utility.hpp 37.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef OPENCV_CORE_UTILITY_H
#define OPENCV_CORE_UTILITY_H

#ifndef __cplusplus
#  error utility.hpp header must be compiled as C++
#endif

#if defined(check)
#  warning Detected Apple 'check' macro definition, it can cause build conflicts. Please, include this header before any Apple headers.
#endif

#include "opencv2/core.hpp"
#include <ostream>

#ifdef CV_CXX11
#include <functional>
#endif

namespace cv
{

#ifdef CV_COLLECT_IMPL_DATA
CV_EXPORTS void setImpl(int flags); // set implementation flags and reset storage arrays
CV_EXPORTS void addImpl(int flag, const char* func = 0); // add implementation and function name to storage arrays
// Get stored implementation flags and functions names arrays
// Each implementation entry correspond to function name entry, so you can find which implementation was executed in which function
CV_EXPORTS int getImpl(std::vector<int> &impl, std::vector<String> &funName);

CV_EXPORTS bool useCollection(); // return implementation collection state
CV_EXPORTS void setUseCollection(bool flag); // set implementation collection state

#define CV_IMPL_PLAIN  0x01 // native CPU OpenCV implementation
#define CV_IMPL_OCL    0x02 // OpenCL implementation
#define CV_IMPL_IPP    0x04 // IPP implementation
#define CV_IMPL_MT     0x10 // multithreaded implementation

#define CV_IMPL_ADD(impl)                                                   \
    if(cv::useCollection())                                                 \
    {                                                                       \
        cv::addImpl(impl, CV_Func);                                         \
    }
#else
#define CV_IMPL_ADD(impl)
#endif

//! @addtogroup core_utils
//! @{

/** @brief  Automatically Allocated Buffer Class

 The class is used for temporary buffers in functions and methods.
 If a temporary buffer is usually small (a few K's of memory),
 but its size depends on the parameters, it makes sense to create a small
 fixed-size array on stack and use it if it's large enough. If the required buffer size
 is larger than the fixed size, another buffer of sufficient size is allocated dynamically
 and released after the processing. Therefore, in typical cases, when the buffer size is small,
 there is no overhead associated with malloc()/free().
 At the same time, there is no limit on the size of processed data.

 This is what AutoBuffer does. The template takes 2 parameters - type of the buffer elements and
 the number of stack-allocated elements. Here is how the class is used:

 \code
 void my_func(const cv::Mat& m)
 {
    cv::AutoBuffer<float> buf(1000); // create automatic buffer containing 1000 floats

    buf.allocate(m.rows); // if m.rows <= 1000, the pre-allocated buffer is used,
                          // otherwise the buffer of "m.rows" floats will be allocated
                          // dynamically and deallocated in cv::AutoBuffer destructor
    ...
 }
 \endcode
*/
template<typename _Tp, size_t fixed_size = 1024/sizeof(_Tp)+8> class AutoBuffer
{
public:
    typedef _Tp value_type;

    //! the default constructor
    AutoBuffer();
    //! constructor taking the real buffer size
    AutoBuffer(size_t _size);

    //! the copy constructor
    AutoBuffer(const AutoBuffer<_Tp, fixed_size>& buf);
    //! the assignment operator
    AutoBuffer<_Tp, fixed_size>& operator = (const AutoBuffer<_Tp, fixed_size>& buf);

    //! destructor. calls deallocate()
    ~AutoBuffer();

    //! allocates the new buffer of size _size. if the _size is small enough, stack-allocated buffer is used
    void allocate(size_t _size);
    //! deallocates the buffer if it was dynamically allocated
    void deallocate();
    //! resizes the buffer and preserves the content
    void resize(size_t _size);
    //! returns the current buffer size
    size_t size() const;
    //! returns pointer to the real buffer, stack-allocated or heap-allocated
    operator _Tp* ();
    //! returns read-only pointer to the real buffer, stack-allocated or heap-allocated
    operator const _Tp* () const;

protected:
    //! pointer to the real buffer, can point to buf if the buffer is small enough
    _Tp* ptr;
    //! size of the real buffer
    size_t sz;
    //! pre-allocated buffer. At least 1 element to confirm C++ standard requirements
    _Tp buf[(fixed_size > 0) ? fixed_size : 1];
};

/**  @brief Sets/resets the break-on-error mode.

When the break-on-error mode is set, the default error handler issues a hardware exception, which
can make debugging more convenient.

