connectedcomponents.cpp 15.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// 2011 Jason Newton <nevion@gmail.com>
//M*/
//
#include "precomp.hpp"
#include <vector>

namespace cv{
    namespace connectedcomponents{

    struct NoOp{
        NoOp(){
        }
        void init(int /*labels*/){
        }
        inline
        void operator()(int r, int c, int l){
            (void) r;
            (void) c;
            (void) l;
        }
        void finish(){}
    };
    struct Point2ui64{
        uint64 x, y;
        Point2ui64(uint64 _x, uint64 _y):x(_x), y(_y){}
    };

    struct CCStatsOp{
        const _OutputArray* _mstatsv;
        cv::Mat statsv;
        const _OutputArray* _mcentroidsv;
        cv::Mat centroidsv;
        std::vector<Point2ui64> integrals;

        CCStatsOp(OutputArray _statsv, OutputArray _centroidsv): _mstatsv(&_statsv), _mcentroidsv(&_centroidsv){
        }
        inline
        void init(int nlabels){
            _mstatsv->create(cv::Size(CC_STAT_MAX, nlabels), cv::DataType<int>::type);
            statsv = _mstatsv->getMat();
            _mcentroidsv->create(cv::Size(2, nlabels), cv::DataType<double>::type);
            centroidsv = _mcentroidsv->getMat();

            for(int l = 0; l < (int) nlabels; ++l){
                int *row = (int *) &statsv.at<int>(l, 0);
                row[CC_STAT_LEFT] = INT_MAX;
                row[CC_STAT_TOP] = INT_MAX;
                row[CC_STAT_WIDTH] = INT_MIN;
                row[CC_STAT_HEIGHT] = INT_MIN;
                row[CC_STAT_AREA] = 0;
            }
            integrals.resize(nlabels, Point2ui64(0, 0));
        }
        void operator()(int r, int c, int l){
            int *row = &statsv.at<int>(l, 0);
            if(c > row[CC_STAT_WIDTH]){
                row[CC_STAT_WIDTH] = c;
            }else{
                if(c < row[CC_STAT_LEFT]){
                    row[CC_STAT_LEFT] = c;
                }
            }
            if(r > row[CC_STAT_HEIGHT]){
                row[CC_STAT_HEIGHT] = r;
            }else{
                if(r < row[CC_STAT_TOP]){
                    row[CC_STAT_TOP] = r;
                }
            }
            row[CC_STAT_AREA]++;
            Point2ui64 &integral = integrals[l];
            integral.x += c;
            integral.y += r;
        }
        void finish(){
            for(int l = 0; l < statsv.rows; ++l){
                int *row = &statsv.at<int>(l, 0);
                row[CC_STAT_LEFT] = std::min(row[CC_STAT_LEFT], row[CC_STAT_WIDTH]);
                row[CC_STAT_WIDTH] = row[CC_STAT_WIDTH] - row[CC_STAT_LEFT] + 1;
                row[CC_STAT_TOP] = std::min(row[CC_STAT_TOP], row[CC_STAT_HEIGHT]);
                row[CC_STAT_HEIGHT] = row[CC_STAT_HEIGHT] - row[CC_STAT_TOP] + 1;

                Point2ui64 &integral = integrals[l];
                double *centroid = &centroidsv.at<double>(l, 0);
                double area = ((unsigned*)row)[CC_STAT_AREA];
                centroid[0] = double(integral.x) / area;
                centroid[1] = double(integral.y) / area;
            }
        }
    };

    //Find the root of the tree of node i
    template<typename LabelT>
    inline static
    LabelT findRoot(const LabelT *P, LabelT i){
        LabelT root = i;
        while(P[root] < root){
            root = P[root];
        }
        return root;
    }

    //Make all nodes in the path of node i point to root
    template<typename LabelT>
    inline static
    void setRoot(LabelT *P, LabelT i, LabelT root){
        while(P[i] < i){
            LabelT j = P[i];
            P[i] = root;
            i = j;
        }
        P[i] = root;
    }

    //Find the root of the tree of the node i and compress the path in the process
    template<typename LabelT>
    inline static
    LabelT find(LabelT *P, LabelT i){
        LabelT root = findRoot(P, i);
        setRoot(P, i, root);
        return root;
    }

    //unite the two trees containing nodes i and j and return the new root
    template<typename LabelT>
    inline static
    LabelT set_union(LabelT *P, LabelT i, LabelT j){
        LabelT root = findRoot(P, i);
        if(i != j){
            LabelT rootj = findRoot(P, j);
            if(root > rootj){
                root = rootj;
            }
            setRoot(P, j, root);
        }
        setRoot(P, i, root);
        return root;
    }

