objdetect.hpp 17.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_OBJDETECT_HPP__
#define __OPENCV_OBJDETECT_HPP__

#include "opencv2/core.hpp"

typedef struct CvLatentSvmDetector CvLatentSvmDetector;
typedef struct CvHaarClassifierCascade CvHaarClassifierCascade;

namespace cv
{

///////////////////////////// Object Detection ////////////////////////////

/*
 * This is a class wrapping up the structure CvLatentSvmDetector and functions working with it.
 * The class goals are:
 * 1) provide c++ interface;
 * 2) make it possible to load and detect more than one class (model) unlike CvLatentSvmDetector.
 */
class CV_EXPORTS LatentSvmDetector
{
public:
    struct CV_EXPORTS ObjectDetection
    {
        ObjectDetection();
        ObjectDetection( const Rect& rect, float score, int classID = -1 );
        Rect rect;
        float score;
        int classID;
    };

    LatentSvmDetector();
    LatentSvmDetector( const std::vector<String>& filenames, const std::vector<String>& classNames = std::vector<String>() );
    virtual ~LatentSvmDetector();

    virtual void clear();
    virtual bool empty() const;
    bool load( const std::vector<String>& filenames, const std::vector<String>& classNames = std::vector<String>() );

    virtual void detect( const Mat& image,
                         std::vector<ObjectDetection>& objectDetections,
                         float overlapThreshold = 0.5f,
                         int numThreads = -1 );

    const std::vector<String>& getClassNames() const;
    size_t getClassCount() const;

private:
    std::vector<CvLatentSvmDetector*> detectors;
    std::vector<String> classNames;
};

// class for grouping object candidates, detected by Cascade Classifier, HOG etc.
// instance of the class is to be passed to cv::partition (see cxoperations.hpp)
class CV_EXPORTS SimilarRects
{
public:
    SimilarRects(double _eps) : eps(_eps) {}
    inline bool operator()(const Rect& r1, const Rect& r2) const
    {
        double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;
        return std::abs(r1.x - r2.x) <= delta &&
            std::abs(r1.y - r2.y) <= delta &&
            std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
            std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
    }
    double eps;
};

CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2);
CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, int groupThreshold, double eps = 0.2);
CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps, std::vector<int>* weights, std::vector<double>* levelWeights );
CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels,
                                  std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2);
CV_EXPORTS   void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, std::vector<double>& foundScales,
                                          double detectThreshold = 0.0, Size winDetSize = Size(64, 128));

class CV_EXPORTS FeatureEvaluator
{
public:
    enum { HAAR = 0,
           LBP  = 1,
           HOG  = 2
         };

    virtual ~FeatureEvaluator();

    virtual bool read(const FileNode& node);
    virtual Ptr<FeatureEvaluator> clone() const;
    virtual int getFeatureType() const;

    virtual bool setImage(const Mat& img, Size origWinSize);
    virtual bool setWindow(Point p);

    virtual double calcOrd(int featureIdx) const;
    virtual int calcCat(int featureIdx) const;

    static Ptr<FeatureEvaluator> create(int type);
};

template<> CV_EXPORTS void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const;

enum { CASCADE_DO_CANNY_PRUNING    = 1,
       CASCADE_SCALE_IMAGE         = 2,
       CASCADE_FIND_BIGGEST_OBJECT = 4,
       CASCADE_DO_ROUGH_SEARCH     = 8
     };

class CV_EXPORTS_W CascadeClassifier
{
public:
    CV_WRAP CascadeClassifier();
    CV_WRAP CascadeClassifier( const String& filename );
    virtual ~CascadeClassifier();

    CV_WRAP virtual bool empty() const;
    CV_WRAP bool load( const String& filename );
    virtual bool read( const FileNode& node );
    CV_WRAP virtual void detectMultiScale( const Mat& image,
                                   CV_OUT std::vector<Rect>& objects,
                                   double scaleFactor = 1.1,
                                   int minNeighbors = 3, int flags = 0,
                                   Size minSize = Size(),
                                   Size maxSize = Size() );