\return the previous state
 */
CV_EXPORTS bool setBreakOnError(bool flag);

extern "C" typedef int (*ErrorCallback)( int status, const char* func_name,
                                       const char* err_msg, const char* file_name,
                                       int line, void* userdata );


/** @brief Sets the new error handler and the optional user data.

  The function sets the new error handler, called from cv::error().

  \param errCallback the new error handler. If NULL, the default error handler is used.
  \param userdata the optional user data pointer, passed to the callback.
  \param prevUserdata the optional output parameter where the previous user data pointer is stored

  \return the previous error handler
*/
CV_EXPORTS ErrorCallback redirectError( ErrorCallback errCallback, void* userdata=0, void** prevUserdata=0);

/** @brief Returns a text string formatted using the printf-like expression.

The function acts like sprintf but forms and returns an STL string. It can be used to form an error
message in the Exception constructor.
@param fmt printf-compatible formatting specifiers.
 */
CV_EXPORTS String format( const char* fmt, ... );
CV_EXPORTS String tempfile( const char* suffix = 0);
CV_EXPORTS void glob(String pattern, std::vector<String>& result, bool recursive = false);

/** @brief OpenCV will try to set the number of threads for the next parallel region.

If threads == 0, OpenCV will disable threading optimizations and run all it's functions
sequentially. Passing threads \< 0 will reset threads number to system default. This function must
be called outside of parallel region.

OpenCV will try to run its functions with specified threads number, but some behaviour differs from
framework:
-   `TBB` - User-defined parallel constructions will run with the same threads number, if
    another is not specified. If later on user creates his own scheduler, OpenCV will use it.
-   `OpenMP` - No special defined behaviour.
-   `Concurrency` - If threads == 1, OpenCV will disable threading optimizations and run its
    functions sequentially.
-   `GCD` - Supports only values \<= 0.
-   `C=` - No special defined behaviour.
@param nthreads Number of threads used by OpenCV.
@sa getNumThreads, getThreadNum
 */
CV_EXPORTS_W void setNumThreads(int nthreads);

/** @brief Returns the number of threads used by OpenCV for parallel regions.

Always returns 1 if OpenCV is built without threading support.

The exact meaning of return value depends on the threading framework used by OpenCV library:
- `TBB` - The number of threads, that OpenCV will try to use for parallel regions. If there is
  any tbb::thread_scheduler_init in user code conflicting with OpenCV, then function returns
  default number of threads used by TBB library.
- `OpenMP` - An upper bound on the number of threads that could be used to form a new team.
- `Concurrency` - The number of threads, that OpenCV will try to use for parallel regions.
- `GCD` - Unsupported; returns the GCD thread pool limit (512) for compatibility.
- `C=` - The number of threads, that OpenCV will try to use for parallel regions, if before
  called setNumThreads with threads \> 0, otherwise returns the number of logical CPUs,
  available for the process.
@sa setNumThreads, getThreadNum
 */
CV_EXPORTS_W int getNumThreads();

/** @brief Returns the index of the currently executed thread within the current parallel region. Always
returns 0 if called outside of parallel region.

@deprecated Current implementation doesn't corresponding to this documentation.

The exact meaning of the return value depends on the threading framework used by OpenCV library:
- `TBB` - Unsupported with current 4.1 TBB release. Maybe will be supported in future.
- `OpenMP` - The thread number, within the current team, of the calling thread.
- `Concurrency` - An ID for the virtual processor that the current context is executing on (0
  for master thread and unique number for others, but not necessary 1,2,3,...).
- `GCD` - System calling thread's ID. Never returns 0 inside parallel region.
- `C=` - The index of the current parallel task.
@sa setNumThreads, getNumThreads
 */
CV_EXPORTS_W int getThreadNum();

/** @brief Returns full configuration time cmake output.

Returned value is raw cmake output including version control system revision, compiler version,
compiler flags, enabled modules and third party libraries, etc. Output format depends on target
architecture.
 */
CV_EXPORTS_W const String& getBuildInformation();

/** @brief Returns the number of ticks.

The function returns the number of ticks after the certain event (for example, when the machine was
turned on). It can be used to initialize RNG or to measure a function execution time by reading the
tick count before and after the function call.
@sa getTickFrequency, TickMeter
 */
CV_EXPORTS_W int64 getTickCount();

/** @brief Returns the number of ticks per second.

The function returns the number of ticks per second. That is, the following code computes the
execution time in seconds:
@code
    double t = (double)getTickCount();
    // do something ...
    t = ((double)getTickCount() - t)/getTickFrequency();
@endcode
@sa getTickCount, TickMeter
 */
CV_EXPORTS_W double getTickFrequency();

/** @brief a Class to measure passing time.

