1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2002, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if _MSC_VER >= 1200
#pragma warning(disable:4786) // Disable MSVC warnings in the standard library.
#pragma warning(disable:4100)
#pragma warning(disable:4512)
#endif
#include <stdio.h>
#include <map>
#include <algorithm>
#if _MSC_VER >= 1200
#pragma warning(default:4100)
#pragma warning(default:4512)
#endif
#define ARRAY_SIZEOF(a) (sizeof(a)/sizeof((a)[0]))
static void FillObjectPoints(CvPoint3D32f *obj_points, CvSize etalon_size, float square_size);
static void DrawEtalon(IplImage *img, CvPoint2D32f *corners,
int corner_count, CvSize etalon_size, int draw_ordered);
static void MultMatrix(float rm[4][4], const float m1[4][4], const float m2[4][4]);
static void MultVectorMatrix(float rv[4], const float v[4], const float m[4][4]);
static CvPoint3D32f ImageCStoWorldCS(const Cv3dTrackerCameraInfo &camera_info, CvPoint2D32f p);
static bool intersection(CvPoint3D32f o1, CvPoint3D32f p1,
CvPoint3D32f o2, CvPoint3D32f p2,
CvPoint3D32f &r1, CvPoint3D32f &r2);
/////////////////////////////////
// cv3dTrackerCalibrateCameras //
/////////////////////////////////
CV_IMPL CvBool cv3dTrackerCalibrateCameras(int num_cameras,
const Cv3dTrackerCameraIntrinsics camera_intrinsics[], // size is num_cameras
CvSize etalon_size,
float square_size,
IplImage *samples[], // size is num_cameras
Cv3dTrackerCameraInfo camera_info[]) // size is num_cameras
{
CV_FUNCNAME("cv3dTrackerCalibrateCameras");
const int num_points = etalon_size.width * etalon_size.height;
int cameras_done = 0; // the number of cameras whose positions have been determined
CvPoint3D32f *object_points = NULL; // real-world coordinates of checkerboard points
CvPoint2D32f *points = NULL; // 2d coordinates of checkerboard points as seen by a camera
IplImage *gray_img = NULL; // temporary image for color conversion
IplImage *tmp_img = NULL; // temporary image used by FindChessboardCornerGuesses
int c, i, j;
if (etalon_size.width < 3 || etalon_size.height < 3)
CV_ERROR(CV_StsBadArg, "Chess board size is invalid");
for (c = 0; c < num_cameras; c++)
{
// CV_CHECK_IMAGE is not available in the cvaux library
// so perform the checks inline.
//CV_CALL(CV_CHECK_IMAGE(samples[c]));
if( samples[c] == NULL )
CV_ERROR( CV_HeaderIsNull, "Null image" );
if( samples[c]->dataOrder != IPL_DATA_ORDER_PIXEL && samples[c]->nChannels > 1 )
CV_ERROR( CV_BadOrder, "Unsupported image format" );
if( samples[c]->maskROI != 0 || samples[c]->tileInfo != 0 )
CV_ERROR( CV_StsBadArg, "Unsupported image format" );
if( samples[c]->imageData == 0 )
CV_ERROR( CV_BadDataPtr, "Null image data" );
if( samples[c]->roi &&
((samples[c]->roi->xOffset | samples[c]->roi->yOffset
| samples[c]->roi->width | samples[c]->roi->height) < 0 ||
samples[c]->roi->xOffset + samples[c]->roi->width > samples[c]->width ||
samples[c]->roi->yOffset + samples[c]->roi->height > samples[c]->height ||
(unsigned) (samples[c]->roi->coi) > (unsigned) (samples[c]->nChannels)))
CV_ERROR( CV_BadROISize, "Invalid ROI" );
// End of CV_CHECK_IMAGE inline expansion
if (samples[c]->depth != IPL_DEPTH_8U)
CV_ERROR(CV_BadDepth, "Channel depth of source image must be 8");
if (samples[c]->nChannels != 3 && samples[c]->nChannels != 1)
CV_ERROR(CV_BadNumChannels, "Source image must have 1 or 3 channels");
}
CV_CALL(object_points = (CvPoint3D32f *)cvAlloc(num_points * sizeof(CvPoint3D32f)));
CV_CALL(points = (CvPoint2D32f *)cvAlloc(num_points * sizeof(CvPoint2D32f)));
// fill in the real-world coordinates of the checkerboard points
FillObjectPoints(object_points, etalon_size, square_size);
for (c = 0; c < num_cameras; c++)
{
CvSize image_size = cvSize(samples[c]->width, samples[c]->height);
IplImage *img;
// The input samples are not required to all have the same size or color
// format. If they have different sizes, the temporary images are
// reallocated as necessary.