    CV_WRAP virtual void detectMultiScale( const Mat& image,
                                   CV_OUT std::vector<Rect>& objects,
                                   CV_OUT std::vector<int>& numDetections,
                                   double scaleFactor=1.1,
                                   int minNeighbors=3, int flags=0,
                                   Size minSize=Size(),
                                   Size maxSize=Size() );

    CV_WRAP virtual void detectMultiScale( const Mat& image,
                                   CV_OUT std::vector<Rect>& objects,
                                   CV_OUT std::vector<int>& rejectLevels,
                                   CV_OUT std::vector<double>& levelWeights,
                                   double scaleFactor = 1.1,
                                   int minNeighbors = 3, int flags = 0,
                                   Size minSize = Size(),
                                   Size maxSize = Size(),
                                   bool outputRejectLevels = false );


    bool isOldFormatCascade() const;
    virtual Size getOriginalWindowSize() const;
    int getFeatureType() const;
    bool setImage( const Mat& );

protected:
    virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
                                    int stripSize, int yStep, double factor, std::vector<Rect>& candidates,
                                    std::vector<int>& rejectLevels, std::vector<double>& levelWeights, bool outputRejectLevels = false );

    virtual void detectMultiScaleNoGrouping( const Mat& image, std::vector<Rect>& candidates,
                                             std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
                                             double scaleFactor, Size minObjectSize, Size maxObjectSize,
                                             bool outputRejectLevels = false );

protected:
    enum { BOOST = 0
         };
    enum { DO_CANNY_PRUNING    = CASCADE_DO_CANNY_PRUNING,
           SCALE_IMAGE         = CASCADE_SCALE_IMAGE,
           FIND_BIGGEST_OBJECT = CASCADE_FIND_BIGGEST_OBJECT,
           DO_ROUGH_SEARCH     = CASCADE_DO_ROUGH_SEARCH
         };

    friend class CascadeClassifierInvoker;

    template<class FEval>
    friend int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);

    template<class FEval>
    friend int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);

    template<class FEval>
    friend int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);

    template<class FEval>
    friend int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);

    bool setImage( Ptr<FeatureEvaluator>& feval, const Mat& image);
    virtual int runAt( Ptr<FeatureEvaluator>& feval, Point pt, double& weight );

    class Data
    {
    public:
        struct CV_EXPORTS DTreeNode
        {
            int featureIdx;
            float threshold; // for ordered features only
            int left;
            int right;
        };

        struct CV_EXPORTS DTree
        {
            int nodeCount;
        };

        struct CV_EXPORTS Stage
        {
            int first;
            int ntrees;
            float threshold;
        };

        bool read(const FileNode &node);

        bool isStumpBased;

        int stageType;
        int featureType;
        int ncategories;
        Size origWinSize;

        std::vector<Stage> stages;
        std::vector<DTree> classifiers;
        std::vector<DTreeNode> nodes;
        std::vector<float> leaves;
        std::vector<int> subsets;
    };

    Data data;
    Ptr<FeatureEvaluator> featureEvaluator;
    Ptr<CvHaarClassifierCascade> oldCascade;

public:
    class CV_EXPORTS MaskGenerator
    {
    public:
        virtual ~MaskGenerator() {}
        virtual cv::Mat generateMask(const cv::Mat& src)=0;
        virtual void initializeMask(const cv::Mat& /*src*/) {};
    };
    void setMaskGenerator(Ptr<MaskGenerator> maskGenerator);
    Ptr<MaskGenerator> getMaskGenerator();

    void setFaceDetectionMaskGenerator();

protected:
    Ptr<MaskGenerator> maskGenerator;
};

//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////

// struct for detection region of interest (ROI)
struct DetectionROI
{
   // scale(size) of the bounding box
   double scale;
   // set of requrested locations to be evaluated
   std::vector<cv::Point> locations;
   // vector that will contain confidence values for each location
   std::vector<double> confidences;
};

struct CV_EXPORTS_W HOGDescriptor
{
public:
    enum { L2Hys = 0
         };
    enum { DEFAULT_NLEVELS = 64
         };

    CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
        cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
        histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
        nlevels(HOGDescriptor::DEFAULT_NLEVELS)
    {}

    CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
                  Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
                  int _histogramNormType=HOGDescriptor::L2Hys,
                  double _L2HysThreshold=0.2, bool _gammaCorrection=false,
                  int _nlevels=HOGDescriptor::DEFAULT_NLEVELS)
    : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
    nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
    histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
    gammaCorrection(_gammaCorrection), nlevels(_nlevels)
    {}

    CV_WRAP HOGDescriptor(const String& filename)
    {
        load(filename);
    }

    HOGDescriptor(const HOGDescriptor& d)
    {
        d.copyTo(*this);
    }

    virtual ~HOGDescriptor() {}

    CV_WRAP size_t getDescriptorSize() const;
    CV_WRAP bool checkDetectorSize() const;
    CV_WRAP double getWinSigma() const;

    CV_WRAP virtual void setSVMDetector(InputArray _svmdetector);

    virtual bool read(FileNode& fn);
    virtual void write(FileStorage& fs, const String& objname) const;

    CV_WRAP virtual bool load(const String& filename, const String& objname = String());
    CV_WRAP virtual void save(const String& filename, const String& objname = String()) const;
    virtual void copyTo(HOGDescriptor& c) const;

    CV_WRAP virtual void compute(const Mat& img,
                         CV_OUT std::vector<float>& descriptors,
                         Size winStride = Size(), Size padding = Size(),
                         const std::vector<Point>& locations = std::vector<Point>()) const;
    //with found weights output
    CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
                        CV_OUT std::vector<double>& weights,
                        double hitThreshold = 0, Size winStride = Size(),
                        Size padding = Size(),
                        const std::vector<Point>& searchLocations = std::vector<Point>()) const;
    //without found weights output
    virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
                        double hitThreshold = 0, Size winStride = Size(),
                        Size padding = Size(),
                        const std::vector<Point>& searchLocations=std::vector<Point>()) const;
    //with result weights output
    CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT std::vector<Rect>& foundLocations,
                                  CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0,
                                  Size winStride = Size(), Size padding = Size(), double scale = 1.05,
                                  double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const;
    //without found weights output
    virtual void detectMultiScale(const Mat& img, CV_OUT std::vector<Rect>& foundLocations,
                                  double hitThreshold = 0, Size winStride = Size(),
                                  Size padding = Size(), double scale = 1.05,
                                  double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const;

    CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
                                 Size paddingTL = Size(), Size paddingBR = Size()) const;

    CV_WRAP static std::vector<float> getDefaultPeopleDetector();
    CV_WRAP static std::vector<float> getDaimlerPeopleDetector();

    CV_PROP Size winSize;
    CV_PROP Size blockSize;
    CV_PROP Size blockStride;
    CV_PROP Size cellSize;
    CV_PROP int nbins;
    CV_PROP int derivAperture;
    CV_PROP double winSigma;
    CV_PROP int histogramNormType;
    CV_PROP double L2HysThreshold;
    CV_PROP bool gammaCorrection;
    CV_PROP std::vector<float> svmDetector;
    CV_PROP int nlevels;


   // evaluate specified ROI and return confidence value for each location
   virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations,
                                   CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
                                   double hitThreshold = 0, cv::Size winStride = Size(),
                                   cv::Size padding = Size()) const;

   // evaluate specified ROI and return confidence value for each location in multiple scales
   virtual void detectMultiScaleROI(const cv::Mat& img,
                                                       CV_OUT std::vector<cv::Rect>& foundLocations,
                                                       std::vector<DetectionROI>& locations,
                                                       double hitThreshold = 0,
                                                       int groupThreshold = 0) const;

   // read/parse Dalal's alt model file
   void readALTModel(String modelfile);
   void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const;
};


CV_EXPORTS_W void findDataMatrix(InputArray image,
                                 CV_OUT std::vector<String>& codes,
                                 OutputArray corners = noArray(),
                                 OutputArrayOfArrays dmtx = noArray());

CV_EXPORTS_W void drawDataMatrixCodes(InputOutputArray image,
                                      const std::vector<String>& codes,
                                      InputArray corners);
}

#include "opencv2/objdetect/linemod.hpp"
#include "opencv2/objdetect/erfilter.hpp"

#endif