The class computes passing time by counting the number of ticks per second. That is, the following code computes the
execution time in seconds:
@code
TickMeter tm;
tm.start();
// do something ...
tm.stop();
std::cout << tm.getTimeSec();
@endcode

It is also possible to compute the average time over multiple runs:
@code
TickMeter tm;
for (int i = 0; i < 100; i++)
{
    tm.start();
    // do something ...
    tm.stop();
}
double average_time = tm.getTimeSec() / tm.getCounter();
std::cout << "Average time in second per iteration is: " << average_time << std::endl;
@endcode
@sa getTickCount, getTickFrequency
*/

class CV_EXPORTS_W TickMeter
{
public:
    //! the default constructor
    CV_WRAP TickMeter()
    {
    reset();
    }

    /**
    starts counting ticks.
    */
    CV_WRAP void start()
    {
    startTime = cv::getTickCount();
    }

    /**
    stops counting ticks.
    */
    CV_WRAP void stop()
    {
    int64 time = cv::getTickCount();
    if (startTime == 0)
    return;
    ++counter;
    sumTime += (time - startTime);
    startTime = 0;
    }

    /**
    returns counted ticks.
    */
    CV_WRAP int64 getTimeTicks() const
    {
    return sumTime;
    }

    /**
    returns passed time in microseconds.
    */
    CV_WRAP double getTimeMicro() const
    {
    return getTimeMilli()*1e3;
    }

    /**
    returns passed time in milliseconds.
    */
    CV_WRAP double getTimeMilli() const
    {
    return getTimeSec()*1e3;
    }

    /**
    returns passed time in seconds.
    */
    CV_WRAP double getTimeSec()   const
    {
    return (double)getTimeTicks() / getTickFrequency();
    }

    /**
    returns internal counter value.
    */
    CV_WRAP int64 getCounter() const
    {
    return counter;
    }

    /**
    resets internal values.
    */
    CV_WRAP void reset()
    {
    startTime = 0;
    sumTime = 0;
    counter = 0;
    }

private:
    int64 counter;
    int64 sumTime;
    int64 startTime;
};

/** @brief output operator
@code
TickMeter tm;
tm.start();
// do something ...
tm.stop();
std::cout << tm;
@endcode
*/

static inline
std::ostream& operator << (std::ostream& out, const TickMeter& tm)
{
    return out << tm.getTimeSec() << "sec";
}

/** @brief Returns the number of CPU ticks.

The function returns the current number of CPU ticks on some architectures (such as x86, x64,
PowerPC). On other platforms the function is equivalent to getTickCount. It can also be used for
very accurate time measurements, as well as for RNG initialization. Note that in case of multi-CPU
systems a thread, from which getCPUTickCount is called, can be suspended and resumed at another CPU
with its own counter. So, theoretically (and practically) the subsequent calls to the function do
not necessary return the monotonously increasing values. Also, since a modern CPU varies the CPU
frequency depending on the load, the number of CPU clocks spent in some code cannot be directly
converted to time units. Therefore, getTickCount is generally a preferable solution for measuring
execution time.
 */
CV_EXPORTS_W int64 getCPUTickCount();

/** @brief Returns true if the specified feature is supported by the host hardware.

The function returns true if the host hardware supports the specified feature. When user calls
setUseOptimized(false), the subsequent calls to checkHardwareSupport() will return false until
setUseOptimized(true) is called. This way user can dynamically switch on and off the optimized code
in OpenCV.
@param feature The feature of interest, one of cv::CpuFeatures
 */
CV_EXPORTS_W bool checkHardwareSupport(int feature);

/** @brief Returns feature name by ID

Returns empty string if feature is not defined
*/
CV_EXPORTS_W String getHardwareFeatureName(int feature);

/** @brief Returns the number of logical CPUs available for the process.
 */
CV_EXPORTS_W int getNumberOfCPUs();


/** @brief Aligns a pointer to the specified number of bytes.

The function returns the aligned pointer of the same type as the input pointer:
\f[\texttt{(_Tp*)(((size_t)ptr + n-1) & -n)}\f]
@param ptr Aligned pointer.
@param n Alignment size that must be a power of two.
 */
template<typename _Tp> static inline _Tp* alignPtr(_Tp* ptr, int n=(int)sizeof(_Tp))
{
    CV_DbgAssert((n & (n - 1)) == 0); // n is a power of 2
    return (_Tp*)(((size_t)ptr + n-1) & -n);
}

/** @brief Aligns a buffer size to the specified number of bytes.

