simplex.cpp 11.1 KB
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "debug.hpp"
#include "opencv2/core/core_c.h"

namespace cv{namespace optim{

    class DownhillSolverImpl : public DownhillSolver
    {
    public:
        void getInitStep(OutputArray step) const;
        void setInitStep(InputArray step);
        Ptr<Function> getFunction() const;
        void setFunction(const Ptr<Function>& f);
        TermCriteria getTermCriteria() const;
        DownhillSolverImpl();
        void setTermCriteria(const TermCriteria& termcrit);
        double minimize(InputOutputArray x);
    protected:
        Ptr<Solver::Function> _Function;
        TermCriteria _termcrit;
        Mat _step;
        Mat_<double> buf_x;

    private:
        inline void createInitialSimplex(Mat_<double>& simplex,Mat& step);
        inline double innerDownhillSimplex(cv::Mat_<double>& p,double MinRange,double MinError,int& nfunk,
                const Ptr<Solver::Function>& f,int nmax);
        inline double tryNewPoint(Mat_<double>& p,Mat_<double>& y,Mat_<double>& coord_sum,const Ptr<Solver::Function>& f,int ihi,
                double fac,Mat_<double>& ptry);
    };

    double DownhillSolverImpl::tryNewPoint(
        Mat_<double>& p,
        Mat_<double>& y,
        Mat_<double>&  coord_sum,
        const Ptr<Solver::Function>& f,
        int      ihi,
        double   fac,
        Mat_<double>& ptry
        )
    {
        int ndim=p.cols;
        int j;
        double fac1,fac2,ytry;

        fac1=(1.0-fac)/ndim;
        fac2=fac1-fac;
        for (j=0;j<ndim;j++)
        {
            ptry(j)=coord_sum(j)*fac1-p(ihi,j)*fac2;
        }
        ytry=f->calc((double*)ptry.data);
        if (ytry < y(ihi))
        {
            y(ihi)=ytry;
            for (j=0;j<ndim;j++)
            {
                coord_sum(j) += ptry(j)-p(ihi,j);
                p(ihi,j)=ptry(j);
            }
        }

        return ytry;
    }

    /*
    Performs the actual minimization of Solver::Function f (after the initialization was done)

    The matrix p[ndim+1][1..ndim] represents ndim+1 vertices that
    form a simplex - each row is an ndim vector.
    On output, nfunk gives the number of function evaluations taken.
    */
    double DownhillSolverImpl::innerDownhillSimplex(
        cv::Mat_<double>&   p,
        double     MinRange,
        double     MinError,
        int&       nfunk,
        const Ptr<Solver::Function>& f,
        int nmax
        )
    {
        int ndim=p.cols;
        double res;
        int i,ihi,ilo,inhi,j,mpts=ndim+1;
        double error, range,ysave,ytry;
        Mat_<double> coord_sum(1,ndim,0.0),buf(1,ndim,0.0),y(1,ndim,0.0);

        nfunk = 0;

        for(i=0;i<ndim+1;++i)
        {
            y(i) = f->calc(p[i]);
        }

        nfunk = ndim+1;

        reduce(p,coord_sum,0,CV_REDUCE_SUM);

        for (;;)
        {
            ilo=0;
            /*  find highest (worst), next-to-worst, and lowest
                (best) points by going through all of them. */
            ihi = y(0)>y(1) ? (inhi=1,0) : (inhi=0,1);
            for (i=0;i<mpts;i++)
            {
                if (y(i) <= y(ilo))
                    ilo=i;
                if (y(i) > y(ihi))
                {
                    inhi=ihi;
                    ihi=i;
                }
                else if (y(i) > y(inhi) && i != ihi)
                    inhi=i;
            }

            /* check stop criterion */
            error=fabs(y(ihi)-y(ilo));
            range=0;
            for(i=0;i<ndim;++i)
            {
                double min = p(0,i);
                double max = p(0,i);
                double d;
                for(j=1;j<=ndim;++j)
                {
                    if( min > p(j,i) ) min = p(j,i);
                    if( max < p(j,i) ) max = p(j,i);
                }
                d = fabs(max-min);
                if(range < d) range = d;
            }

            if(range <= MinRange || error <= MinError)
            { /* Put best point and value in first slot. */
                std::swap(y(0),y(ilo));
                for (i=0;i<ndim;i++)
                {
                    std::swap(p(0,i),p(ilo,i));
                }
                break;
            }

