1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#include "perf_precomp.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/flann.hpp"
#include "opencv2/opencv_modules.hpp"
using namespace std;
using namespace cv;
using namespace perf;
using std::tr1::make_tuple;
using std::tr1::get;
#define SURF_MATCH_CONFIDENCE 0.65f
#define ORB_MATCH_CONFIDENCE 0.3f
#define WORK_MEGAPIX 0.6
typedef TestBaseWithParam<string> stitch;
typedef TestBaseWithParam<string> match;
typedef std::tr1::tuple<string, int> matchVector_t;
typedef TestBaseWithParam<matchVector_t> matchVector;
#ifdef HAVE_OPENCV_NONFREE_TODO_FIND_WHY_SURF_IS_NOT_ABLE_TO_STITCH_PANOS
#define TEST_DETECTORS testing::Values("surf", "orb")
#else
#define TEST_DETECTORS testing::Values<string>("orb")
#endif
PERF_TEST_P(stitch, a123, TEST_DETECTORS)
{
Mat pano;
vector<Mat> imgs;
imgs.push_back( imread( getDataPath("stitching/a1.png") ) );
imgs.push_back( imread( getDataPath("stitching/a2.png") ) );
imgs.push_back( imread( getDataPath("stitching/a3.png") ) );
Ptr<detail::FeaturesFinder> featuresFinder = GetParam() == "orb"
? Ptr<detail::FeaturesFinder>(new detail::OrbFeaturesFinder())
: Ptr<detail::FeaturesFinder>(new detail::SurfFeaturesFinder());
Ptr<detail::FeaturesMatcher> featuresMatcher = GetParam() == "orb"
? makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE)
: makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
declare.time(30 * 20).iterations(20);
while(next())
{
Stitcher stitcher = Stitcher::createDefault();
stitcher.setFeaturesFinder(featuresFinder);
stitcher.setFeaturesMatcher(featuresMatcher);
stitcher.setWarper(makePtr<SphericalWarper>());
stitcher.setRegistrationResol(WORK_MEGAPIX);
startTimer();
stitcher.stitch(imgs, pano);
stopTimer();
}
Mat pano_small;
if (!pano.empty())
resize(pano, pano_small, Size(320, 240), 0, 0, INTER_AREA);
SANITY_CHECK(pano_small, 5);
}
PERF_TEST_P(stitch, b12, TEST_DETECTORS)
{
Mat pano;
vector<Mat> imgs;
imgs.push_back( imread( getDataPath("stitching/b1.png") ) );
imgs.push_back( imread( getDataPath("stitching/b2.png") ) );
Ptr<detail::FeaturesFinder> featuresFinder = GetParam() == "orb"
? Ptr<detail::FeaturesFinder>(new detail::OrbFeaturesFinder())
: Ptr<detail::FeaturesFinder>(new detail::SurfFeaturesFinder());
Ptr<detail::FeaturesMatcher> featuresMatcher = GetParam() == "orb"
? makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE)
: makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
declare.time(30 * 20).iterations(20);
while(next())
{
Stitcher stitcher = Stitcher::createDefault();
stitcher.setFeaturesFinder(featuresFinder);
stitcher.setFeaturesMatcher(featuresMatcher);
stitcher.setWarper(makePtr<SphericalWarper>());
stitcher.setRegistrationResol(WORK_MEGAPIX);
startTimer();
stitcher.stitch(imgs, pano);
stopTimer();
}
Mat pano_small;
if (!pano.empty())
resize(pano, pano_small, Size(320, 240), 0, 0, INTER_AREA);
SANITY_CHECK(pano_small, 5);
}
PERF_TEST_P( match, bestOf2Nearest, TEST_DETECTORS)
{
Mat img1, img1_full = imread( getDataPath("stitching/b1.png") );
Mat img2, img2_full = imread( getDataPath("stitching/b2.png") );
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
resize(img1_full, img1, Size(), scale1, scale1);
resize(img2_full, img2, Size(), scale2, scale2);
Ptr<detail::FeaturesFinder> finder;
Ptr<detail::FeaturesMatcher> matcher;
if (GetParam() == "surf")
{
finder = makePtr<detail::SurfFeaturesFinder>();
matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
}
else if (GetParam() == "orb")
{
finder = makePtr<detail::OrbFeaturesFinder>();
matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE);
}
else
{
FAIL() << "Unknown 2D features type: " << GetParam();
}
detail::ImageFeatures features1, features2;
(*finder)(img1, features1);
(*finder)(img2, features2);
detail::MatchesInfo pairwise_matches;
declare.in(features1.descriptors, features2.descriptors);
while(next())
{
cvflann::seed_random(42);//for predictive FlannBasedMatcher
startTimer();
(*matcher)(features1, features2, pairwise_matches);
stopTimer();
matcher->collectGarbage();
}
std::vector<DMatch>& matches = pairwise_matches.matches;
if (GetParam() == "orb") matches.resize(0);
for(size_t q = 0; q < matches.size(); ++q)
if (matches[q].imgIdx < 0) { matches.resize(q); break;}
SANITY_CHECK_MATCHES(matches);
}
PERF_TEST_P( matchVector, bestOf2NearestVectorFeatures, testing::Combine(
TEST_DETECTORS,
testing::Values(2, 4, 8))
)
{
Mat img1, img1_full = imread( getDataPath("stitching/b1.png") );
Mat img2, img2_full = imread( getDataPath("stitching/b2.png") );
float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
resize(img1_full, img1, Size(), scale1, scale1);
resize(img2_full, img2, Size(), scale2, scale2);
Ptr<detail::FeaturesFinder> finder;
Ptr<detail::FeaturesMatcher> matcher;
string detectorName = get<0>(GetParam());
int featuresVectorSize = get<1>(GetParam());
if (detectorName == "surf")
{
finder = makePtr<detail::SurfFeaturesFinder>();
matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
}
else if (detectorName == "orb")
{
finder = makePtr<detail::OrbFeaturesFinder>();
matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE);
}
else
{
FAIL() << "Unknown 2D features type: " << get<0>(GetParam());
}
detail::ImageFeatures features1, features2;
(*finder)(img1, features1);
(*finder)(img2, features2);
vector<detail::ImageFeatures> features;
vector<detail::MatchesInfo> pairwise_matches;
for(int i = 0; i < featuresVectorSize/2; i++)
{
features.push_back(features1);
features.push_back(features2);
}
declare.time(200);
while(next())
{
cvflann::seed_random(42);//for predictive FlannBasedMatcher
startTimer();
(*matcher)(features, pairwise_matches);
stopTimer();
matcher->collectGarbage();
}
std::vector<DMatch>& matches = pairwise_matches[detectorName == "surf" ? 1 : 0].matches;
for(size_t q = 0; q < matches.size(); ++q)
if (matches[q].imgIdx < 0) { matches.resize(q); break;}
SANITY_CHECK_MATCHES(matches);
}