The function returns the minimum number that is greater than or equal to sz and is divisible by n :
\f[\texttt{(sz + n-1) & -n}\f]
@param sz Buffer size to align.
@param n Alignment size that must be a power of two.
 */
static inline size_t alignSize(size_t sz, int n)
{
    CV_DbgAssert((n & (n - 1)) == 0); // n is a power of 2
    return (sz + n-1) & -n;
}

/** @brief Integer division with result round up.

Use this function instead of `ceil((float)a / b)` expressions.

@sa alignSize
*/
static inline int divUp(int a, unsigned int b)
{
    CV_DbgAssert(a >= 0);
    return (a + b - 1) / b;
}
/** @overload */
static inline size_t divUp(size_t a, unsigned int b)
{
    return (a + b - 1) / b;
}

/** @brief Enables or disables the optimized code.

The function can be used to dynamically turn on and off optimized code (code that uses SSE2, AVX,
and other instructions on the platforms that support it). It sets a global flag that is further
checked by OpenCV functions. Since the flag is not checked in the inner OpenCV loops, it is only
safe to call the function on the very top level in your application where you can be sure that no
other OpenCV function is currently executed.

By default, the optimized code is enabled unless you disable it in CMake. The current status can be
retrieved using useOptimized.
@param onoff The boolean flag specifying whether the optimized code should be used (onoff=true)
or not (onoff=false).
 */
CV_EXPORTS_W void setUseOptimized(bool onoff);

/** @brief Returns the status of optimized code usage.

The function returns true if the optimized code is enabled. Otherwise, it returns false.
 */
CV_EXPORTS_W bool useOptimized();

static inline size_t getElemSize(int type) { return (size_t)CV_ELEM_SIZE(type); }

/////////////////////////////// Parallel Primitives //////////////////////////////////

/** @brief Base class for parallel data processors
*/
class CV_EXPORTS ParallelLoopBody
{
public:
    virtual ~ParallelLoopBody();
    virtual void operator() (const Range& range) const = 0;
};

/** @brief Parallel data processor
*/
CV_EXPORTS void parallel_for_(const Range& range, const ParallelLoopBody& body, double nstripes=-1.);

#ifdef CV_CXX11
class ParallelLoopBodyLambdaWrapper : public ParallelLoopBody
{
private:
    std::function<void(const Range&)> m_functor;
public:
    ParallelLoopBodyLambdaWrapper(std::function<void(const Range&)> functor) :
        m_functor(functor)
    { }

    virtual void operator() (const cv::Range& range) const
    {
        m_functor(range);
    }
};

inline void parallel_for_(const Range& range, std::function<void(const Range&)> functor, double nstripes=-1.)
{
    parallel_for_(range, ParallelLoopBodyLambdaWrapper(functor), nstripes);
}
#endif

/////////////////////////////// forEach method of cv::Mat ////////////////////////////
template<typename _Tp, typename Functor> inline
void Mat::forEach_impl(const Functor& operation) {
    if (false) {
        operation(*reinterpret_cast<_Tp*>(0), reinterpret_cast<int*>(0));
        // If your compiler fails in this line.
        // Please check that your functor signature is
        //     (_Tp&, const int*)   <- multi-dimensional
        //  or (_Tp&, void*)        <- in case you don't need current idx.
    }

    CV_Assert(this->total() / this->size[this->dims - 1] <= INT_MAX);
    const int LINES = static_cast<int>(this->total() / this->size[this->dims - 1]);

    class PixelOperationWrapper :public ParallelLoopBody
    {
    public:
        PixelOperationWrapper(Mat_<_Tp>* const frame, const Functor& _operation)
            : mat(frame), op(_operation) {}
        virtual ~PixelOperationWrapper(){}
        // ! Overloaded virtual operator
        // convert range call to row call.
        virtual void operator()(const Range &range) const {
            const int DIMS = mat->dims;
            const int COLS = mat->size[DIMS - 1];
            if (DIMS <= 2) {
                for (int row = range.start; row < range.end; ++row) {
                    this->rowCall2(row, COLS);
                }
            } else {
                std::vector<int> idx(DIMS); /// idx is modified in this->rowCall
                idx[DIMS - 2] = range.start - 1;

