1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDAIMGPROC_HPP
#define OPENCV_CUDAIMGPROC_HPP
#ifndef __cplusplus
# error cudaimgproc.hpp header must be compiled as C++
#endif
#include "opencv2/core/cuda.hpp"
#include "opencv2/imgproc.hpp"
/**
@addtogroup cuda
@{
@defgroup cudaimgproc Image Processing
@{
@defgroup cudaimgproc_color Color space processing
@defgroup cudaimgproc_hist Histogram Calculation
@defgroup cudaimgproc_hough Hough Transform
@defgroup cudaimgproc_feature Feature Detection
@}
@}
*/
namespace cv { namespace cuda {
//! @addtogroup cudaimgproc
//! @{
/////////////////////////// Color Processing ///////////////////////////
//! @addtogroup cudaimgproc_color
//! @{
/** @brief Converts an image from one color space to another.
@param src Source image with CV_8U , CV_16U , or CV_32F depth and 1, 3, or 4 channels.
@param dst Destination image.
@param code Color space conversion code. For details, see cvtColor .
@param dcn Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .
@param stream Stream for the asynchronous version.
3-channel color spaces (like HSV, XYZ, and so on) can be stored in a 4-channel image for better
performance.
@sa cvtColor
*/
CV_EXPORTS void cvtColor(InputArray src, OutputArray dst, int code, int dcn = 0, Stream& stream = Stream::Null());
enum DemosaicTypes
{
//! Bayer Demosaicing (Malvar, He, and Cutler)
COLOR_BayerBG2BGR_MHT = 256,
COLOR_BayerGB2BGR_MHT = 257,
COLOR_BayerRG2BGR_MHT = 258,
COLOR_BayerGR2BGR_MHT = 259,
COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT,
COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT,
COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT,
COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT,
COLOR_BayerBG2GRAY_MHT = 260,
COLOR_BayerGB2GRAY_MHT = 261,
COLOR_BayerRG2GRAY_MHT = 262,
COLOR_BayerGR2GRAY_MHT = 263
};
/** @brief Converts an image from Bayer pattern to RGB or grayscale.
@param src Source image (8-bit or 16-bit single channel).
@param dst Destination image.
@param code Color space conversion code (see the description below).
@param dcn Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .
@param stream Stream for the asynchronous version.
The function can do the following transformations:
- Demosaicing using bilinear interpolation
> - COLOR_BayerBG2GRAY , COLOR_BayerGB2GRAY , COLOR_BayerRG2GRAY , COLOR_BayerGR2GRAY
> - COLOR_BayerBG2BGR , COLOR_BayerGB2BGR , COLOR_BayerRG2BGR , COLOR_BayerGR2BGR
- Demosaicing using Malvar-He-Cutler algorithm (@cite MHT2011)
> - COLOR_BayerBG2GRAY_MHT , COLOR_BayerGB2GRAY_MHT , COLOR_BayerRG2GRAY_MHT ,
> COLOR_BayerGR2GRAY_MHT
> - COLOR_BayerBG2BGR_MHT , COLOR_BayerGB2BGR_MHT , COLOR_BayerRG2BGR_MHT ,
> COLOR_BayerGR2BGR_MHT
@sa cvtColor
*/
CV_EXPORTS void demosaicing(InputArray src, OutputArray dst, int code, int dcn = -1, Stream& stream = Stream::Null());
/** @brief Exchanges the color channels of an image in-place.
@param image Source image. Supports only CV_8UC4 type.
@param dstOrder Integer array describing how channel values are permutated. The n-th entry of the
array contains the number of the channel that is stored in the n-th channel of the output image.
E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR channel order.
@param stream Stream for the asynchronous version.
The methods support arbitrary permutations of the original channels, including replication.
*/
CV_EXPORTS void swapChannels(InputOutputArray image, const int dstOrder[4], Stream& stream = Stream::Null());
/** @brief Routines for correcting image color gamma.
@param src Source image (3- or 4-channel 8 bit).
@param dst Destination image.
@param forward true for forward gamma correction or false for inverse gamma correction.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void gammaCorrection(InputArray src, OutputArray dst, bool forward = true, Stream& stream = Stream::Null());
enum AlphaCompTypes { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL,
ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL};
/** @brief Composites two images using alpha opacity values contained in each image.
@param img1 First image. Supports CV_8UC4 , CV_16UC4 , CV_32SC4 and CV_32FC4 types.
@param img2 Second image. Must have the same size and the same type as img1 .
@param dst Destination image.