    //Flatten the Union Find tree and relabel the components
    template<typename LabelT>
    inline static
    LabelT flattenL(LabelT *P, LabelT length){
        LabelT k = 1;
        for(LabelT i = 1; i < length; ++i){
            if(P[i] < i){
                P[i] = P[P[i]];
            }else{
                P[i] = k; k = k + 1;
            }
        }
        return k;
    }

    //Based on "Two Strategies to Speed up Connected Components Algorithms", the SAUF (Scan array union find) variant
    //using decision trees
    //Kesheng Wu, et al
    //Note: rows are encoded as position in the "rows" array to save lookup times
    //reference for 4-way: {{-1, 0}, {0, -1}};//b, d neighborhoods
    const int G4[2][2] = {{1, 0}, {0, -1}};//b, d neighborhoods
    //reference for 8-way: {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}};//a, b, c, d neighborhoods
    const int G8[4][2] = {{1, -1}, {1, 0}, {1, 1}, {0, -1}};//a, b, c, d neighborhoods
    template<typename LabelT, typename PixelT, typename StatsOp = NoOp >
    struct LabelingImpl{
    LabelT operator()(const cv::Mat &I, cv::Mat &L, int connectivity, StatsOp &sop){
        CV_Assert(L.rows == I.rows);
        CV_Assert(L.cols == I.cols);
        CV_Assert(connectivity == 8 || connectivity == 4);
        const int rows = L.rows;
        const int cols = L.cols;
        size_t Plength = (size_t(rows + 3 - 1)/3) * (size_t(cols + 3 - 1)/3);
        if(connectivity == 4){
            Plength = 4 * Plength;//a quick and dirty upper bound, an exact answer exists if you want to find it
            //the 4 comes from the fact that a 3x3 block can never have more than 4 unique labels
        }
        LabelT *P = (LabelT *) fastMalloc(sizeof(LabelT) * Plength);
        P[0] = 0;
        LabelT lunique = 1;
        //scanning phase
        for(int r_i = 0; r_i < rows; ++r_i){
            LabelT *Lrow = (LabelT *)(L.data + L.step.p[0] * r_i);
            LabelT *Lrow_prev = (LabelT *)(((char *)Lrow) - L.step.p[0]);
            const PixelT *Irow = (PixelT *)(I.data + I.step.p[0] * r_i);
            const PixelT *Irow_prev = (const PixelT *)(((char *)Irow) - I.step.p[0]);
            LabelT *Lrows[2] = {
                Lrow,
                Lrow_prev
            };
            const PixelT *Irows[2] = {
                Irow,
                Irow_prev
            };
            if(connectivity == 8){
                const int a = 0;
                const int b = 1;
                const int c = 2;
                const int d = 3;
                const bool T_a_r = (r_i - G8[a][0]) >= 0;
                const bool T_b_r = (r_i - G8[b][0]) >= 0;
                const bool T_c_r = (r_i - G8[c][0]) >= 0;
                for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
                    if(!*Irows[0]){
                        Lrow[c_i] = 0;
                        continue;
                    }
                    Irows[1] = Irow_prev + c_i;
                    Lrows[0] = Lrow + c_i;
                    Lrows[1] = Lrow_prev + c_i;
                    const bool T_a = T_a_r && (c_i + G8[a][1]) >= 0   && *(Irows[G8[a][0]] + G8[a][1]);
                    const bool T_b = T_b_r                            && *(Irows[G8[b][0]] + G8[b][1]);
                    const bool T_c = T_c_r && (c_i + G8[c][1]) < cols && *(Irows[G8[c][0]] + G8[c][1]);
                    const bool T_d =          (c_i + G8[d][1]) >= 0   && *(Irows[G8[d][0]] + G8[d][1]);