                for (int line_num = range.start; line_num < range.end; ++line_num) {
                    idx[DIMS - 2]++;
                    for (int i = DIMS - 2; i >= 0; --i) {
                        if (idx[i] >= mat->size[i]) {
                            idx[i - 1] += idx[i] / mat->size[i];
                            idx[i] %= mat->size[i];
                            continue; // carry-over;
                        }
                        else {
                            break;
                        }
                    }
                    this->rowCall(&idx[0], COLS, DIMS);
                }
            }
        }
    private:
        Mat_<_Tp>* const mat;
        const Functor op;
        // ! Call operator for each elements in this row.
        inline void rowCall(int* const idx, const int COLS, const int DIMS) const {
            int &col = idx[DIMS - 1];
            col = 0;
            _Tp* pixel = &(mat->template at<_Tp>(idx));

            while (col < COLS) {
                op(*pixel, const_cast<const int*>(idx));
                pixel++; col++;
            }
            col = 0;
        }
        // ! Call operator for each elements in this row. 2d mat special version.
        inline void rowCall2(const int row, const int COLS) const {
            union Index{
                int body[2];
                operator const int*() const {
                    return reinterpret_cast<const int*>(this);
                }
                int& operator[](const int i) {
                    return body[i];
                }
            } idx = {{row, 0}};
            // Special union is needed to avoid
            // "error: array subscript is above array bounds [-Werror=array-bounds]"
            // when call the functor `op` such that access idx[3].

            _Tp* pixel = &(mat->template at<_Tp>(idx));
            const _Tp* const pixel_end = pixel + COLS;
            while(pixel < pixel_end) {
                op(*pixel++, static_cast<const int*>(idx));
                idx[1]++;
            }
        }
        PixelOperationWrapper& operator=(const PixelOperationWrapper &) {
            CV_Assert(false);
            // We can not remove this implementation because Visual Studio warning C4822.
            return *this;
        }
    };

    parallel_for_(cv::Range(0, LINES), PixelOperationWrapper(reinterpret_cast<Mat_<_Tp>*>(this), operation));
}

/////////////////////////// Synchronization Primitives ///////////////////////////////

class CV_EXPORTS Mutex
{
public:
    Mutex();
    ~Mutex();
    Mutex(const Mutex& m);
    Mutex& operator = (const Mutex& m);

    void lock();
    bool trylock();
    void unlock();

    struct Impl;
protected:
    Impl* impl;
};

class CV_EXPORTS AutoLock
{
public:
    AutoLock(Mutex& m) : mutex(&m) { mutex->lock(); }
    ~AutoLock() { mutex->unlock(); }
protected:
    Mutex* mutex;
private:
    AutoLock(const AutoLock&);
    AutoLock& operator = (const AutoLock&);
};

// TLS interface
class CV_EXPORTS TLSDataContainer
{
protected:
    TLSDataContainer();
    virtual ~TLSDataContainer();

    void  gatherData(std::vector<void*> &data) const;
#if OPENCV_ABI_COMPATIBILITY > 300
    void* getData() const;
    void  release();

private:
#else
    void  release();

public:
    void* getData() const;
#endif
    virtual void* createDataInstance() const = 0;
    virtual void  deleteDataInstance(void* pData) const = 0;

    int key_;

public:
    void cleanup(); //! Release created TLS data container objects. It is similar to release() call, but it keeps TLS container valid.
};

// Main TLS data class
template <typename T>
class TLSData : protected TLSDataContainer
{
public:
    inline TLSData()        {}
    inline ~TLSData()       { release();            } // Release key and delete associated data
    inline T* get() const   { return (T*)getData(); } // Get data associated with key
    inline T& getRef() const { T* ptr = (T*)getData(); CV_Assert(ptr); return *ptr; } // Get data associated with key

    // Get data from all threads
    inline void gather(std::vector<T*> &data) const
    {
        std::vector<void*> &dataVoid = reinterpret_cast<std::vector<void*>&>(data);
        gatherData(dataVoid);
    }

    inline void cleanup() { TLSDataContainer::cleanup(); }

private:
    virtual void* createDataInstance() const {return new T;}                // Wrapper to allocate data by template
    virtual void  deleteDataInstance(void* pData) const {delete (T*)pData;} // Wrapper to release data by template

    // Disable TLS copy operations
    TLSData(TLSData &) {}
    TLSData& operator =(const TLSData &) {return *this;}
};

/** @brief Designed for command line parsing

The sample below demonstrates how to use CommandLineParser:
@code
    CommandLineParser parser(argc, argv, keys);
    parser.about("Application name v1.0.0");

    if (parser.has("help"))
    {
        parser.printMessage();
        return 0;
    }

    int N = parser.get<int>("N");
    double fps = parser.get<double>("fps");
    String path = parser.get<String>("path");

    use_time_stamp = parser.has("timestamp");

