1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || !defined(HAVE_OPENCV_CUDAARITHM)
Ptr<GeneralizedHoughBallard> cv::cuda::createGeneralizedHoughBallard() { throw_no_cuda(); return Ptr<GeneralizedHoughBallard>(); }
Ptr<GeneralizedHoughGuil> cv::cuda::createGeneralizedHoughGuil() { throw_no_cuda(); return Ptr<GeneralizedHoughGuil>(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace cuda { namespace device
{
namespace ght
{
template <typename T>
int buildEdgePointList_gpu(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
void buildRTable_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
PtrStepSz<short2> r_table, int* r_sizes,
short2 templCenter, int levels);
void Ballard_Pos_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
PtrStepSz<short2> r_table, const int* r_sizes,
PtrStepSzi hist,
float dp, int levels);
int Ballard_Pos_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int maxSize, float dp, int threshold);
void Guil_Full_setTemplFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
void Guil_Full_setImageFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
void Guil_Full_buildTemplFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
int* sizes, int maxSize,
float xi, float angleEpsilon, int levels,
float2 center, float maxDist);
void Guil_Full_buildImageFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
int* sizes, int maxSize,
float xi, float angleEpsilon, int levels,
float2 center, float maxDist);
void Guil_Full_calcOHist_gpu(const int* templSizes, const int* imageSizes, int* OHist,
float minAngle, float maxAngle, float angleStep, int angleRange,
int levels, int tMaxSize);
void Guil_Full_calcSHist_gpu(const int* templSizes, const int* imageSizes, int* SHist,
float angle, float angleEpsilon,
float minScale, float maxScale, float iScaleStep, int scaleRange,
int levels, int tMaxSize);
void Guil_Full_calcPHist_gpu(const int* templSizes, const int* imageSizes, PtrStepSzi PHist,
float angle, float angleEpsilon, float scale,
float dp,
int levels, int tMaxSize);
int Guil_Full_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int curSize, int maxSize,
float angle, int angleVotes, float scale, int scaleVotes,
float dp, int threshold);
}
}}}
// common
namespace
{
class GeneralizedHoughBase
{
protected:
GeneralizedHoughBase();
virtual ~GeneralizedHoughBase() {}
void setTemplateImpl(InputArray templ, Point templCenter);
void setTemplateImpl(InputArray edges, InputArray dx, InputArray dy, Point templCenter);
void detectImpl(InputArray image, OutputArray positions, OutputArray votes);
void detectImpl(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes);
void buildEdgePointList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy);
virtual void processTempl() = 0;
virtual void processImage() = 0;
int cannyLowThresh_;
int cannyHighThresh_;
double minDist_;
double dp_;
int maxBufferSize_;
Size templSize_;
Point templCenter_;
GpuMat templEdges_;
GpuMat templDx_;
GpuMat templDy_;
Size imageSize_;
GpuMat imageEdges_;
GpuMat imageDx_;
GpuMat imageDy_;
GpuMat edgePointList_;
GpuMat outBuf_;
int posCount_;
private:
#ifdef HAVE_OPENCV_CUDAFILTERS
