::min(c0 + v0, max_flow);
const int right_col_shift = std::min(cols - 1 - (c0 + v0), max_flow);
float min_cost = FLT_MAX, best_u = (float)u0, best_v = (float)v0;
wc(prev_extended, weight_window, r0 + averaging_radius, c0 + averaging_radius,
averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_color);
multiply(weight_window, space_weight_window, weight_window);
const int prev_extended_top_window_row = r0;
const int prev_extended_left_window_col = c0;
for (int u = top_row_shift; u <= bottom_row_shift; ++u) {
const int next_extended_top_window_row = r0 + u0 + u;
for (int v = left_col_shift; v <= right_col_shift; ++v) {
const int next_extended_left_window_col = c0 + v0 + v;
float cost = 0;
for (int r = 0; r <= averaging_radius_2; ++r) {
const Vec3b *prev_extended_window_row = prev_extended.ptr<Vec3b>(prev_extended_top_window_row + r);
const Vec3b *next_extended_window_row = next_extended.ptr<Vec3b>(next_extended_top_window_row + r);
const float* weight_window_row = weight_window.ptr<float>(r);
for (int c = 0; c <= averaging_radius_2; ++c) {
cost += weight_window_row[c] *
dist(prev_extended_window_row[prev_extended_left_window_col + c],
next_extended_window_row[next_extended_left_window_col + c]);
}
}
// cost should be divided by sum(weight_window), but because
// we interested only in min(cost) and sum(weight_window) is constant
// for every point - we remove it
if (cost < min_cost) {
min_cost = cost;
best_u = (float)(u + u0);
best_v = (float)(v + v0);
}
}
}
flow.at<Vec2f>(r0, c0) = Vec2f(best_u, best_v);
}
}
}
static Mat upscaleOpticalFlow(int new_rows,
int new_cols,
const Mat& image,
const Mat& confidence,
Mat& flow,
int averaging_radius,
float sigma_dist,
float sigma_color) {
crossBilateralFilter(flow, image, confidence, flow, averaging_radius, sigma_color, sigma_dist, true);
Mat new_flow;
resize(flow, new_flow, Size(new_cols, new_rows), 0, 0, INTER_NEAREST);
new_flow *= 2;
return new_flow;
}
static Mat calcIrregularityMat(const Mat& flow, int radius) {
const int rows = flow.rows;
const int cols = flow.cols;
Mat irregularity = Mat::zeros(rows, cols, CV_32F);
for (int r = 0; r < rows; ++r) {
const int start_row = std::max(0, r - radius);
const int end_row = std::min(rows - 1, r + radius);
for (int c = 0; c < cols; ++c) {
const int start_col = std::max(0, c - radius);
const int end_col = std::min(cols - 1, c + radius);
for (int dr = start_row; dr <= end_row; ++dr) {
for (int dc = start_col; dc <= end_col; ++dc) {
const float diff = dist(flow.at<Vec2f>(r, c), flow.at<Vec2f>(dr, dc));
if (diff > irregularity.at<float>(r, c)) {
irregularity.at<float>(r, c) = diff;
}
}
}
}
}
return irregularity;
}
static void selectPointsToRecalcFlow(const Mat& flow,
int irregularity_metric_radius,
float speed_up_thr,
int curr_rows,
int curr_cols,
const Mat& prev_speed_up,
Mat& speed_up,
Mat& mask) {
const int prev_rows = flow.rows;
const int prev_cols = flow.cols;
Mat is_flow_regular = calcIrregularityMat(flow, irregularity_metric_radius)
< speed_up_thr;
Mat done = Mat::zeros(prev_rows, prev_cols, CV_8U);
speed_up = Mat::zeros(curr_rows, curr_cols, CV_8U);
mask = Mat::zeros(curr_rows, curr_cols, CV_8U);
for (int r = 0; r < is_flow_regular.rows; ++r) {
for (int c = 0; c < is_flow_regular.cols; ++c) {
if (!done.at<uchar>(r, c)) {
if (is_flow_regular.at<uchar>(r, c) &&
2*r + 1 < curr_rows && 2*c + 1< curr_cols) {
bool all_flow_in_region_regular = true;
int speed_up_at_this_point = prev_speed_up.at<uchar>(r, c);
int step = (1 << speed_up_at_this_point) - 1;
int prev_top = r;
int prev_bottom = std::min(r + step, prev_rows - 1);
int prev_left = c;
int prev_right = std::min(c + step, prev_cols - 1);
for (int rr = prev_top; rr <= prev_bottom; ++rr) {
for (int cc = prev_left; cc <= prev_right; ++cc) {
done.at<uchar>(rr, cc) = 1;
if (!is_flow_regular.at<uchar>(rr, cc)) {