    String img1 = parser.get<String>(0);
    String img2 = parser.get<String>(1);

    int repeat = parser.get<int>(2);

    if (!parser.check())
    {
        parser.printErrors();
        return 0;
    }
@endcode

### Keys syntax

The keys parameter is a string containing several blocks, each one is enclosed in curly braces and
describes one argument. Each argument contains three parts separated by the `|` symbol:

-# argument names is a space-separated list of option synonyms (to mark argument as positional, prefix it with the `@` symbol)
-# default value will be used if the argument was not provided (can be empty)
-# help message (can be empty)

For example:

@code{.cpp}
    const String keys =
        "{help h usage ? |      | print this message   }"
        "{@image1        |      | image1 for compare   }"
        "{@image2        |<none>| image2 for compare   }"
        "{@repeat        |1     | number               }"
        "{path           |.     | path to file         }"
        "{fps            | -1.0 | fps for output video }"
        "{N count        |100   | count of objects     }"
        "{ts timestamp   |      | use time stamp       }"
        ;
}
@endcode

Note that there are no default values for `help` and `timestamp` so we can check their presence using the `has()` method.
Arguments with default values are considered to be always present. Use the `get()` method in these cases to check their
actual value instead.

String keys like `get<String>("@image1")` return the empty string `""` by default - even with an empty default value.
Use the special `<none>` default value to enforce that the returned string must not be empty. (like in `get<String>("@image2")`)

### Usage

For the described keys:

@code{.sh}
    # Good call (3 positional parameters: image1, image2 and repeat; N is 200, ts is true)
    $ ./app -N=200 1.png 2.jpg 19 -ts

    # Bad call
    $ ./app -fps=aaa
    ERRORS:
    Parameter 'fps': can not convert: [aaa] to [double]
@endcode
 */
class CV_EXPORTS CommandLineParser
{
public:

    /** @brief Constructor

    Initializes command line parser object

    @param argc number of command line arguments (from main())
    @param argv array of command line arguments (from main())
    @param keys string describing acceptable command line parameters (see class description for syntax)
    */
    CommandLineParser(int argc, const char* const argv[], const String& keys);

    /** @brief Copy constructor */
    CommandLineParser(const CommandLineParser& parser);

    /** @brief Assignment operator */
    CommandLineParser& operator = (const CommandLineParser& parser);

    /** @brief Destructor */
    ~CommandLineParser();

    /** @brief Returns application path

    This method returns the path to the executable from the command line (`argv[0]`).

    For example, if the application has been started with such a command:
    @code{.sh}
    $ ./bin/my-executable
    @endcode
    this method will return `./bin`.
    */
    String getPathToApplication() const;

    /** @brief Access arguments by name

    Returns argument converted to selected type. If the argument is not known or can not be
    converted to selected type, the error flag is set (can be checked with @ref check).

    For example, define:
    @code{.cpp}
    String keys = "{N count||}";
    @endcode

    Call:
    @code{.sh}
    $ ./my-app -N=20
    # or
    $ ./my-app --count=20
    @endcode

    Access:
    @code{.cpp}
    int N = parser.get<int>("N");
    @endcode

    @param name name of the argument
    @param space_delete remove spaces from the left and right of the string
    @tparam T the argument will be converted to this type if possible

    @note You can access positional arguments by their `@`-prefixed name:
    @code{.cpp}
    parser.get<String>("@image");
    @endcode
     */
    template <typename T>
    T get(const String& name, bool space_delete = true) const
    {
        T val = T();
        getByName(name, space_delete, ParamType<T>::type, (void*)&val);
        return val;
    }

    /** @brief Access positional arguments by index

    Returns argument converted to selected type. Indexes are counted from zero.

    For example, define:
    @code{.cpp}
    String keys = "{@arg1||}{@arg2||}"
    @endcode

    Call:
    @code{.sh}
    ./my-app abc qwe
    @endcode

    Access arguments:
    @code{.cpp}
    String val_1 = parser.get<String>(0); // returns "abc", arg1
    String val_2 = parser.get<String>(1); // returns "qwe", arg2
    @endcode

    @param index index of the argument
    @param space_delete remove spaces from the left and right of the string
    @tparam T the argument will be converted to this type if possible
     */
    template <typename T>
    T get(int index, bool space_delete = true) const
    {
        T val = T();
        getByIndex(index, space_delete, ParamType<T>::type, (void*)&val);
        return val;
    }

    /** @brief Check if field was provided in the command line

    @param name argument name to check
    */
    bool has(const String& name) const;

    /** @brief Check for parsing errors

    Returns false if error occurred while accessing the parameters (bad conversion, missing arguments,
    etc.). Call @ref printErrors to print error messages list.
     */
    bool check() const;

    /** @brief Set the about message

    The about message will be shown when @ref printMessage is called, right before arguments table.
     */
    void about(const String& message);

    /** @brief Print help message

    This method will print standard help message containing the about message and arguments description.