                    //decision tree
                    if(T_b){
                        //copy(b)
                        *Lrows[0] = *(Lrows[G8[b][0]] + G8[b][1]);
                    }else{//not b
                        if(T_c){
                            if(T_a){
                                //copy(c, a)
                                *Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[a][0]] + G8[a][1]));
                            }else{
                                if(T_d){
                                    //copy(c, d)
                                    *Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[d][0]] + G8[d][1]));
                                }else{
                                    //copy(c)
                                    *Lrows[0] = *(Lrows[G8[c][0]] + G8[c][1]);
                                }
                            }
                        }else{//not c
                            if(T_a){
                                //copy(a)
                                *Lrows[0] = *(Lrows[G8[a][0]] + G8[a][1]);
                            }else{
                                if(T_d){
                                    //copy(d)
                                    *Lrows[0] = *(Lrows[G8[d][0]] + G8[d][1]);
                                }else{
                                    //new label
                                    *Lrows[0] = lunique;
                                    P[lunique] = lunique;
                                    lunique = lunique + 1;
                                }
                            }
                        }
                    }
                }
            }else{
                //B & D only
                const int b = 0;
                const int d = 1;
                const bool T_b_r = (r_i - G4[b][0]) >= 0;
                for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
                    if(!*Irows[0]){
                        Lrow[c_i] = 0;
                        continue;
                    }
                    Irows[1] = Irow_prev + c_i;
                    Lrows[0] = Lrow + c_i;
                    Lrows[1] = Lrow_prev + c_i;
                    const bool T_b = T_b_r                            && *(Irows[G4[b][0]] + G4[b][1]);
                    const bool T_d =          (c_i + G4[d][1]) >= 0   && *(Irows[G4[d][0]] + G4[d][1]);
                    if(T_b){
                        if(T_d){
                            //copy(d, b)
                            *Lrows[0] = set_union(P, *(Lrows[G4[d][0]] + G4[d][1]), *(Lrows[G4[b][0]] + G4[b][1]));
                        }else{
                            //copy(b)
                            *Lrows[0] = *(Lrows[G4[b][0]] + G4[b][1]);
                        }
                    }else{
                        if(T_d){
                            //copy(d)
                            *Lrows[0] = *(Lrows[G4[d][0]] + G4[d][1]);
                        }else{
                            //new label
                            *Lrows[0] = lunique;
                            P[lunique] = lunique;
                            lunique = lunique + 1;
                        }
                    }
                }
            }
        }

        //analysis
        LabelT nLabels = flattenL(P, lunique);
        sop.init(nLabels);

        for(int r_i = 0; r_i < rows; ++r_i){
            LabelT *Lrow_start = (LabelT *)(L.data + L.step.p[0] * r_i);
            LabelT *Lrow_end = Lrow_start + cols;
            LabelT *Lrow = Lrow_start;
            for(int c_i = 0; Lrow != Lrow_end; ++Lrow, ++c_i){
                const LabelT l = P[*Lrow];
                *Lrow = l;
                sop(r_i, c_i, l);
            }
        }

        sop.finish();
        fastFree(P);

        return nLabels;
    }//End function LabelingImpl operator()

    };//End struct LabelingImpl
}//end namespace connectedcomponents

//L's type must have an appropriate depth for the number of pixels in I
template<typename StatsOp>
static
int connectedComponents_sub1(const cv::Mat &I, cv::Mat &L, int connectivity, StatsOp &sop){
    CV_Assert(L.channels() == 1 && I.channels() == 1);
    CV_Assert(connectivity == 8 || connectivity == 4);

    int lDepth = L.depth();
    int iDepth = I.depth();
    using connectedcomponents::LabelingImpl;
    //warn if L's depth is not sufficient?

    CV_Assert(iDepth == CV_8U || iDepth == CV_8S);

    if(lDepth == CV_8U){
        return (int) LabelingImpl<uchar, uchar, StatsOp>()(I, L, connectivity, sop);
    }else if(lDepth == CV_16U){
        return (int) LabelingImpl<ushort, uchar, StatsOp>()(I, L, connectivity, sop);
    }else if(lDepth == CV_32S){
        //note that signed types don't really make sense here and not being able to use unsigned matters for scientific projects
        //OpenCV: how should we proceed?  .at<T> typechecks in debug mode
        return (int) LabelingImpl<int, uchar, StatsOp>()(I, L, connectivity, sop);
    }

    CV_Error(CV_StsUnsupportedFormat, "unsupported label/image type");
    return -1;
}

}

int cv::connectedComponents(InputArray _img, OutputArray _labels, int connectivity, int ltype){
    const cv::Mat img = _img.getMat();
    _labels.create(img.size(), CV_MAT_DEPTH(ltype));
    cv::Mat labels = _labels.getMat();
    connectedcomponents::NoOp sop;
    if(ltype == CV_16U){
        return connectedComponents_sub1(img, labels, connectivity, sop);
    }else if(ltype == CV_32S){
        return connectedComponents_sub1(img, labels, connectivity, sop);
    }else{
        CV_Error(CV_StsUnsupportedFormat, "the type of labels must be 16u or 32s");
        return 0;
    }
}

int cv::connectedComponentsWithStats(InputArray _img, OutputArray _labels, OutputArray statsv,
                                     OutputArray centroids, int connectivity, int ltype)
{
    const cv::Mat img = _img.getMat();
    _labels.create(img.size(), CV_MAT_DEPTH(ltype));
    cv::Mat labels = _labels.getMat();
    connectedcomponents::CCStatsOp sop(statsv, centroids); 
    if(ltype == CV_16U){
        return connectedComponents_sub1(img, labels, connectivity, sop);
    }else if(ltype == CV_32S){
        return connectedComponents_sub1(img, labels, connectivity, sop);
    }else{
        CV_Error(CV_StsUnsupportedFormat, "the type of labels must be 16u or 32s");
        return 0;
    }
}