all_flow_in_region_regular = false;
}
}
}
int curr_top = std::min(2 * r, curr_rows - 1);
int curr_bottom = std::min(2*(r + step) + 1, curr_rows - 1);
int curr_left = std::min(2 * c, curr_cols - 1);
int curr_right = std::min(2*(c + step) + 1, curr_cols - 1);
if (all_flow_in_region_regular &&
curr_top != curr_bottom &&
curr_left != curr_right) {
mask.at<uchar>(curr_top, curr_left) = MASK_TRUE_VALUE;
mask.at<uchar>(curr_bottom, curr_left) = MASK_TRUE_VALUE;
mask.at<uchar>(curr_top, curr_right) = MASK_TRUE_VALUE;
mask.at<uchar>(curr_bottom, curr_right) = MASK_TRUE_VALUE;
for (int rr = curr_top; rr <= curr_bottom; ++rr) {
for (int cc = curr_left; cc <= curr_right; ++cc) {
speed_up.at<uchar>(rr, cc) = (uchar)(speed_up_at_this_point + 1);
}
}
} else {
for (int rr = curr_top; rr <= curr_bottom; ++rr) {
for (int cc = curr_left; cc <= curr_right; ++cc) {
mask.at<uchar>(rr, cc) = MASK_TRUE_VALUE;
}
}
}
} else {
done.at<uchar>(r, c) = 1;
for (int dr = 0; dr <= 1; ++dr) {
int nr = 2*r + dr;
for (int dc = 0; dc <= 1; ++dc) {
int nc = 2*c + dc;
if (nr < curr_rows && nc < curr_cols) {
mask.at<uchar>(nr, nc) = MASK_TRUE_VALUE;
}
}
}
}
}
}
}
}
static inline float extrapolateValueInRect(int height, int width,
float v11, float v12,
float v21, float v22,
int r, int c) {
if (r == 0 && c == 0) { return v11;}
if (r == 0 && c == width) { return v12;}
if (r == height && c == 0) { return v21;}
if (r == height && c == width) { return v22;}
float qr = float(r) / height;
float pr = 1.0f - qr;
float qc = float(c) / width;
float pc = 1.0f - qc;
return v11*pr*pc + v12*pr*qc + v21*qr*pc + v22*qc*qr;
}
static void extrapolateFlow(Mat& flow,
const Mat& speed_up) {
const int rows = flow.rows;
const int cols = flow.cols;
Mat done = Mat::zeros(rows, cols, CV_8U);
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
if (!done.at<uchar>(r, c) && speed_up.at<uchar>(r, c) > 1) {
int step = (1 << speed_up.at<uchar>(r, c)) - 1;
int top = r;
int bottom = std::min(r + step, rows - 1);
int left = c;
int right = std::min(c + step, cols - 1);
int height = bottom - top;
int width = right - left;
for (int rr = top; rr <= bottom; ++rr) {
for (int cc = left; cc <= right; ++cc) {
done.at<uchar>(rr, cc) = 1;
Vec2f flow_at_point;
Vec2f top_left = flow.at<Vec2f>(top, left);
Vec2f top_right = flow.at<Vec2f>(top, right);
Vec2f bottom_left = flow.at<Vec2f>(bottom, left);
Vec2f bottom_right = flow.at<Vec2f>(bottom, right);
flow_at_point[0] = extrapolateValueInRect(height, width,
top_left[0], top_right[0],
bottom_left[0], bottom_right[0],
rr-top, cc-left);
flow_at_point[1] = extrapolateValueInRect(height, width,
top_left[1], top_right[1],
bottom_left[1], bottom_right[1],
rr-top, cc-left);
flow.at<Vec2f>(rr, cc) = flow_at_point;
}
}
}
}
}
}
static void buildPyramidWithResizeMethod(const Mat& src,
std::vector<Mat>& pyramid,
int layers,
int interpolation_type) {
pyramid.push_back(src);
for (int i = 1; i <= layers; ++i) {
Mat prev = pyramid[i - 1];
if (prev.rows <= 1 || prev.cols <= 1) {
break;
}
Mat next;
resize(prev, next, Size((prev.cols + 1) / 2, (prev.rows + 1) / 2), 0, 0, interpolation_type);
pyramid.push_back(next);
}
}
CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from,
InputArray _to,
OutputArray _resulted_flow,
int layers,
int averaging_radius,
int max_flow,
double sigma_dist,
double sigma_color,
int postprocess_window,
double sigma_dist_fix,
double sigma_color_fix,
double occ_thr,
int upscale_averaging_radius,
double upscale_sigma_dist,
double upscale_sigma_color,
double speed_up_thr)
{
Mat from = _from.getMat();
Mat to = _to.getMat();
std::vector<Mat> pyr_from_images;
std::vector<Mat> pyr_to_images;
buildPyramidWithResizeMethod(from, pyr_from_images, layers - 1, INTER_CUBIC);
buildPyramidWithResizeMethod(to, pyr_to_images, layers - 1, INTER_CUBIC);
CV_Assert((int)pyr_from_images.size() == layers && (int)pyr_to_images.size() == layers);
