1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Implementation of Batch Normalization layer.
*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_halide.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/max_unpooling.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
namespace cv
{
namespace dnn
{
class MaxUnpoolLayerImpl CV_FINAL : public MaxUnpoolLayer
{
public:
MaxUnpoolLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
poolKernel = Size(params.get<int>("pool_k_w"), params.get<int>("pool_k_h"));
poolPad = Size(params.get<int>("pool_pad_w"), params.get<int>("pool_pad_h"));
poolStride = Size(params.get<int>("pool_stride_w"), params.get<int>("pool_stride_h"));
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
(backendId == DNN_BACKEND_HALIDE && haveHalide() && !poolPad.width && !poolPad.height);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() == 2 || inputs.size() == 3);
CV_Assert(total(inputs[0]) == total(inputs[1]));
MatShape outShape;
if (inputs.size() == 2)
{
outShape = inputs[0];
outShape[2] = (outShape[2] - 1) * poolStride.height + poolKernel.height - 2 * poolPad.height;
outShape[3] = (outShape[3] - 1) * poolStride.width + poolKernel.width - 2 * poolPad.width;
}
else
outShape = inputs[2];
outputs.clear();
outputs.push_back(outShape);
return false;
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(inputs.size() == 2 || inputs.size() == 3);
Mat& input = inputs[0];
Mat& indices = inputs[1];
CV_Assert(input.total() == indices.total());
CV_Assert(input.size[0] == 1);
CV_Assert(input.isContinuous());
for(int i_n = 0; i_n < outputs.size(); i_n++)
{
Mat& outBlob = outputs[i_n];
outBlob.setTo(0);
CV_Assert(input.size[1] == outBlob.size[1]);
int outPlaneTotal = outBlob.size[2]*outBlob.size[3];
for (int i_c = 0; i_c < input.size[1]; i_c++)
{
Mat outPlane = getPlane(outBlob, 0, i_c);
int wh_area = input.size[2]*input.size[3];
const float* inptr = input.ptr<float>(0, i_c);
const float* idxptr = indices.ptr<float>(0, i_c);
float* outptr = outPlane.ptr<float>();
for(int i_wh = 0; i_wh < wh_area; i_wh++)
{
int index = idxptr[i_wh];
if (!(0 <= index && index < outPlaneTotal))
{
std::cerr
<< "i_n=" << i_n << std::endl
<< "i_c=" << i_c << std::endl
<< "i_wh=" << i_wh << std::endl
<< "index=" << index << std::endl
<< "maxval=" << inptr[i_wh] << std::endl
<< "outPlaneTotal=" << outPlaneTotal << std::endl
<< "input.size=" << input.size << std::endl
<< "indices.size=" << indices.size << std::endl
<< "outBlob=" << outBlob.size << std::endl
;
CV_Assert(0 <= index && index < outPlaneTotal);
}
outptr[index] = inptr[i_wh];
}
}
}
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
cuda4dnn::MaxUnpoolingConfiguration config;
auto& window_size = config.window_size;
window_size.resize(2);
window_size[0] = poolKernel.height;
window_size[1] = poolKernel.width;
auto& strides = config.strides;
strides.resize(2);
strides[0] = poolStride.height;
strides[1] = poolStride.width;
auto& pads_begin = config.pads_begin;
pads_begin.resize(2);
pads_begin[0] = poolPad.height;
pads_begin[1] = poolPad.width;
return make_cuda_node<cuda4dnn::MaxUnpoolingOp>(preferableTarget, std::move(context->stream), config);
}
#endif
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &input) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
// Meaningless operation if false because if kernel > stride
// it is not deterministic and if kernel < stride we just
// skip a part of input data (you'd better change your model).
if (poolKernel.width != poolStride.width ||
poolKernel.height != poolStride.height)
CV_Error(cv::Error::StsNotImplemented,
"Halide backend for maximum unpooling "
"is not support cases when kernel != stride");
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Buffer<float> inputBuffer = halideBuffer(input[0]);
Halide::Buffer<float> indices = halideBuffer(input[1]);
Halide::Expr pooledX = x / poolKernel.width;
Halide::Expr pooledY = y / poolKernel.height;
const int outW = inputBuffer.width() * poolKernel.width;
top(x, y, c, n) = select(y * outW + x == indices(pooledX, pooledY, c, n),
inputBuffer(pooledX, pooledY, c, n), 0.0f);
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
};
Ptr<MaxUnpoolLayer> MaxUnpoolLayer::create(const LayerParams& params)
{
return Ptr<MaxUnpoolLayer>(new MaxUnpoolLayerImpl(params));
}
}
}