void calcEdges(InputArray src, GpuMat& edges, GpuMat& dx, GpuMat& dy);
#endif
void filterMinDist();
void convertTo(OutputArray positions, OutputArray votes);
#ifdef HAVE_OPENCV_CUDAFILTERS
Ptr<cuda::CannyEdgeDetector> canny_;
Ptr<cuda::Filter> filterDx_;
Ptr<cuda::Filter> filterDy_;
#endif
std::vector<float4> oldPosBuf_;
std::vector<int3> oldVoteBuf_;
std::vector<float4> newPosBuf_;
std::vector<int3> newVoteBuf_;
std::vector<int> indexies_;
};
GeneralizedHoughBase::GeneralizedHoughBase()
{
cannyLowThresh_ = 50;
cannyHighThresh_ = 100;
minDist_ = 1.0;
dp_ = 1.0;
maxBufferSize_ = 10000;
#ifdef HAVE_OPENCV_CUDAFILTERS
canny_ = cuda::createCannyEdgeDetector(cannyLowThresh_, cannyHighThresh_);
filterDx_ = cuda::createSobelFilter(CV_8UC1, CV_32S, 1, 0);
filterDy_ = cuda::createSobelFilter(CV_8UC1, CV_32S, 0, 1);
#endif
}
#ifdef HAVE_OPENCV_CUDAFILTERS
void GeneralizedHoughBase::calcEdges(InputArray _src, GpuMat& edges, GpuMat& dx, GpuMat& dy)
{
GpuMat src = _src.getGpuMat();
CV_Assert( src.type() == CV_8UC1 );
CV_Assert( cannyLowThresh_ > 0 && cannyLowThresh_ < cannyHighThresh_ );
ensureSizeIsEnough(src.size(), CV_32SC1, dx);
ensureSizeIsEnough(src.size(), CV_32SC1, dy);
filterDx_->apply(src, dx);
filterDy_->apply(src, dy);
ensureSizeIsEnough(src.size(), CV_8UC1, edges);
canny_->setLowThreshold(cannyLowThresh_);
canny_->setHighThreshold(cannyHighThresh_);
canny_->detect(dx, dy, edges);
}
#endif
void GeneralizedHoughBase::setTemplateImpl(InputArray templ, Point templCenter)
{
#ifndef HAVE_OPENCV_CUDAFILTERS
(void) templ;
(void) templCenter;
throw_no_cuda();
#else
calcEdges(templ, templEdges_, templDx_, templDy_);
if (templCenter == Point(-1, -1))
templCenter = Point(templEdges_.cols / 2, templEdges_.rows / 2);
templSize_ = templEdges_.size();
templCenter_ = templCenter;
processTempl();
#endif
}
void GeneralizedHoughBase::setTemplateImpl(InputArray edges, InputArray dx, InputArray dy, Point templCenter)
{
edges.getGpuMat().copyTo(templEdges_);
dx.getGpuMat().copyTo(templDx_);
dy.getGpuMat().copyTo(templDy_);
CV_Assert( templEdges_.type() == CV_8UC1 );
CV_Assert( templDx_.type() == CV_32FC1 && templDx_.size() == templEdges_.size() );
CV_Assert( templDy_.type() == templDx_.type() && templDy_.size() == templEdges_.size() );
if (templCenter == Point(-1, -1))
templCenter = Point(templEdges_.cols / 2, templEdges_.rows / 2);
templSize_ = templEdges_.size();
templCenter_ = templCenter;
processTempl();
}
void GeneralizedHoughBase::detectImpl(InputArray image, OutputArray positions, OutputArray votes)
{
#ifndef HAVE_OPENCV_CUDAFILTERS
(void) image;
(void) positions;
(void) votes;
throw_no_cuda();
#else
calcEdges(image, imageEdges_, imageDx_, imageDy_);
imageSize_ = imageEdges_.size();
posCount_ = 0;
processImage();
if (posCount_ == 0)
{
positions.release();
if (votes.needed())
votes.release();
}
else
{
if (minDist_ > 1)
filterMinDist();
convertTo(positions, votes);
}
#endif
}
void GeneralizedHoughBase::detectImpl(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes)
{
edges.getGpuMat().copyTo(imageEdges_);
dx.getGpuMat().copyTo(imageDx_);
dy.getGpuMat().copyTo(imageDy_);
CV_Assert( imageEdges_.type() == CV_8UC1 );