if (samples[c]->nChannels == 3)
{
// convert to gray
if (gray_img == NULL || gray_img->width != samples[c]->width ||
gray_img->height != samples[c]->height )
{
if (gray_img != NULL)
cvReleaseImage(&gray_img);
CV_CALL(gray_img = cvCreateImage(image_size, IPL_DEPTH_8U, 1));
}
CV_CALL(cvCvtColor(samples[c], gray_img, CV_BGR2GRAY));
img = gray_img;
}
else
{
// no color conversion required
img = samples[c];
}
if (tmp_img == NULL || tmp_img->width != samples[c]->width ||
tmp_img->height != samples[c]->height )
{
if (tmp_img != NULL)
cvReleaseImage(&tmp_img);
CV_CALL(tmp_img = cvCreateImage(image_size, IPL_DEPTH_8U, 1));
}
int count = num_points;
bool found = cvFindChessBoardCornerGuesses(img, tmp_img, 0,
etalon_size, points, &count) != 0;
if (count == 0)
continue;
// If found is true, it means all the points were found (count = num_points).
// If found is false but count is non-zero, it means that not all points were found.
cvFindCornerSubPix(img, points, count, cvSize(5,5), cvSize(-1,-1),
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10, 0.01f));
// If the image origin is BL (bottom-left), fix the y coordinates
// so they are relative to the true top of the image.
if (samples[c]->origin == IPL_ORIGIN_BL)
{
for (i = 0; i < count; i++)
points[i].y = samples[c]->height - 1 - points[i].y;
}
if (found)
{
// Make sure x coordinates are increasing and y coordinates are decreasing.
// (The y coordinate of point (0,0) should be the greatest, because the point
// on the checkerboard that is the origin is nearest the bottom of the image.)
// This is done after adjusting the y coordinates according to the image origin.
if (points[0].x > points[1].x)
{
// reverse points in each row
for (j = 0; j < etalon_size.height; j++)
{
CvPoint2D32f *row = &points[j*etalon_size.width];
for (i = 0; i < etalon_size.width/2; i++)
std::swap(row[i], row[etalon_size.width-i-1]);
}
}
if (points[0].y < points[etalon_size.width].y)
{
// reverse points in each column
for (i = 0; i < etalon_size.width; i++)
{
for (j = 0; j < etalon_size.height/2; j++)
std::swap(points[i+j*etalon_size.width],
points[i+(etalon_size.height-j-1)*etalon_size.width]);
}
}
}
DrawEtalon(samples[c], points, count, etalon_size, found);
if (!found)
continue;
float rotVect[3];
float rotMatr[9];
float transVect[3];
cvFindExtrinsicCameraParams(count,
image_size,
points,
object_points,
const_cast<float *>(camera_intrinsics[c].focal_length),
camera_intrinsics[c].principal_point,
const_cast<float *>(camera_intrinsics[c].distortion),
rotVect,
transVect);
// Check result against an arbitrary limit to eliminate impossible values.