            if (nfunk >= nmax){
                dprintf(("nmax exceeded\n"));
                return y(ilo);
            }
            nfunk += 2;
            /*Begin a new iteration. First, reflect the worst point about the centroid of others */
            ytry = tryNewPoint(p,y,coord_sum,f,ihi,-1.0,buf);
            if (ytry <= y(ilo))
            { /*If that's better than the best point, go twice as far in that direction*/
                ytry = tryNewPoint(p,y,coord_sum,f,ihi,2.0,buf);
            }
            else if (ytry >= y(inhi))
            {   /* The new point is worse than the second-highest, but better
                  than the worst so do not go so far in that direction */
                ysave = y(ihi);
                ytry = tryNewPoint(p,y,coord_sum,f,ihi,0.5,buf);
                if (ytry >= ysave)
                { /* Can't seem to improve things. Contract the simplex to good point
               in hope to find a simplex landscape. */
                    for (i=0;i<mpts;i++)
                    {
                        if (i != ilo)
                        {
                            for (j=0;j<ndim;j++)
                            {
                                p(i,j) = coord_sum(j) = 0.5*(p(i,j)+p(ilo,j));
                            }
                            y(i)=f->calc((double*)coord_sum.data);
                        }
                    }
                    nfunk += ndim;
                    reduce(p,coord_sum,0,CV_REDUCE_SUM);
                }
            } else --(nfunk); /* correct nfunk */
            dprintf(("this is simplex on iteration %d\n",nfunk));
            print_matrix(p);
        } /* go to next iteration. */
        res = y(0);

        return res;
    }

    void DownhillSolverImpl::createInitialSimplex(Mat_<double>& simplex,Mat& step){
        for(int i=1;i<=step.cols;++i)
        {
            simplex.row(0).copyTo(simplex.row(i));
            simplex(i,i-1)+= 0.5*step.at<double>(0,i-1);
        }
        simplex.row(0) -= 0.5*step;

        dprintf(("this is simplex\n"));
        print_matrix(simplex);
    }

    double DownhillSolverImpl::minimize(InputOutputArray x){
        dprintf(("hi from minimize\n"));
        CV_Assert(_Function.empty()==false);
        dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon));
        dprintf(("step\n"));
        print_matrix(_step);

        Mat x_mat=x.getMat();
        CV_Assert(MIN(x_mat.rows,x_mat.cols)==1);
        CV_Assert(MAX(x_mat.rows,x_mat.cols)==_step.cols);
        CV_Assert(x_mat.type()==CV_64FC1);

        Mat_<double> proxy_x;

        if(x_mat.rows>1){
            buf_x.create(1,_step.cols);
            Mat_<double> proxy(_step.cols,1,(double*)buf_x.data);
            x_mat.copyTo(proxy);
            proxy_x=buf_x;
        }else{
            proxy_x=x_mat;
        }

        int count=0;
        int ndim=_step.cols;
        Mat_<double> simplex=Mat_<double>(ndim+1,ndim,0.0);

        simplex.row(0).copyTo(proxy_x);
        createInitialSimplex(simplex,_step);
        double res = innerDownhillSimplex(
                simplex,_termcrit.epsilon, _termcrit.epsilon, count,_Function,_termcrit.maxCount);
        simplex.row(0).copyTo(proxy_x);

        dprintf(("%d iterations done\n",count));

        if(x_mat.rows>1){
            Mat(x_mat.rows, 1, CV_64F, (double*)proxy_x.data).copyTo(x);
        }
        return res;
    }
    DownhillSolverImpl::DownhillSolverImpl(){
        _Function=Ptr<Function>();
        _step=Mat_<double>();
    }
    Ptr<Solver::Function> DownhillSolverImpl::getFunction()const{
        return _Function;
    }
    void DownhillSolverImpl::setFunction(const Ptr<Function>& f){
        _Function=f;
    }
    TermCriteria DownhillSolverImpl::getTermCriteria()const{
        return _termcrit;
    }
    void DownhillSolverImpl::setTermCriteria(const TermCriteria& termcrit){
        CV_Assert(termcrit.type==(TermCriteria::MAX_ITER+TermCriteria::EPS) && termcrit.epsilon>0 && termcrit.maxCount>0);
        _termcrit=termcrit;
    }
    // both minRange & minError are specified by termcrit.epsilon; In addition, user may specify the number of iterations that the algorithm does.
    Ptr<DownhillSolver> createDownhillSolver(const Ptr<Solver::Function>& f, InputArray initStep, TermCriteria termcrit){
        DownhillSolver *DS=new DownhillSolverImpl();
        DS->setFunction(f);
        DS->setInitStep(initStep);
        DS->setTermCriteria(termcrit);
        return Ptr<DownhillSolver>(DS);
    }
    void DownhillSolverImpl::getInitStep(OutputArray step)const{
        _step.copyTo(step);
    }
    void DownhillSolverImpl::setInitStep(InputArray step){
        //set dimensionality and make a deep copy of step
        Mat m=step.getMat();
        dprintf(("m.cols=%d\nm.rows=%d\n",m.cols,m.rows));
        CV_Assert(MIN(m.cols,m.rows)==1 && m.type()==CV_64FC1);
        if(m.rows==1){
            m.copyTo(_step);
        }else{
            transpose(m,_step);
        }
    }
}}