CV_Assert( imageDx_.type() == CV_32FC1 && imageDx_.size() == imageEdges_.size() );
CV_Assert( imageDy_.type() == imageDx_.type() && imageDy_.size() == imageEdges_.size() );
imageSize_ = imageEdges_.size();
posCount_ = 0;
processImage();
if (posCount_ == 0)
{
positions.release();
if (votes.needed())
votes.release();
}
else
{
if (minDist_ > 1)
filterMinDist();
convertTo(positions, votes);
}
}
void GeneralizedHoughBase::buildEdgePointList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy)
{
using namespace cv::cuda::device::ght;
typedef int (*func_t)(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
static const func_t funcs[] =
{
0,
0,
0,
buildEdgePointList_gpu<short>,
buildEdgePointList_gpu<int>,
buildEdgePointList_gpu<float>,
0
};
CV_Assert( edges.type() == CV_8UC1 );
CV_Assert( dx.size() == edges.size() );
CV_Assert( dy.type() == dx.type() && dy.size() == edges.size() );
const func_t func = funcs[dx.depth()];
CV_Assert( func != 0 );
edgePointList_.cols = (int) (edgePointList_.step / sizeof(int));
ensureSizeIsEnough(2, edges.size().area(), CV_32SC1, edgePointList_);
edgePointList_.cols = func(edges, dx, dy, edgePointList_.ptr<unsigned int>(0), edgePointList_.ptr<float>(1));
}
struct IndexCmp
{
const int3* aux;
explicit IndexCmp(const int3* _aux) : aux(_aux) {}
bool operator ()(int l1, int l2) const
{
return aux[l1].x > aux[l2].x;
}
};
void GeneralizedHoughBase::filterMinDist()
{
oldPosBuf_.resize(posCount_);
oldVoteBuf_.resize(posCount_);
cudaSafeCall( cudaMemcpy(&oldPosBuf_[0], outBuf_.ptr(0), posCount_ * sizeof(float4), cudaMemcpyDeviceToHost) );
cudaSafeCall( cudaMemcpy(&oldVoteBuf_[0], outBuf_.ptr(1), posCount_ * sizeof(int3), cudaMemcpyDeviceToHost) );
indexies_.resize(posCount_);
for (int i = 0; i < posCount_; ++i)
indexies_[i] = i;
std::sort(indexies_.begin(), indexies_.end(), IndexCmp(&oldVoteBuf_[0]));
newPosBuf_.clear();
newVoteBuf_.clear();
newPosBuf_.reserve(posCount_);
newVoteBuf_.reserve(posCount_);
const int cellSize = cvRound(minDist_);
const int gridWidth = (imageSize_.width + cellSize - 1) / cellSize;
const int gridHeight = (imageSize_.height + cellSize - 1) / cellSize;
std::vector< std::vector<Point2f> > grid(gridWidth * gridHeight);
const double minDist2 = minDist_ * minDist_;
for (int i = 0; i < posCount_; ++i)
{
const int ind = indexies_[i];
Point2f p(oldPosBuf_[ind].x, oldPosBuf_[ind].y);
bool good = true;
const int xCell = static_cast<int>(p.x / cellSize);
const int yCell = static_cast<int>(p.y / cellSize);
int x1 = xCell - 1;
int y1 = yCell - 1;
int x2 = xCell + 1;
int y2 = yCell + 1;
// boundary check
x1 = std::max(0, x1);
y1 = std::max(0, y1);
x2 = std::min(gridWidth - 1, x2);
y2 = std::min(gridHeight - 1, y2);
for (int yy = y1; yy <= y2; ++yy)
{
for (int xx = x1; xx <= x2; ++xx)
{
const std::vector<Point2f>& m = grid[yy * gridWidth + xx];
for(size_t j = 0; j < m.size(); ++j)
{
const Point2f d = p - m[j];
if (d.ddot(d) < minDist2)
{
good = false;
goto break_out;
}
}
}
}
break_out:
if(good)
{
grid[yCell * gridWidth + xCell].push_back(p);
newPosBuf_.push_back(oldPosBuf_[ind]);
newVoteBuf_.push_back(oldVoteBuf_[ind]);
}
}
posCount_ = static_cast<int>(newPosBuf_.size());