// (If the chess board were truly that far away, the camera wouldn't be able to
// see the squares.)
if (transVect[0] > 1000*square_size
|| transVect[1] > 1000*square_size
|| transVect[2] > 1000*square_size)
{
// ignore impossible results
continue;
}
CvMat rotMatrDescr = cvMat(3, 3, CV_32FC1, rotMatr);
CvMat rotVectDescr = cvMat(3, 1, CV_32FC1, rotVect);
/* Calc rotation matrix by Rodrigues Transform */
cvRodrigues2( &rotVectDescr, &rotMatrDescr );
//combine the two transformations into one matrix
//order is important! rotations are not commutative
float tmat[4][4] = { { 1.f, 0.f, 0.f, 0.f },
{ 0.f, 1.f, 0.f, 0.f },
{ 0.f, 0.f, 1.f, 0.f },
{ transVect[0], transVect[1], transVect[2], 1.f } };
float rmat[4][4] = { { rotMatr[0], rotMatr[1], rotMatr[2], 0.f },
{ rotMatr[3], rotMatr[4], rotMatr[5], 0.f },
{ rotMatr[6], rotMatr[7], rotMatr[8], 0.f },
{ 0.f, 0.f, 0.f, 1.f } };
MultMatrix(camera_info[c].mat, tmat, rmat);
// change the transformation of the cameras to put them in the world coordinate
// system we want to work with.
// Start with an identity matrix; then fill in the values to accomplish
// the desired transformation.
float smat[4][4] = { { 1.f, 0.f, 0.f, 0.f },
{ 0.f, 1.f, 0.f, 0.f },
{ 0.f, 0.f, 1.f, 0.f },
{ 0.f, 0.f, 0.f, 1.f } };
// First, reflect through the origin by inverting all three axes.
smat[0][0] = -1.f;
smat[1][1] = -1.f;
smat[2][2] = -1.f;
MultMatrix(tmat, camera_info[c].mat, smat);
// Scale x and y coordinates by the focal length (allowing for non-square pixels
// and/or non-symmetrical lenses).
smat[0][0] = 1.0f / camera_intrinsics[c].focal_length[0];
smat[1][1] = 1.0f / camera_intrinsics[c].focal_length[1];
smat[2][2] = 1.0f;
MultMatrix(camera_info[c].mat, smat, tmat);
camera_info[c].principal_point = camera_intrinsics[c].principal_point;
camera_info[c].valid = true;
cameras_done++;
}
exit:
cvReleaseImage(&gray_img);
cvReleaseImage(&tmp_img);
cvFree(&object_points);
cvFree(&points);
return cameras_done == num_cameras;
}
// fill in the real-world coordinates of the checkerboard points
static void FillObjectPoints(CvPoint3D32f *obj_points, CvSize etalon_size, float square_size)
{
int x, y, i;
for (y = 0, i = 0; y < etalon_size.height; y++)
{
for (x = 0; x < etalon_size.width; x++, i++)
{
obj_points[i].x = square_size * x;
obj_points[i].y = square_size * y;
obj_points[i].z = 0;
}
}
}
// Mark the points found on the input image
// The marks are drawn multi-colored if all the points were found.
static void DrawEtalon(IplImage *img, CvPoint2D32f *corners,
int corner_count, CvSize etalon_size, int draw_ordered)
{
const int r = 4;
int i;
int x, y;
CvPoint prev_pt = { 0, 0 };
static const CvScalar rgb_colors[] = {
{{0,0,255}},
{{0,128,255}},
{{0,200,200}},
{{0,255,0}},
{{200,200,0}},
{{255,0,0}},
{{255,0,255}} };
static const CvScalar gray_colors[] = {
{{80}}, {{120}}, {{160}}, {{200}}, {{100}}, {{140}}, {{180}}
};
const CvScalar* colors = img->nChannels == 3 ? rgb_colors : gray_colors;
CvScalar color = colors[0];
for (y = 0, i = 0; y < etalon_size.height; y++)
{
if (draw_ordered)
color = colors[y % ARRAY_SIZEOF(rgb_colors)];
for (x = 0; x < etalon_size.width && i < corner_count; x++, i++)
{
CvPoint pt;
pt.x = cvRound(corners[i].x);
pt.y = cvRound(corners[i].y);
if (img->origin == IPL_ORIGIN_BL)
pt.y = img->height - 1 - pt.y;
if (draw_ordered)
{
if (i != 0)
cvLine(img, prev_pt, pt, color, 1, CV_AA);
prev_pt = pt;
}
cvLine( img, cvPoint(pt.x - r, pt.y - r),
cvPoint(pt.x + r, pt.y + r), color, 1, CV_AA );
cvLine( img, cvPoint(pt.x - r, pt.y + r),
cvPoint(pt.x + r, pt.y - r), color, 1, CV_AA );
cvCircle( img, pt, r+1, color, 1, CV_AA );
}
}
}
// Find the midpoint of the line segment between two points.
