1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "gcgraph.hpp"
#include <limits>
using namespace cv;
/*
This is implementation of image segmentation algorithm GrabCut described in
"GrabCut — Interactive Foreground Extraction using Iterated Graph Cuts".
Carsten Rother, Vladimir Kolmogorov, Andrew Blake.
*/
/*
GMM - Gaussian Mixture Model
*/
class GMM
{
public:
static const int componentsCount = 5;
GMM( Mat& _model );
double operator()( const Vec3d color ) const;
double operator()( int ci, const Vec3d color ) const;
int whichComponent( const Vec3d color ) const;
void initLearning();
void addSample( int ci, const Vec3d color );
void endLearning();
private:
void calcInverseCovAndDeterm( int ci );
Mat model;
double* coefs;
double* mean;
double* cov;
double inverseCovs[componentsCount][3][3];
double covDeterms[componentsCount];
double sums[componentsCount][3];
double prods[componentsCount][3][3];
int sampleCounts[componentsCount];
int totalSampleCount;
};
GMM::GMM( Mat& _model )
{
const int modelSize = 3/*mean*/ + 9/*covariance*/ + 1/*component weight*/;
if( _model.empty() )
{
_model.create( 1, modelSize*componentsCount, CV_64FC1 );
_model.setTo(Scalar(0));
}
else if( (_model.type() != CV_64FC1) || (_model.rows != 1) || (_model.cols != modelSize*componentsCount) )
CV_Error( CV_StsBadArg, "_model must have CV_64FC1 type, rows == 1 and cols == 13*componentsCount" );
model = _model;
coefs = model.ptr<double>(0);
mean = coefs + componentsCount;
cov = mean + 3*componentsCount;
for( int ci = 0; ci < componentsCount; ci++ )
if( coefs[ci] > 0 )
calcInverseCovAndDeterm( ci );
}
double GMM::operator()( const Vec3d color ) const
{
double res = 0;
for( int ci = 0; ci < componentsCount; ci++ )
res += coefs[ci] * (*this)(ci, color );
return res;
}
double GMM::operator()( int ci, const Vec3d color ) const
{
double res = 0;
if( coefs[ci] > 0 )
{
CV_Assert( covDeterms[ci] > std::numeric_limits<double>::epsilon() );
Vec3d diff = color;
double* m = mean + 3*ci;
diff[0] -= m[0]; diff[1] -= m[1]; diff[2] -= m[2];
double mult = diff[0]*(diff[0]*inverseCovs[ci][0][0] + diff[1]*inverseCovs[ci][1][0] + diff[2]*inverseCovs[ci][2][0])
+ diff[1]*(diff[0]*inverseCovs[ci][0][1] + diff[1]*inverseCovs[ci][1][1] + diff[2]*inverseCovs[ci][2][1])
+ diff[2]*(diff[0]*inverseCovs[ci][0][2] + diff[1]*inverseCovs[ci][1][2] + diff[2]*inverseCovs[ci][2][2]);
res = 1.0f/sqrt(covDeterms[ci]) * exp(-0.5f*mult);
}
return res;
}
int GMM::whichComponent( const Vec3d color ) const
{
int k = 0;
double max = 0;
for( int ci = 0; ci < componentsCount; ci++ )
{
double p = (*this)( ci, color );
if( p > max )
{
k = ci;
max = p;
}
}
return k;
}
void GMM::initLearning()
{
for( int ci = 0; ci < componentsCount; ci++)
{
sums[ci][0] = sums[ci][1] = sums[ci][2] = 0;
prods[ci][0][0] = prods[ci][0][1] = prods[ci][0][2] = 0;
prods[ci][1][0] = prods[ci][1][1] = prods[ci][1][2] = 0;
prods[ci][2][0] = prods[ci][2][1] = prods[ci][2][2] = 0;
sampleCounts[ci] = 0;
}
totalSampleCount = 0;
}
void GMM::addSample( int ci, const Vec3d color )
{
sums[ci][0] += color[0]; sums[ci][1] += color[1]; sums[ci][2] += color[2];
prods[ci][0][0] += color[0]*color[0]; prods[ci][0][1] += color[0]*color[1]; prods[ci][0][2] += color[0]*color[2];
prods[ci][1][0] += color[1]*color[0]; prods[ci][1][1] += color[1]*color[1]; prods[ci][1][2] += color[1]*color[2];
prods[ci][2][0] += color[2]*color[0]; prods[ci][2][1] += color[2]*color[1]; prods[ci][2][2] += color[2]*color[2];
sampleCounts[ci]++;
totalSampleCount++;
}
void GMM::endLearning()
{
const double variance = 0.01;
for( int ci = 0; ci < componentsCount; ci++ )
{
int n = sampleCounts[ci];
if( n == 0 )
coefs[ci] = 0;
else
{
coefs[ci] = (double)n/totalSampleCount;
double* m = mean + 3*ci;
m[0] = sums[ci][0]/n; m[1] = sums[ci][1]/n; m[2] = sums[ci][2]/n;
double* c = cov + 9*ci;
c[0] = prods[ci][0][0]/n - m[0]*m[0]; c[1] = prods[ci][0][1]/n - m[0]*m[1]; c[2] = prods[ci][0][2]/n - m[0]*m[2];
c[3] = prods[ci][1][0]/n - m[1]*m[0]; c[4] = prods[ci][1][1]/n - m[1]*m[1]; c[5] = prods[ci][1][2]/n - m[1]*m[2];
c[6] = prods[ci][2][0]/n - m[2]*m[0]; c[7] = prods[ci][2][1]/n - m[2]*m[1]; c[8] = prods[ci][2][2]/n - m[2]*m[2];
double dtrm = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]);
if( dtrm <= std::numeric_limits<double>::epsilon() )
{
// Adds the white noise to avoid singular covariance matrix.