@param alpha_op Flag specifying the alpha-blending operation:
- **ALPHA_OVER**
- **ALPHA_IN**
- **ALPHA_OUT**
- **ALPHA_ATOP**
- **ALPHA_XOR**
- **ALPHA_PLUS**
- **ALPHA_OVER_PREMUL**
- **ALPHA_IN_PREMUL**
- **ALPHA_OUT_PREMUL**
- **ALPHA_ATOP_PREMUL**
- **ALPHA_XOR_PREMUL**
- **ALPHA_PLUS_PREMUL**
- **ALPHA_PREMUL**
@param stream Stream for the asynchronous version.
@note
- An example demonstrating the use of alphaComp can be found at
opencv_source_code/samples/gpu/alpha_comp.cpp
*/
CV_EXPORTS void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int alpha_op, Stream& stream = Stream::Null());
//! @} cudaimgproc_color
////////////////////////////// Histogram ///////////////////////////////
//! @addtogroup cudaimgproc_hist
//! @{
/** @brief Calculates histogram for one channel 8-bit image.
@param src Source image with CV_8UC1 type.
@param hist Destination histogram with one row, 256 columns, and the CV_32SC1 type.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void calcHist(InputArray src, OutputArray hist, Stream& stream = Stream::Null());
/** @brief Calculates histogram for one channel 8-bit image confined in given mask.
@param src Source image with CV_8UC1 type.
@param hist Destination histogram with one row, 256 columns, and the CV_32SC1 type.
@param mask A mask image same size as src and of type CV_8UC1.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void calcHist(InputArray src, InputArray mask, OutputArray hist, Stream& stream = Stream::Null());
/** @brief Equalizes the histogram of a grayscale image.
@param src Source image with CV_8UC1 type.
@param dst Destination image.
@param stream Stream for the asynchronous version.
@sa equalizeHist
*/
CV_EXPORTS void equalizeHist(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
/** @brief Base class for Contrast Limited Adaptive Histogram Equalization. :
*/
class CV_EXPORTS CLAHE : public cv::CLAHE
{
public:
using cv::CLAHE::apply;
/** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
@param src Source image with CV_8UC1 type.
@param dst Destination image.
@param stream Stream for the asynchronous version.
*/
virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0;
};
/** @brief Creates implementation for cuda::CLAHE .
@param clipLimit Threshold for contrast limiting.
@param tileGridSize Size of grid for histogram equalization. Input image will be divided into
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
*/
CV_EXPORTS Ptr<cuda::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
/** @brief Computes levels with even distribution.
@param levels Destination array. levels has 1 row, nLevels columns, and the CV_32SC1 type.
@param nLevels Number of computed levels. nLevels must be at least 2.
@param lowerLevel Lower boundary value of the lowest level.
@param upperLevel Upper boundary value of the greatest level.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void evenLevels(OutputArray levels, int nLevels, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
/** @brief Calculates a histogram with evenly distributed bins.
@param src Source image. CV_8U, CV_16U, or CV_16S depth and 1 or 4 channels are supported. For
a four-channel image, all channels are processed separately.
@param hist Destination histogram with one row, histSize columns, and the CV_32S type.
@param histSize Size of the histogram.
@param lowerLevel Lower boundary of lowest-level bin.
@param upperLevel Upper boundary of highest-level bin.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void histEven(InputArray src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
/** @overload */
CV_EXPORTS void histEven(InputArray src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
/** @brief Calculates a histogram with bins determined by the levels array.
@param src Source image. CV_8U , CV_16U , or CV_16S depth and 1 or 4 channels are supported.
For a four-channel image, all channels are processed separately.
@param hist Destination histogram with one row, (levels.cols-1) columns, and the CV_32SC1 type.
@param levels Number of levels in the histogram.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void histRange(InputArray src, OutputArray hist, InputArray levels, Stream& stream = Stream::Null());
/** @overload */
CV_EXPORTS void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null());
//! @} cudaimgproc_hist
//////////////////////////////// Canny ////////////////////////////////
/** @brief Base class for Canny Edge Detector. :
*/
class CV_EXPORTS CannyEdgeDetector : public Algorithm
{
public:
/** @brief Finds edges in an image using the @cite Canny86 algorithm.
@param image Single-channel 8-bit input image.
@param edges Output edge map. It has the same size and type as image.
@param stream Stream for the asynchronous version.
*/
virtual void detect(InputArray image, OutputArray edges, Stream& stream = Stream::Null()) = 0;
/** @overload
@param dx First derivative of image in the vertical direction. Support only CV_32S type.
@param dy First derivative of image in the horizontal direction. Support only CV_32S type.
@param edges Output edge map. It has the same size and type as image.
@param stream Stream for the asynchronous version.