Mat curr_from, curr_to, prev_from, prev_to;
Mat curr_from_extended, curr_to_extended;
curr_from = pyr_from_images[layers - 1];
curr_to = pyr_to_images[layers - 1];
copyMakeBorder(curr_from, curr_from_extended,
averaging_radius, averaging_radius, averaging_radius, averaging_radius,
BORDER_DEFAULT);
copyMakeBorder(curr_to, curr_to_extended,
averaging_radius, averaging_radius, averaging_radius, averaging_radius,
BORDER_DEFAULT);
Mat mask = Mat::ones(curr_from.size(), CV_8U);
Mat mask_inv = Mat::ones(curr_from.size(), CV_8U);
Mat flow = Mat::zeros(curr_from.size(), CV_32FC2);
Mat flow_inv = Mat::zeros(curr_to.size(), CV_32FC2);
Mat confidence;
Mat confidence_inv;
calcOpticalFlowSingleScaleSF(curr_from_extended,
curr_to_extended,
mask,
flow,
averaging_radius,
max_flow,
(float)sigma_dist,
(float)sigma_color);
calcOpticalFlowSingleScaleSF(curr_to_extended,
curr_from_extended,
mask_inv,
flow_inv,
averaging_radius,
max_flow,
(float)sigma_dist,
(float)sigma_color);
removeOcclusions(flow,
flow_inv,
(float)occ_thr,
confidence);
removeOcclusions(flow_inv,
flow,
(float)occ_thr,
confidence_inv);
Mat speed_up = Mat::zeros(curr_from.size(), CV_8U);
Mat speed_up_inv = Mat::zeros(curr_from.size(), CV_8U);
for (int curr_layer = layers - 2; curr_layer >= 0; --curr_layer) {
curr_from = pyr_from_images[curr_layer];
curr_to = pyr_to_images[curr_layer];
prev_from = pyr_from_images[curr_layer + 1];
prev_to = pyr_to_images[curr_layer + 1];
copyMakeBorder(curr_from, curr_from_extended,
averaging_radius, averaging_radius, averaging_radius, averaging_radius,
BORDER_DEFAULT);
copyMakeBorder(curr_to, curr_to_extended,
averaging_radius, averaging_radius, averaging_radius, averaging_radius,
BORDER_DEFAULT);
const int curr_rows = curr_from.rows;
const int curr_cols = curr_from.cols;
Mat new_speed_up, new_speed_up_inv;
selectPointsToRecalcFlow(flow,
averaging_radius,
(float)speed_up_thr,
curr_rows,
curr_cols,
speed_up,
new_speed_up,
mask);
selectPointsToRecalcFlow(flow_inv,
averaging_radius,
(float)speed_up_thr,
curr_rows,
curr_cols,
speed_up_inv,
new_speed_up_inv,
mask_inv);
speed_up = new_speed_up;
speed_up_inv = new_speed_up_inv;
flow = upscaleOpticalFlow(curr_rows,
curr_cols,
prev_from,
confidence,
flow,
upscale_averaging_radius,
(float)upscale_sigma_dist,
(float)upscale_sigma_color);
flow_inv = upscaleOpticalFlow(curr_rows,
curr_cols,
prev_to,
confidence_inv,
flow_inv,
upscale_averaging_radius,
(float)upscale_sigma_dist,
(float)upscale_sigma_color);
calcConfidence(curr_from, curr_to, flow, confidence, max_flow);
calcOpticalFlowSingleScaleSF(curr_from_extended,
curr_to_extended,
mask,
flow,
averaging_radius,
max_flow,
(float)sigma_dist,
(float)sigma_color);
calcConfidence(curr_to, curr_from, flow_inv, confidence_inv, max_flow);
calcOpticalFlowSingleScaleSF(curr_to_extended,
curr_from_extended,
mask_inv,
flow_inv,
averaging_radius,
max_flow,
(float)sigma_dist,
(float)sigma_color);
extrapolateFlow(flow, speed_up);
extrapolateFlow(flow_inv, speed_up_inv);
//TODO: should we remove occlusions for the last stage?
removeOcclusions(flow, flow_inv, (float)occ_thr, confidence);
removeOcclusions(flow_inv, flow, (float)occ_thr, confidence_inv);
}
crossBilateralFilter(flow, curr_from, confidence, flow,
postprocess_window, (float)sigma_color_fix, (float)sigma_dist_fix);
GaussianBlur(flow, flow, Size(3, 3), 5);
_resulted_flow.create(flow.size(), CV_32FC2);
Mat resulted_flow = _resulted_flow.getMat();
int from_to[] = {0,1 , 1,0};
mixChannels(&flow, 1, &resulted_flow, 1, from_to, 2);
}
CV_EXPORTS_W void calcOpticalFlowSF(InputArray from,
InputArray to,
OutputArray flow,
int layers,
int averaging_block_size,
int max_flow) {
calcOpticalFlowSF(from, to, flow, layers, averaging_block_size, max_flow,
4.1, 25.5, 18, 55.0, 25.5, 0.35, 18, 55.0, 25.5, 10);
}
}