    @sa about
    */
    void printMessage() const;

    /** @brief Print list of errors occurred

    @sa check
    */
    void printErrors() const;

protected:
    void getByName(const String& name, bool space_delete, int type, void* dst) const;
    void getByIndex(int index, bool space_delete, int type, void* dst) const;

    struct Impl;
    Impl* impl;
};

//! @} core_utils

//! @cond IGNORED

/////////////////////////////// AutoBuffer implementation ////////////////////////////////////////

template<typename _Tp, size_t fixed_size> inline
AutoBuffer<_Tp, fixed_size>::AutoBuffer()
{
    ptr = buf;
    sz = fixed_size;
}

template<typename _Tp, size_t fixed_size> inline
AutoBuffer<_Tp, fixed_size>::AutoBuffer(size_t _size)
{
    ptr = buf;
    sz = fixed_size;
    allocate(_size);
}

template<typename _Tp, size_t fixed_size> inline
AutoBuffer<_Tp, fixed_size>::AutoBuffer(const AutoBuffer<_Tp, fixed_size>& abuf )
{
    ptr = buf;
    sz = fixed_size;
    allocate(abuf.size());
    for( size_t i = 0; i < sz; i++ )
        ptr[i] = abuf.ptr[i];
}

template<typename _Tp, size_t fixed_size> inline AutoBuffer<_Tp, fixed_size>&
AutoBuffer<_Tp, fixed_size>::operator = (const AutoBuffer<_Tp, fixed_size>& abuf)
{
    if( this != &abuf )
    {
        deallocate();
        allocate(abuf.size());
        for( size_t i = 0; i < sz; i++ )
            ptr[i] = abuf.ptr[i];
    }
    return *this;
}

template<typename _Tp, size_t fixed_size> inline
AutoBuffer<_Tp, fixed_size>::~AutoBuffer()
{ deallocate(); }

template<typename _Tp, size_t fixed_size> inline void
AutoBuffer<_Tp, fixed_size>::allocate(size_t _size)
{
    if(_size <= sz)
    {
        sz = _size;
        return;
    }
    deallocate();
    sz = _size;
    if(_size > fixed_size)
    {
        ptr = new _Tp[_size];
    }
}

template<typename _Tp, size_t fixed_size> inline void
AutoBuffer<_Tp, fixed_size>::deallocate()
{
    if( ptr != buf )
    {
        delete[] ptr;
        ptr = buf;
        sz = fixed_size;
    }
}

template<typename _Tp, size_t fixed_size> inline void
AutoBuffer<_Tp, fixed_size>::resize(size_t _size)
{
    if(_size <= sz)
    {
        sz = _size;
        return;
    }
    size_t i, prevsize = sz, minsize = MIN(prevsize, _size);
    _Tp* prevptr = ptr;

    ptr = _size > fixed_size ? new _Tp[_size] : buf;
    sz = _size;

    if( ptr != prevptr )
        for( i = 0; i < minsize; i++ )
            ptr[i] = prevptr[i];
    for( i = prevsize; i < _size; i++ )
        ptr[i] = _Tp();

    if( prevptr != buf )
        delete[] prevptr;
}

template<typename _Tp, size_t fixed_size> inline size_t
AutoBuffer<_Tp, fixed_size>::size() const
{ return sz; }

template<typename _Tp, size_t fixed_size> inline
AutoBuffer<_Tp, fixed_size>::operator _Tp* ()
{ return ptr; }

template<typename _Tp, size_t fixed_size> inline
AutoBuffer<_Tp, fixed_size>::operator const _Tp* () const
{ return ptr; }

template<> inline std::string CommandLineParser::get<std::string>(int index, bool space_delete) const
{
    return get<String>(index, space_delete);
}
template<> inline std::string CommandLineParser::get<std::string>(const String& name, bool space_delete) const
{
    return get<String>(name, space_delete);
}