static CvPoint3D32f midpoint(const CvPoint3D32f &p1, const CvPoint3D32f &p2)
{
return cvPoint3D32f((p1.x+p2.x)/2, (p1.y+p2.y)/2, (p1.z+p2.z)/2);
}
static void operator +=(CvPoint3D32f &p1, const CvPoint3D32f &p2)
{
p1.x += p2.x;
p1.y += p2.y;
p1.z += p2.z;
}
static CvPoint3D32f operator /(const CvPoint3D32f &p, int d)
{
return cvPoint3D32f(p.x/d, p.y/d, p.z/d);
}
static const Cv3dTracker2dTrackedObject *find(const Cv3dTracker2dTrackedObject v[], int num_objects, int id)
{
for (int i = 0; i < num_objects; i++)
{
if (v[i].id == id)
return &v[i];
}
return NULL;
}
#define CAMERA_POS(c) (cvPoint3D32f((c).mat[3][0], (c).mat[3][1], (c).mat[3][2]))
//////////////////////////////
// cv3dTrackerLocateObjects //
//////////////////////////////
CV_IMPL int cv3dTrackerLocateObjects(int num_cameras, int num_objects,
const Cv3dTrackerCameraInfo camera_info[], // size is num_cameras
const Cv3dTracker2dTrackedObject tracking_info[], // size is num_objects*num_cameras
Cv3dTrackerTrackedObject tracked_objects[]) // size is num_objects
{
/*CV_FUNCNAME("cv3dTrackerLocateObjects");*/
int found_objects = 0;
// count how many cameras could see each object
std::map<int, int> count;
for (int c = 0; c < num_cameras; c++)
{
if (!camera_info[c].valid)
continue;
for (int i = 0; i < num_objects; i++)
{
const Cv3dTracker2dTrackedObject *o = &tracking_info[c*num_objects+i];
if (o->id != -1)
count[o->id]++;
}
}
// process each object that was seen by at least two cameras
for (std::map<int, int>::iterator i = count.begin(); i != count.end(); i++)
{
if (i->second < 2)
continue; // ignore object seen by only one camera
int id = i->first;
// find an approximation of the objects location for each pair of cameras that
// could see this object, and average them
CvPoint3D32f total = cvPoint3D32f(0, 0, 0);
int weight = 0;
for (int c1 = 0; c1 < num_cameras-1; c1++)
{
if (!camera_info[c1].valid)
continue;
const Cv3dTracker2dTrackedObject *o1 = find(&tracking_info[c1*num_objects],
num_objects, id);
if (o1 == NULL)
continue; // this camera didn't see this object
CvPoint3D32f p1a = CAMERA_POS(camera_info[c1]);
CvPoint3D32f p1b = ImageCStoWorldCS(camera_info[c1], o1->p);
for (int c2 = c1 + 1; c2 < num_cameras; c2++)
{
if (!camera_info[c2].valid)
continue;
const Cv3dTracker2dTrackedObject *o2 = find(&tracking_info[c2*num_objects],
num_objects, id);
if (o2 == NULL)
continue; // this camera didn't see this object
CvPoint3D32f p2a = CAMERA_POS(camera_info[c2]);
CvPoint3D32f p2b = ImageCStoWorldCS(camera_info[c2], o2->p);
// these variables are initialized simply to avoid erroneous error messages
// from the compiler
CvPoint3D32f r1 = cvPoint3D32f(0, 0, 0);
CvPoint3D32f r2 = cvPoint3D32f(0, 0, 0);
// find the intersection of the two lines (or the points of closest
// approach, if they don't intersect)
if (!intersection(p1a, p1b, p2a, p2b, r1, r2))
continue;
total += midpoint(r1, r2);
weight++;
}
}
CvPoint3D32f center = total/weight;
tracked_objects[found_objects++] = cv3dTrackerTrackedObject(id, center);
}
return found_objects;
}
#define EPS 1e-9
// Compute the determinant of the 3x3 matrix represented by 3 row vectors.