c[0] += variance;
c[4] += variance;
c[8] += variance;
}
calcInverseCovAndDeterm(ci);
}
}
}
void GMM::calcInverseCovAndDeterm( int ci )
{
if( coefs[ci] > 0 )
{
double *c = cov + 9*ci;
double dtrm =
covDeterms[ci] = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]);
CV_Assert( dtrm > std::numeric_limits<double>::epsilon() );
inverseCovs[ci][0][0] = (c[4]*c[8] - c[5]*c[7]) / dtrm;
inverseCovs[ci][1][0] = -(c[3]*c[8] - c[5]*c[6]) / dtrm;
inverseCovs[ci][2][0] = (c[3]*c[7] - c[4]*c[6]) / dtrm;
inverseCovs[ci][0][1] = -(c[1]*c[8] - c[2]*c[7]) / dtrm;
inverseCovs[ci][1][1] = (c[0]*c[8] - c[2]*c[6]) / dtrm;
inverseCovs[ci][2][1] = -(c[0]*c[7] - c[1]*c[6]) / dtrm;
inverseCovs[ci][0][2] = (c[1]*c[5] - c[2]*c[4]) / dtrm;
inverseCovs[ci][1][2] = -(c[0]*c[5] - c[2]*c[3]) / dtrm;
inverseCovs[ci][2][2] = (c[0]*c[4] - c[1]*c[3]) / dtrm;
}
}
/*
Calculate beta - parameter of GrabCut algorithm.
beta = 1/(2*avg(sqr(||color[i] - color[j]||)))
*/
static double calcBeta( const Mat& img )
{
double beta = 0;
for( int y = 0; y < img.rows; y++ )
{
for( int x = 0; x < img.cols; x++ )
{
Vec3d color = img.at<Vec3b>(y,x);
if( x>0 ) // left
{
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1);
beta += diff.dot(diff);
}
if( y>0 && x>0 ) // upleft
{
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1);
beta += diff.dot(diff);
}
if( y>0 ) // up
{
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x);
beta += diff.dot(diff);
}
if( y>0 && x<img.cols-1) // upright
{
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1);
beta += diff.dot(diff);
}
}
}
if( beta <= std::numeric_limits<double>::epsilon() )
beta = 0;
else
beta = 1.f / (2 * beta/(4*img.cols*img.rows - 3*img.cols - 3*img.rows + 2) );
return beta;
}
/*
Calculate weights of noterminal vertices of graph.
beta and gamma - parameters of GrabCut algorithm.
*/
static void calcNWeights( const Mat& img, Mat& leftW, Mat& upleftW, Mat& upW, Mat& uprightW, double beta, double gamma )
{
const double gammaDivSqrt2 = gamma / std::sqrt(2.0f);
leftW.create( img.rows, img.cols, CV_64FC1 );
upleftW.create( img.rows, img.cols, CV_64FC1 );
upW.create( img.rows, img.cols, CV_64FC1 );
uprightW.create( img.rows, img.cols, CV_64FC1 );
for( int y = 0; y < img.rows; y++ )
{
for( int x = 0; x < img.cols; x++ )
{
Vec3d color = img.at<Vec3b>(y,x);
if( x-1>=0 ) // left
{
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y,x-1);
leftW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff));
}
else
leftW.at<double>(y,x) = 0;
if( x-1>=0 && y-1>=0 ) // upleft
{
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x-1);
upleftW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
}
else
upleftW.at<double>(y,x) = 0;
if( y-1>=0 ) // up
{
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x);
upW.at<double>(y,x) = gamma * exp(-beta*diff.dot(diff));
}
else
upW.at<double>(y,x) = 0;
if( x+1<img.cols && y-1>=0 ) // upright
{
Vec3d diff = color - (Vec3d)img.at<Vec3b>(y-1,x+1);
uprightW.at<double>(y,x) = gammaDivSqrt2 * exp(-beta*diff.dot(diff));
}
else
uprightW.at<double>(y,x) = 0;
}
}
}
/*
Check size, type and element values of mask matrix.
