1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
Ptr<cuda::BackgroundSubtractorMOG> cv::cuda::createBackgroundSubtractorMOG(int, int, double, double) { throw_no_cuda(); return Ptr<cuda::BackgroundSubtractorMOG>(); }
#else
namespace cv { namespace cuda { namespace device
{
namespace mog
{
void mog_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzf weight, PtrStepSzf sortKey, PtrStepSzb mean, PtrStepSzb var,
int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma,
cudaStream_t stream);
void getBackgroundImage_gpu(int cn, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, int nmixtures, float backgroundRatio, cudaStream_t stream);
}
}}}
namespace
{
const int defaultNMixtures = 5;
const int defaultHistory = 200;
const float defaultBackgroundRatio = 0.7f;
const float defaultVarThreshold = 2.5f * 2.5f;
const float defaultNoiseSigma = 30.0f * 0.5f;
const float defaultInitialWeight = 0.05f;
class MOGImpl CV_FINAL : public cuda::BackgroundSubtractorMOG
{
public:
MOGImpl(int history, int nmixtures, double backgroundRatio, double noiseSigma);
void apply(InputArray image, OutputArray fgmask, double learningRate=-1) CV_OVERRIDE;
void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) CV_OVERRIDE;
void getBackgroundImage(OutputArray backgroundImage) const CV_OVERRIDE;
void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const CV_OVERRIDE;
int getHistory() const CV_OVERRIDE { return history_; }
void setHistory(int nframes) CV_OVERRIDE { history_ = nframes; }
int getNMixtures() const CV_OVERRIDE { return nmixtures_; }
void setNMixtures(int nmix) CV_OVERRIDE { nmixtures_ = nmix; }
double getBackgroundRatio() const CV_OVERRIDE { return backgroundRatio_; }
void setBackgroundRatio(double backgroundRatio) CV_OVERRIDE { backgroundRatio_ = (float) backgroundRatio; }
double getNoiseSigma() const CV_OVERRIDE { return noiseSigma_; }
void setNoiseSigma(double noiseSigma) CV_OVERRIDE { noiseSigma_ = (float) noiseSigma; }
private:
//! re-initiaization method
void initialize(Size frameSize, int frameType);
int history_;
int nmixtures_;
float backgroundRatio_;
float noiseSigma_;
float varThreshold_;
Size frameSize_;
int frameType_;
int nframes_;
GpuMat weight_;
GpuMat sortKey_;
GpuMat mean_;
GpuMat var_;
};
MOGImpl::MOGImpl(int history, int nmixtures, double backgroundRatio, double noiseSigma) :
frameSize_(0, 0), frameType_(0), nframes_(0)
{
history_ = history > 0 ? history : defaultHistory;
nmixtures_ = std::min(nmixtures > 0 ? nmixtures : defaultNMixtures, 8);
backgroundRatio_ = backgroundRatio > 0 ? (float) backgroundRatio : defaultBackgroundRatio;
noiseSigma_ = noiseSigma > 0 ? (float) noiseSigma : defaultNoiseSigma;
varThreshold_ = defaultVarThreshold;
}
void MOGImpl::apply(InputArray image, OutputArray fgmask, double learningRate)
{
apply(image, fgmask, learningRate, Stream::Null());
}
void MOGImpl::apply(InputArray _frame, OutputArray _fgmask, double learningRate, Stream& stream)
{
using namespace cv::cuda::device::mog;
GpuMat frame = _frame.getGpuMat();
CV_Assert( frame.depth() == CV_8U );
int ch = frame.channels();
int work_ch = ch;
if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.channels())
initialize(frame.size(), frame.type());
_fgmask.create(frameSize_, CV_8UC1);
GpuMat fgmask = _fgmask.getGpuMat();
++nframes_;
learningRate = learningRate >= 0 && nframes_ > 1 ? learningRate : 1.0 / std::min(nframes_, history_);
CV_Assert( learningRate >= 0 );
mog_gpu(frame, ch, fgmask, weight_, sortKey_, mean_, var_, nmixtures_,
varThreshold_, (float) learningRate, backgroundRatio_, noiseSigma_,
StreamAccessor::getStream(stream));
}
void MOGImpl::getBackgroundImage(OutputArray backgroundImage) const
{
getBackgroundImage(backgroundImage, Stream::Null());
}
void MOGImpl::getBackgroundImage(OutputArray _backgroundImage, Stream& stream) const
{
using namespace cv::cuda::device::mog;
_backgroundImage.create(frameSize_, frameType_);
GpuMat backgroundImage = _backgroundImage.getGpuMat();
getBackgroundImage_gpu(backgroundImage.channels(), weight_, mean_, backgroundImage, nmixtures_, backgroundRatio_, StreamAccessor::getStream(stream));
}
void MOGImpl::initialize(Size frameSize, int frameType)
{
CV_Assert( frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4 );
frameSize_ = frameSize;
frameType_ = frameType;
int ch = CV_MAT_CN(frameType);
int work_ch = ch;
// for each gaussian mixture of each pixel bg model we store
// the mixture sort key (w/sum_of_variances), the mixture weight (w),
// the mean (nchannels values) and
// the diagonal covariance matrix (another nchannels values)
weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
sortKey_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch));
var_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch));
weight_.setTo(cv::Scalar::all(0));
sortKey_.setTo(cv::Scalar::all(0));
mean_.setTo(cv::Scalar::all(0));
var_.setTo(cv::Scalar::all(0));
nframes_ = 0;
}
}
Ptr<cuda::BackgroundSubtractorMOG> cv::cuda::createBackgroundSubtractorMOG(int history, int nmixtures, double backgroundRatio, double noiseSigma)
{
return makePtr<MOGImpl>(history, nmixtures, backgroundRatio, noiseSigma);
}
#endif