*/
virtual void detect(InputArray dx, InputArray dy, OutputArray edges, Stream& stream = Stream::Null()) = 0;
virtual void setLowThreshold(double low_thresh) = 0;
virtual double getLowThreshold() const = 0;
virtual void setHighThreshold(double high_thresh) = 0;
virtual double getHighThreshold() const = 0;
virtual void setAppertureSize(int apperture_size) = 0;
virtual int getAppertureSize() const = 0;
virtual void setL2Gradient(bool L2gradient) = 0;
virtual bool getL2Gradient() const = 0;
};
/** @brief Creates implementation for cuda::CannyEdgeDetector .
@param low_thresh First threshold for the hysteresis procedure.
@param high_thresh Second threshold for the hysteresis procedure.
@param apperture_size Aperture size for the Sobel operator.
@param L2gradient Flag indicating whether a more accurate \f$L_2\f$ norm
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to compute the image gradient magnitude (
L2gradient=true ), or a faster default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( L2gradient=false
).
*/
CV_EXPORTS Ptr<CannyEdgeDetector> createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
/////////////////////////// Hough Transform ////////////////////////////
//////////////////////////////////////
// HoughLines
//! @addtogroup cudaimgproc_hough
//! @{
/** @brief Base class for lines detector algorithm. :
*/
class CV_EXPORTS HoughLinesDetector : public Algorithm
{
public:
/** @brief Finds lines in a binary image using the classical Hough transform.
@param src 8-bit, single-channel binary source image.
@param lines Output vector of lines. Each line is represented by a two-element vector
\f$(\rho, \theta)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
the image). \f$\theta\f$ is the line rotation angle in radians (
\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ).
@param stream Stream for the asynchronous version.
@sa HoughLines
*/
virtual void detect(InputArray src, OutputArray lines, Stream& stream = Stream::Null()) = 0;
/** @brief Downloads results from cuda::HoughLinesDetector::detect to host memory.
@param d_lines Result of cuda::HoughLinesDetector::detect .
@param h_lines Output host array.
@param h_votes Optional output array for line's votes.
@param stream Stream for the asynchronous version.
*/
virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray(), Stream& stream = Stream::Null()) = 0;
virtual void setRho(float rho) = 0;
virtual float getRho() const = 0;
virtual void setTheta(float theta) = 0;
virtual float getTheta() const = 0;
virtual void setThreshold(int threshold) = 0;
virtual int getThreshold() const = 0;
virtual void setDoSort(bool doSort) = 0;
virtual bool getDoSort() const = 0;
virtual void setMaxLines(int maxLines) = 0;
virtual int getMaxLines() const = 0;
};
/** @brief Creates implementation for cuda::HoughLinesDetector .
@param rho Distance resolution of the accumulator in pixels.
@param theta Angle resolution of the accumulator in radians.
@param threshold Accumulator threshold parameter. Only those lines are returned that get enough
votes ( \f$>\texttt{threshold}\f$ ).
@param doSort Performs lines sort by votes.
@param maxLines Maximum number of output lines.
*/
CV_EXPORTS Ptr<HoughLinesDetector> createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
//////////////////////////////////////
// HoughLinesP
/** @brief Base class for line segments detector algorithm. :
*/
class CV_EXPORTS HoughSegmentDetector : public Algorithm
{
public:
/** @brief Finds line segments in a binary image using the probabilistic Hough transform.
@param src 8-bit, single-channel binary source image.
@param lines Output vector of lines. Each line is represented by a 4-element vector
\f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
line segment.
@param stream Stream for the asynchronous version.
@sa HoughLinesP
*/
virtual void detect(InputArray src, OutputArray lines, Stream& stream = Stream::Null()) = 0;
virtual void setRho(float rho) = 0;
virtual float getRho() const = 0;
virtual void setTheta(float theta) = 0;
virtual float getTheta() const = 0;
virtual void setMinLineLength(int minLineLength) = 0;
virtual int getMinLineLength() const = 0;
virtual void setMaxLineGap(int maxLineGap) = 0;
virtual int getMaxLineGap() const = 0;
virtual void setMaxLines(int maxLines) = 0;
virtual int getMaxLines() const = 0;
};
/** @brief Creates implementation for cuda::HoughSegmentDetector .
@param rho Distance resolution of the accumulator in pixels.
@param theta Angle resolution of the accumulator in radians.
@param minLineLength Minimum line length. Line segments shorter than that are rejected.
@param maxLineGap Maximum allowed gap between points on the same line to link them.
@param maxLines Maximum number of output lines.