static inline double det(CvPoint3D32f v1, CvPoint3D32f v2, CvPoint3D32f v3)
{
return v1.x*v2.y*v3.z + v1.z*v2.x*v3.y + v1.y*v2.z*v3.x
- v1.z*v2.y*v3.x - v1.x*v2.z*v3.y - v1.y*v2.x*v3.z;
}
static CvPoint3D32f operator +(CvPoint3D32f a, CvPoint3D32f b)
{
return cvPoint3D32f(a.x + b.x, a.y + b.y, a.z + b.z);
}
static CvPoint3D32f operator -(CvPoint3D32f a, CvPoint3D32f b)
{
return cvPoint3D32f(a.x - b.x, a.y - b.y, a.z - b.z);
}
static CvPoint3D32f operator *(CvPoint3D32f v, double f)
{
return cvPoint3D32f(f*v.x, f*v.y, f*v.z);
}
// Find the intersection of two lines, or if they don't intersect,
// the points of closest approach.
// The lines are defined by (o1,p1) and (o2, p2).
// If they intersect, r1 and r2 will be the same.
// Returns false on error.
static bool intersection(CvPoint3D32f o1, CvPoint3D32f p1,
CvPoint3D32f o2, CvPoint3D32f p2,
CvPoint3D32f &r1, CvPoint3D32f &r2)
{
CvPoint3D32f x = o2 - o1;
CvPoint3D32f d1 = p1 - o1;
CvPoint3D32f d2 = p2 - o2;
CvPoint3D32f cross = cvPoint3D32f(d1.y*d2.z - d1.z*d2.y,
d1.z*d2.x - d1.x*d2.z,
d1.x*d2.y - d1.y*d2.x);
double den = cross.x*cross.x + cross.y*cross.y + cross.z*cross.z;
if (den < EPS)
return false;
double t1 = det(x, d2, cross) / den;
double t2 = det(x, d1, cross) / den;
r1 = o1 + d1 * t1;
r2 = o2 + d2 * t2;
return true;
}
// Convert from image to camera space by transforming point p in
// the image plane by the camera matrix.
static CvPoint3D32f ImageCStoWorldCS(const Cv3dTrackerCameraInfo &camera_info, CvPoint2D32f p)
{
float tp[4];
tp[0] = (float)p.x - camera_info.principal_point.x;
tp[1] = (float)p.y - camera_info.principal_point.y;
tp[2] = 1.f;
tp[3] = 1.f;
float tr[4];
//multiply tp by mat to get tr
MultVectorMatrix(tr, tp, camera_info.mat);
return cvPoint3D32f(tr[0]/tr[3], tr[1]/tr[3], tr[2]/tr[3]);
}
// Multiply affine transformation m1 by the affine transformation m2 and
// return the result in rm.
static void MultMatrix(float rm[4][4], const float m1[4][4], const float m2[4][4])
{
for (int i=0; i<=3; i++)
for (int j=0; j<=3; j++)
{
rm[i][j]= 0.0;
for (int k=0; k <= 3; k++)
rm[i][j] += m1[i][k]*m2[k][j];
}
}
// Multiply the vector v by the affine transformation matrix m and return the
// result in rv.
void MultVectorMatrix(float rv[4], const float v[4], const float m[4][4])
{
for (int i=0; i<=3; i++)
{
rv[i] = 0.f;
for (int j=0;j<=3;j++)
rv[i] += v[j] * m[j][i];
}
}