*/
static void checkMask( const Mat& img, const Mat& mask )
{
if( mask.empty() )
CV_Error( CV_StsBadArg, "mask is empty" );
if( mask.type() != CV_8UC1 )
CV_Error( CV_StsBadArg, "mask must have CV_8UC1 type" );
if( mask.cols != img.cols || mask.rows != img.rows )
CV_Error( CV_StsBadArg, "mask must have as many rows and cols as img" );
for( int y = 0; y < mask.rows; y++ )
{
for( int x = 0; x < mask.cols; x++ )
{
uchar val = mask.at<uchar>(y,x);
if( val!=GC_BGD && val!=GC_FGD && val!=GC_PR_BGD && val!=GC_PR_FGD )
CV_Error( CV_StsBadArg, "mask element value must be equel"
"GC_BGD or GC_FGD or GC_PR_BGD or GC_PR_FGD" );
}
}
}
/*
Initialize mask using rectangular.
*/
static void initMaskWithRect( Mat& mask, Size imgSize, Rect rect )
{
mask.create( imgSize, CV_8UC1 );
mask.setTo( GC_BGD );
rect.x = std::max(0, rect.x);
rect.y = std::max(0, rect.y);
rect.width = std::min(rect.width, imgSize.width-rect.x);
rect.height = std::min(rect.height, imgSize.height-rect.y);
(mask(rect)).setTo( Scalar(GC_PR_FGD) );
}
/*
Initialize GMM background and foreground models using kmeans algorithm.
*/
static void initGMMs( const Mat& img, const Mat& mask, GMM& bgdGMM, GMM& fgdGMM )
{
const int kMeansItCount = 10;
const int kMeansType = KMEANS_PP_CENTERS;
Mat bgdLabels, fgdLabels;
std::vector<Vec3f> bgdSamples, fgdSamples;
Point p;
for( p.y = 0; p.y < img.rows; p.y++ )
{
for( p.x = 0; p.x < img.cols; p.x++ )
{
if( mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD )
bgdSamples.push_back( (Vec3f)img.at<Vec3b>(p) );
else // GC_FGD | GC_PR_FGD
fgdSamples.push_back( (Vec3f)img.at<Vec3b>(p) );
}
}
CV_Assert( !bgdSamples.empty() && !fgdSamples.empty() );
Mat _bgdSamples( (int)bgdSamples.size(), 3, CV_32FC1, &bgdSamples[0][0] );
kmeans( _bgdSamples, GMM::componentsCount, bgdLabels,
TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
Mat _fgdSamples( (int)fgdSamples.size(), 3, CV_32FC1, &fgdSamples[0][0] );
kmeans( _fgdSamples, GMM::componentsCount, fgdLabels,
TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
bgdGMM.initLearning();
for( int i = 0; i < (int)bgdSamples.size(); i++ )
bgdGMM.addSample( bgdLabels.at<int>(i,0), bgdSamples[i] );
bgdGMM.endLearning();
fgdGMM.initLearning();
for( int i = 0; i < (int)fgdSamples.size(); i++ )
fgdGMM.addSample( fgdLabels.at<int>(i,0), fgdSamples[i] );
fgdGMM.endLearning();
}
/*
Assign GMMs components for each pixel.
*/
static void assignGMMsComponents( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, Mat& compIdxs )
{
Point p;
for( p.y = 0; p.y < img.rows; p.y++ )
{
for( p.x = 0; p.x < img.cols; p.x++ )
{
Vec3d color = img.at<Vec3b>(p);
compIdxs.at<int>(p) = mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD ?
bgdGMM.whichComponent(color) : fgdGMM.whichComponent(color);
}
}
}
/*
Learn GMMs parameters.