*/
CV_EXPORTS Ptr<HoughSegmentDetector> createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
//////////////////////////////////////
// HoughCircles
/** @brief Base class for circles detector algorithm. :
*/
class CV_EXPORTS HoughCirclesDetector : public Algorithm
{
public:
/** @brief Finds circles in a grayscale image using the Hough transform.
@param src 8-bit, single-channel grayscale input image.
@param circles Output vector of found circles. Each vector is encoded as a 3-element
floating-point vector \f$(x, y, radius)\f$ .
@param stream Stream for the asynchronous version.
@sa HoughCircles
*/
virtual void detect(InputArray src, OutputArray circles, Stream& stream = Stream::Null()) = 0;
virtual void setDp(float dp) = 0;
virtual float getDp() const = 0;
virtual void setMinDist(float minDist) = 0;
virtual float getMinDist() const = 0;
virtual void setCannyThreshold(int cannyThreshold) = 0;
virtual int getCannyThreshold() const = 0;
virtual void setVotesThreshold(int votesThreshold) = 0;
virtual int getVotesThreshold() const = 0;
virtual void setMinRadius(int minRadius) = 0;
virtual int getMinRadius() const = 0;
virtual void setMaxRadius(int maxRadius) = 0;
virtual int getMaxRadius() const = 0;
virtual void setMaxCircles(int maxCircles) = 0;
virtual int getMaxCircles() const = 0;
};
/** @brief Creates implementation for cuda::HoughCirclesDetector .
@param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
half as big width and height.
@param minDist Minimum distance between the centers of the detected circles. If the parameter is
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
too large, some circles may be missed.
@param cannyThreshold The higher threshold of the two passed to Canny edge detector (the lower one
is twice smaller).
@param votesThreshold The accumulator threshold for the circle centers at the detection stage. The
smaller it is, the more false circles may be detected.
@param minRadius Minimum circle radius.
@param maxRadius Maximum circle radius.
@param maxCircles Maximum number of output circles.
*/
CV_EXPORTS Ptr<HoughCirclesDetector> createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
//////////////////////////////////////
// GeneralizedHough
/** @brief Creates implementation for generalized hough transform from @cite Ballard1981 .
*/
CV_EXPORTS Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
/** @brief Creates implementation for generalized hough transform from @cite Guil1999 .
*/
CV_EXPORTS Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
//! @} cudaimgproc_hough
////////////////////////// Corners Detection ///////////////////////////
//! @addtogroup cudaimgproc_feature
//! @{
/** @brief Base class for Cornerness Criteria computation. :
*/
class CV_EXPORTS CornernessCriteria : public Algorithm
{
public:
/** @brief Computes the cornerness criteria at each image pixel.
@param src Source image.
@param dst Destination image containing cornerness values. It will have the same size as src and
CV_32FC1 type.
@param stream Stream for the asynchronous version.
*/
virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
};
/** @brief Creates implementation for Harris cornerness criteria.
@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
@param blockSize Neighborhood size.
@param ksize Aperture parameter for the Sobel operator.
@param k Harris detector free parameter.
@param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.
@sa cornerHarris
*/
CV_EXPORTS Ptr<CornernessCriteria> createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
/** @brief Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the
cornerness criteria).
@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
@param blockSize Neighborhood size.
@param ksize Aperture parameter for the Sobel operator.
@param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.
@sa cornerMinEigenVal
*/
CV_EXPORTS Ptr<CornernessCriteria> createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101);
////////////////////////// Corners Detection ///////////////////////////
/** @brief Base class for Corners Detector. :
*/
class CV_EXPORTS CornersDetector : public Algorithm
{
public:
/** @brief Determines strong corners on an image.
@param image Input 8-bit or floating-point 32-bit, single-channel image.
@param corners Output vector of detected corners (1-row matrix with CV_32FC2 type with corners
positions).
@param mask Optional region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
@param stream Stream for the asynchronous version.
*/
virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray(), Stream& stream = Stream::Null()) = 0;
};
/** @brief Creates implementation for cuda::CornersDetector .
@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned.
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.
@param minDistance Minimum possible Euclidean distance between the returned corners.
@param blockSize Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris)
or cornerMinEigenVal.
@param harrisK Free parameter of the Harris detector.
*/
CV_EXPORTS Ptr<CornersDetector> createGoodFeaturesToTrackDetector(int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);
//! @} cudaimgproc_feature
///////////////////////////// Mean Shift //////////////////////////////
/** @brief Performs mean-shift filtering for each point of the source image.
@param src Source image. Only CV_8UC4 images are supported for now.
@param dst Destination image containing the color of mapped points. It has the same size and type
as src .
@param sp Spatial window radius.