//! @endcond


// Basic Node class for tree building
template<class OBJECT>
class CV_EXPORTS Node
{
public:
    Node()
    {
        m_pParent  = 0;
    }
    Node(OBJECT& payload) : m_payload(payload)
    {
        m_pParent  = 0;
    }
    ~Node()
    {
        removeChilds();
        if (m_pParent)
        {
            int idx = m_pParent->findChild(this);
            if (idx >= 0)
                m_pParent->m_childs.erase(m_pParent->m_childs.begin() + idx);
        }
    }

    Node<OBJECT>* findChild(OBJECT& payload) const
    {
        for(size_t i = 0; i < this->m_childs.size(); i++)
        {
            if(this->m_childs[i]->m_payload == payload)
                return this->m_childs[i];
        }
        return NULL;
    }

    int findChild(Node<OBJECT> *pNode) const
    {
        for (size_t i = 0; i < this->m_childs.size(); i++)
        {
            if(this->m_childs[i] == pNode)
                return (int)i;
        }
        return -1;
    }

    void addChild(Node<OBJECT> *pNode)
    {
        if(!pNode)
            return;

        CV_Assert(pNode->m_pParent == 0);
        pNode->m_pParent = this;
        this->m_childs.push_back(pNode);
    }

    void removeChilds()
    {
        for(size_t i = 0; i < m_childs.size(); i++)
        {
            m_childs[i]->m_pParent = 0; // avoid excessive parent vector trimming
            delete m_childs[i];
        }
        m_childs.clear();
    }

    int getDepth()
    {
        int   count   = 0;
        Node *pParent = m_pParent;
        while(pParent) count++, pParent = pParent->m_pParent;
        return count;
    }

public:
    OBJECT                     m_payload;
    Node<OBJECT>*              m_pParent;
    std::vector<Node<OBJECT>*> m_childs;
};

// Instrumentation external interface
namespace instr
{

#if !defined OPENCV_ABI_CHECK

enum TYPE
{
    TYPE_GENERAL = 0,   // OpenCV API function, e.g. exported function
    TYPE_MARKER,        // Information marker
    TYPE_WRAPPER,       // Wrapper function for implementation
    TYPE_FUN,           // Simple function call
};

enum IMPL
{
    IMPL_PLAIN = 0,
    IMPL_IPP,
    IMPL_OPENCL,
};

struct NodeDataTls
{
    NodeDataTls()
    {
        m_ticksTotal = 0;
    }
    uint64      m_ticksTotal;
};

class CV_EXPORTS NodeData
{
public:
    NodeData(const char* funName = 0, const char* fileName = NULL, int lineNum = 0, void* retAddress = NULL, bool alwaysExpand = false, cv::instr::TYPE instrType = TYPE_GENERAL, cv::instr::IMPL implType = IMPL_PLAIN);
    NodeData(NodeData &ref);
    ~NodeData();
    NodeData& operator=(const NodeData&);

    cv::String          m_funName;
    cv::instr::TYPE     m_instrType;
    cv::instr::IMPL     m_implType;
    const char*         m_fileName;
    int                 m_lineNum;
    void*               m_retAddress;
    bool                m_alwaysExpand;
    bool                m_funError;

    volatile int         m_counter;
    volatile uint64      m_ticksTotal;
    TLSData<NodeDataTls> m_tls;
    int                  m_threads;

    // No synchronization
    double getTotalMs()   const { return ((double)m_ticksTotal / cv::getTickFrequency()) * 1000; }
    double getMeanMs()    const { return (((double)m_ticksTotal/m_counter) / cv::getTickFrequency()) * 1000; }
};
bool operator==(const NodeData& lhs, const NodeData& rhs);

typedef Node<NodeData> InstrNode;

CV_EXPORTS InstrNode* getTrace();

#endif // !defined OPENCV_ABI_CHECK


CV_EXPORTS bool       useInstrumentation();
CV_EXPORTS void       setUseInstrumentation(bool flag);
CV_EXPORTS void       resetTrace();

enum FLAGS
{
    FLAGS_NONE              = 0,
    FLAGS_MAPPING           = 0x01,
    FLAGS_EXPAND_SAME_NAMES = 0x02,
};

CV_EXPORTS void       setFlags(FLAGS modeFlags);
static inline void    setFlags(int modeFlags) { setFlags((FLAGS)modeFlags); }
CV_EXPORTS FLAGS      getFlags();
}

namespace utils {

CV_EXPORTS int getThreadID();

} // namespace

} //namespace cv

#ifndef DISABLE_OPENCV_24_COMPATIBILITY
#include "opencv2/core/core_c.h"
#endif

#endif //OPENCV_CORE_UTILITY_H