1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
Ptr<cuda::HoughSegmentDetector> cv::cuda::createHoughSegmentDetector(float, float, int, int, int) { throw_no_cuda(); return Ptr<HoughSegmentDetector>(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace cuda { namespace device
{
namespace hough
{
int buildPointList_gpu(PtrStepSzb src, unsigned int* list);
}
namespace hough_lines
{
void linesAccum_gpu(const unsigned int* list, int count, PtrStepSzi accum, float rho, float theta, size_t sharedMemPerBlock, bool has20);
}
namespace hough_segments
{
int houghLinesProbabilistic_gpu(PtrStepSzb mask, PtrStepSzi accum, int4* out, int maxSize, float rho, float theta, int lineGap, int lineLength);
}
}}}
namespace
{
class HoughSegmentDetectorImpl : public HoughSegmentDetector
{
public:
HoughSegmentDetectorImpl(float rho, float theta, int minLineLength, int maxLineGap, int maxLines) :
rho_(rho), theta_(theta), minLineLength_(minLineLength), maxLineGap_(maxLineGap), maxLines_(maxLines)
{
}
void detect(InputArray src, OutputArray lines, Stream& stream);
void setRho(float rho) { rho_ = rho; }
float getRho() const { return rho_; }
void setTheta(float theta) { theta_ = theta; }
float getTheta() const { return theta_; }
void setMinLineLength(int minLineLength) { minLineLength_ = minLineLength; }
int getMinLineLength() const { return minLineLength_; }
void setMaxLineGap(int maxLineGap) { maxLineGap_ = maxLineGap; }
int getMaxLineGap() const { return maxLineGap_; }
void setMaxLines(int maxLines) { maxLines_ = maxLines; }
int getMaxLines() const { return maxLines_; }
void write(FileStorage& fs) const
{
writeFormat(fs);
fs << "name" << "PHoughLinesDetector_CUDA"
<< "rho" << rho_
<< "theta" << theta_
<< "minLineLength" << minLineLength_
<< "maxLineGap" << maxLineGap_
<< "maxLines" << maxLines_;
}
void read(const FileNode& fn)
{
CV_Assert( String(fn["name"]) == "PHoughLinesDetector_CUDA" );
rho_ = (float)fn["rho"];
theta_ = (float)fn["theta"];
minLineLength_ = (int)fn["minLineLength"];
maxLineGap_ = (int)fn["maxLineGap"];
maxLines_ = (int)fn["maxLines"];
}
private:
float rho_;
float theta_;
int minLineLength_;
int maxLineGap_;
int maxLines_;
GpuMat accum_;
GpuMat list_;
GpuMat result_;
};
void HoughSegmentDetectorImpl::detect(InputArray _src, OutputArray lines, Stream& stream)
{
// TODO : implement async version
(void) stream;
using namespace cv::cuda::device::hough;
using namespace cv::cuda::device::hough_lines;
using namespace cv::cuda::device::hough_segments;
GpuMat src = _src.getGpuMat();
CV_Assert( src.type() == CV_8UC1 );
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_);
unsigned int* srcPoints = list_.ptr<unsigned int>();
const int pointsCount = buildPointList_gpu(src, srcPoints);
if (pointsCount == 0)
{
lines.release();
return;
}
const int numangle = cvRound(CV_PI / theta_);
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_);
CV_Assert( numangle > 0 && numrho > 0 );
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_);
accum_.setTo(Scalar::all(0));
DeviceInfo devInfo;
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
ensureSizeIsEnough(1, maxLines_, CV_32SC4, result_);
int linesCount = houghLinesProbabilistic_gpu(src, accum_, result_.ptr<int4>(), maxLines_, rho_, theta_, maxLineGap_, minLineLength_);
if (linesCount == 0)
{
lines.release();
return;
}
result_.cols = linesCount;
result_.copyTo(lines);
}
}
Ptr<HoughSegmentDetector> cv::cuda::createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines)
{
return makePtr<HoughSegmentDetectorImpl>(rho, theta, minLineLength, maxLineGap, maxLines);
}
#endif /* !defined (HAVE_CUDA) */