@param sr Color window radius.
@param criteria Termination criteria. See TermCriteria.
@param stream Stream for the asynchronous version.
It maps each point of the source image into another point. As a result, you have a new color and new
position of each point.
*/
CV_EXPORTS void meanShiftFiltering(InputArray src, OutputArray dst, int sp, int sr,
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
Stream& stream = Stream::Null());
/** @brief Performs a mean-shift procedure and stores information about processed points (their colors and
positions) in two images.
@param src Source image. Only CV_8UC4 images are supported for now.
@param dstr Destination image containing the color of mapped points. The size and type is the same
as src .
@param dstsp Destination image containing the position of mapped points. The size is the same as
src size. The type is CV_16SC2 .
@param sp Spatial window radius.
@param sr Color window radius.
@param criteria Termination criteria. See TermCriteria.
@param stream Stream for the asynchronous version.
@sa cuda::meanShiftFiltering
*/
CV_EXPORTS void meanShiftProc(InputArray src, OutputArray dstr, OutputArray dstsp, int sp, int sr,
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
Stream& stream = Stream::Null());
/** @brief Performs a mean-shift segmentation of the source image and eliminates small segments.
@param src Source image. Only CV_8UC4 images are supported for now.
@param dst Segmented image with the same size and type as src (host memory).
@param sp Spatial window radius.
@param sr Color window radius.
@param minsize Minimum segment size. Smaller segments are merged.
@param criteria Termination criteria. See TermCriteria.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void meanShiftSegmentation(InputArray src, OutputArray dst, int sp, int sr, int minsize,
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
Stream& stream = Stream::Null());
/////////////////////////// Match Template ////////////////////////////
/** @brief Base class for Template Matching. :
*/
class CV_EXPORTS TemplateMatching : public Algorithm
{
public:
/** @brief Computes a proximity map for a raster template and an image where the template is searched for.
@param image Source image.
@param templ Template image with the size and type the same as image .
@param result Map containing comparison results ( CV_32FC1 ). If image is *W x H* and templ is *w
x h*, then result must be *W-w+1 x H-h+1*.
@param stream Stream for the asynchronous version.
*/
virtual void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null()) = 0;
};
/** @brief Creates implementation for cuda::TemplateMatching .
@param srcType Input source type. CV_32F and CV_8U depth images (1..4 channels) are supported
for now.
@param method Specifies the way to compare the template with the image.
@param user_block_size You can use field user_block_size to set specific block size. If you
leave its default value Size(0,0) then automatic estimation of block size will be used (which is
optimized for speed). By varying user_block_size you can reduce memory requirements at the cost
of speed.
The following methods are supported for the CV_8U depth images for now:
- CV_TM_SQDIFF
- CV_TM_SQDIFF_NORMED
- CV_TM_CCORR
- CV_TM_CCORR_NORMED
- CV_TM_CCOEFF
- CV_TM_CCOEFF_NORMED
The following methods are supported for the CV_32F images for now:
- CV_TM_SQDIFF
- CV_TM_CCORR
@sa matchTemplate
*/
CV_EXPORTS Ptr<TemplateMatching> createTemplateMatching(int srcType, int method, Size user_block_size = Size());
////////////////////////// Bilateral Filter ///////////////////////////
/** @brief Performs bilateral filtering of passed image
@param src Source image. Supports only (channels != 2 && depth() != CV_8S && depth() != CV_32S
&& depth() != CV_64F).
@param dst Destination imagwe.
@param kernel_size Kernel window size.
@param sigma_color Filter sigma in the color space.
@param sigma_spatial Filter sigma in the coordinate space.
@param borderMode Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.
@param stream Stream for the asynchronous version.
@sa bilateralFilter
*/
CV_EXPORTS void bilateralFilter(InputArray src, OutputArray dst, int kernel_size, float sigma_color, float sigma_spatial,
int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());
///////////////////////////// Blending ////////////////////////////////
/** @brief Performs linear blending of two images.
@param img1 First image. Supports only CV_8U and CV_32F depth.
@param img2 Second image. Must have the same size and the same type as img1 .
@param weights1 Weights for first image. Must have tha same size as img1 . Supports only CV_32F
type.
@param weights2 Weights for second image. Must have tha same size as img2 . Supports only CV_32F
type.
@param result Destination image.
@param stream Stream for the asynchronous version.
*/
CV_EXPORTS void blendLinear(InputArray img1, InputArray img2, InputArray weights1, InputArray weights2,
OutputArray result, Stream& stream = Stream::Null());
//! @}
}} // namespace cv { namespace cuda {
#endif /* OPENCV_CUDAIMGPROC_HPP */