*/
static void learnGMMs( const Mat& img, const Mat& mask, const Mat& compIdxs, GMM& bgdGMM, GMM& fgdGMM )
{
bgdGMM.initLearning();
fgdGMM.initLearning();
Point p;
for( int ci = 0; ci < GMM::componentsCount; ci++ )
{
for( p.y = 0; p.y < img.rows; p.y++ )
{
for( p.x = 0; p.x < img.cols; p.x++ )
{
if( compIdxs.at<int>(p) == ci )
{
if( mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD )
bgdGMM.addSample( ci, img.at<Vec3b>(p) );
else
fgdGMM.addSample( ci, img.at<Vec3b>(p) );
}
}
}
}
bgdGMM.endLearning();
fgdGMM.endLearning();
}
/*
Construct GCGraph
*/
static void constructGCGraph( const Mat& img, const Mat& mask, const GMM& bgdGMM, const GMM& fgdGMM, double lambda,
const Mat& leftW, const Mat& upleftW, const Mat& upW, const Mat& uprightW,
GCGraph<double>& graph )
{
int vtxCount = img.cols*img.rows,
edgeCount = 2*(4*img.cols*img.rows - 3*(img.cols + img.rows) + 2);
graph.create(vtxCount, edgeCount);
Point p;
for( p.y = 0; p.y < img.rows; p.y++ )
{
for( p.x = 0; p.x < img.cols; p.x++)
{
// add node
int vtxIdx = graph.addVtx();
Vec3b color = img.at<Vec3b>(p);
// set t-weights
double fromSource, toSink;
if( mask.at<uchar>(p) == GC_PR_BGD || mask.at<uchar>(p) == GC_PR_FGD )
{
fromSource = -log( bgdGMM(color) );
toSink = -log( fgdGMM(color) );
}
else if( mask.at<uchar>(p) == GC_BGD )
{
fromSource = 0;
toSink = lambda;
}
else // GC_FGD
{
fromSource = lambda;
toSink = 0;
}
graph.addTermWeights( vtxIdx, fromSource, toSink );
// set n-weights
if( p.x>0 )
{
double w = leftW.at<double>(p);
graph.addEdges( vtxIdx, vtxIdx-1, w, w );
}
if( p.x>0 && p.y>0 )
{
double w = upleftW.at<double>(p);
graph.addEdges( vtxIdx, vtxIdx-img.cols-1, w, w );
}
if( p.y>0 )
{
double w = upW.at<double>(p);
graph.addEdges( vtxIdx, vtxIdx-img.cols, w, w );
}
if( p.x<img.cols-1 && p.y>0 )
{
double w = uprightW.at<double>(p);
graph.addEdges( vtxIdx, vtxIdx-img.cols+1, w, w );
}
}
}
}
/*
Estimate segmentation using MaxFlow algorithm
*/
static void estimateSegmentation( GCGraph<double>& graph, Mat& mask )
{
graph.maxFlow();
Point p;
for( p.y = 0; p.y < mask.rows; p.y++ )
{
for( p.x = 0; p.x < mask.cols; p.x++ )
{
if( mask.at<uchar>(p) == GC_PR_BGD || mask.at<uchar>(p) == GC_PR_FGD )
{
if( graph.inSourceSegment( p.y*mask.cols+p.x /*vertex index*/ ) )
mask.at<uchar>(p) = GC_PR_FGD;
else
mask.at<uchar>(p) = GC_PR_BGD;
}
}
}
}
void cv::grabCut( InputArray _img, InputOutputArray _mask, Rect rect,
InputOutputArray _bgdModel, InputOutputArray _fgdModel,
int iterCount, int mode )
{
Mat img = _img.getMat();
Mat& mask = _mask.getMatRef();
Mat& bgdModel = _bgdModel.getMatRef();
Mat& fgdModel = _fgdModel.getMatRef();
if( img.empty() )
CV_Error( CV_StsBadArg, "image is empty" );
if( img.type() != CV_8UC3 )
CV_Error( CV_StsBadArg, "image mush have CV_8UC3 type" );
GMM bgdGMM( bgdModel ), fgdGMM( fgdModel );
Mat compIdxs( img.size(), CV_32SC1 );
if( mode == GC_INIT_WITH_RECT || mode == GC_INIT_WITH_MASK )
{
if( mode == GC_INIT_WITH_RECT )
initMaskWithRect( mask, img.size(), rect );
else // flag == GC_INIT_WITH_MASK
checkMask( img, mask );
initGMMs( img, mask, bgdGMM, fgdGMM );
}
if( iterCount <= 0)
return;
if( mode == GC_EVAL )
checkMask( img, mask );
const double gamma = 50;
const double lambda = 9*gamma;
const double beta = calcBeta( img );
Mat leftW, upleftW, upW, uprightW;
calcNWeights( img, leftW, upleftW, upW, uprightW, beta, gamma );
for( int i = 0; i < iterCount; i++ )
{
GCGraph<double> graph;
assignGMMsComponents( img, mask, bgdGMM, fgdGMM, compIdxs );
learnGMMs( img, mask, compIdxs, bgdGMM, fgdGMM );
constructGCGraph(img, mask, bgdGMM, fgdGMM, lambda, leftW, upleftW, upW, uprightW, graph );
estimateSegmentation( graph, mask );
}
}