DnnTensorFlowTest.java 4.61 KB
package org.opencv.test.dnn;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfByte;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.dnn.DictValue;
import org.opencv.dnn.Dnn;
import org.opencv.dnn.Layer;
import org.opencv.dnn.Net;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.test.OpenCVTestCase;

public class DnnTensorFlowTest extends OpenCVTestCase {

    private final static String ENV_OPENCV_DNN_TEST_DATA_PATH = "OPENCV_DNN_TEST_DATA_PATH";

    private final static String ENV_OPENCV_TEST_DATA_PATH = "OPENCV_TEST_DATA_PATH";

    String modelFileName = "";
    String sourceImageFile = "";

    Net net;

    private static void normAssert(Mat ref, Mat test) {
        final double l1 = 1e-5;
        final double lInf = 1e-4;
        double normL1 = Core.norm(ref, test, Core.NORM_L1) / ref.total();
        double normLInf = Core.norm(ref, test, Core.NORM_INF) / ref.total();
        assertTrue(normL1 < l1);
        assertTrue(normLInf < lInf);
    }

    @Override
    protected void setUp() throws Exception {
        super.setUp();

        String envDnnTestDataPath = System.getenv(ENV_OPENCV_DNN_TEST_DATA_PATH);

        if(envDnnTestDataPath == null){
            isTestCaseEnabled = false;
            return;
        }

        File dnnTestDataPath = new File(envDnnTestDataPath);
        modelFileName =  new File(dnnTestDataPath, "dnn/tensorflow_inception_graph.pb").toString();

        String envTestDataPath = System.getenv(ENV_OPENCV_TEST_DATA_PATH);

        if(envTestDataPath == null) throw new Exception(ENV_OPENCV_TEST_DATA_PATH + " has to be defined!");

        File testDataPath = new File(envTestDataPath);

        File f = new File(testDataPath, "dnn/grace_hopper_227.png");
        sourceImageFile = f.toString();
        if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile);

        net = Dnn.readNetFromTensorflow(modelFileName);
    }

    public void testGetLayerTypes() {
        List<String> layertypes = new ArrayList();
        net.getLayerTypes(layertypes);

        assertFalse("No layer types returned!", layertypes.isEmpty());
    }

    public void testGetLayer() {
        List<String> layernames = net.getLayerNames();

        assertFalse("Test net returned no layers!", layernames.isEmpty());

        String testLayerName = layernames.get(0);

        DictValue layerId = new DictValue(testLayerName);

        assertEquals("DictValue did not return the string, which was used in constructor!", testLayerName, layerId.getStringValue());

        Layer layer = net.getLayer(layerId);

        assertEquals("Layer name does not match the expected value!", testLayerName, layer.get_name());

    }

    public void checkInceptionNet(Net net)
    {
        Mat image = Imgcodecs.imread(sourceImageFile);
        assertNotNull("Loading image from file failed!", image);

        Mat inputBlob = Dnn.blobFromImage(image, 1.0, new Size(224, 224), new Scalar(0), true, true);
        assertNotNull("Converting image to blob failed!", inputBlob);

        net.setInput(inputBlob, "input");

        Mat result = new Mat();
        try {
            net.setPreferableBackend(Dnn.DNN_BACKEND_OPENCV);
            result = net.forward("softmax2");
        }
        catch (Exception e) {
            fail("DNN forward failed: " + e.getMessage());
        }
        assertNotNull("Net returned no result!", result);

        result = result.reshape(1, 1);
        Core.MinMaxLocResult minmax = Core.minMaxLoc(result);
        assertEquals("Wrong prediction", (int)minmax.maxLoc.x, 866);

        Mat top5RefScores = new MatOfFloat(new float[] {
            0.63032645f, 0.2561979f, 0.032181446f, 0.015721032f, 0.014785315f
        }).reshape(1, 1);

        Core.sort(result, result, Core.SORT_DESCENDING);

        normAssert(result.colRange(0, 5), top5RefScores);
    }

    public void testTestNetForward() {
        checkInceptionNet(net);
    }

    public void testReadFromBuffer() {
        File modelFile = new File(modelFileName);
        byte[] modelBuffer = new byte[ (int)modelFile.length() ];

        try {
            FileInputStream fis = new FileInputStream(modelFile);
            fis.read(modelBuffer);
            fis.close();
        } catch (IOException e) {
            fail("Failed to read a model: " + e.getMessage());
        }
        net = Dnn.readNetFromTensorflow(new MatOfByte(modelBuffer));
        checkInceptionNet(net);
    }
}