cudaSafeCall( cudaMemcpy(outBuf_.ptr(0), &newPosBuf_[0], posCount_ * sizeof(float4), cudaMemcpyHostToDevice) );
cudaSafeCall( cudaMemcpy(outBuf_.ptr(1), &newVoteBuf_[0], posCount_ * sizeof(int3), cudaMemcpyHostToDevice) );
}
void GeneralizedHoughBase::convertTo(OutputArray positions, OutputArray votes)
{
ensureSizeIsEnough(1, posCount_, CV_32FC4, positions);
GpuMat(1, posCount_, CV_32FC4, outBuf_.ptr(0), outBuf_.step).copyTo(positions);
if (votes.needed())
{
ensureSizeIsEnough(1, posCount_, CV_32FC3, votes);
GpuMat(1, posCount_, CV_32FC4, outBuf_.ptr(1), outBuf_.step).copyTo(votes);
}
}
}
// GeneralizedHoughBallard
namespace
{
class GeneralizedHoughBallardImpl : public GeneralizedHoughBallard, private GeneralizedHoughBase
{
public:
GeneralizedHoughBallardImpl();
void setTemplate(InputArray templ, Point templCenter) { setTemplateImpl(templ, templCenter); }
void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter) { setTemplateImpl(edges, dx, dy, templCenter); }
void detect(InputArray image, OutputArray positions, OutputArray votes) { detectImpl(image, positions, votes); }
void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes) { detectImpl(edges, dx, dy, positions, votes); }
void setCannyLowThresh(int cannyLowThresh) { cannyLowThresh_ = cannyLowThresh; }
int getCannyLowThresh() const { return cannyLowThresh_; }
void setCannyHighThresh(int cannyHighThresh) { cannyHighThresh_ = cannyHighThresh; }
int getCannyHighThresh() const { return cannyHighThresh_; }
void setMinDist(double minDist) { minDist_ = minDist; }
double getMinDist() const { return minDist_; }
void setDp(double dp) { dp_ = dp; }
double getDp() const { return dp_; }
void setMaxBufferSize(int maxBufferSize) { maxBufferSize_ = maxBufferSize; }
int getMaxBufferSize() const { return maxBufferSize_; }
void setLevels(int levels) { levels_ = levels; }
int getLevels() const { return levels_; }
void setVotesThreshold(int votesThreshold) { votesThreshold_ = votesThreshold; }
int getVotesThreshold() const { return votesThreshold_; }
private:
void processTempl();
void processImage();
void calcHist();
void findPosInHist();
int levels_;
int votesThreshold_;
GpuMat r_table_;
GpuMat r_sizes_;
GpuMat hist_;
};
GeneralizedHoughBallardImpl::GeneralizedHoughBallardImpl()
{
levels_ = 360;
votesThreshold_ = 100;
}
void GeneralizedHoughBallardImpl::processTempl()
{
using namespace cv::cuda::device::ght;
CV_Assert( levels_ > 0 );
buildEdgePointList(templEdges_, templDx_, templDy_);
ensureSizeIsEnough(levels_ + 1, maxBufferSize_, CV_16SC2, r_table_);
ensureSizeIsEnough(1, levels_ + 1, CV_32SC1, r_sizes_);
r_sizes_.setTo(Scalar::all(0));
if (edgePointList_.cols > 0)
{
buildRTable_gpu(edgePointList_.ptr<unsigned int>(0), edgePointList_.ptr<float>(1), edgePointList_.cols,
r_table_, r_sizes_.ptr<int>(), make_short2(templCenter_.x, templCenter_.y), levels_);
cuda::min(r_sizes_, maxBufferSize_, r_sizes_);
}
}
void GeneralizedHoughBallardImpl::processImage()
{
calcHist();
findPosInHist();
}
void GeneralizedHoughBallardImpl::calcHist()
{
using namespace cv::cuda::device::ght;
CV_Assert( levels_ > 0 && r_table_.rows == (levels_ + 1) && r_sizes_.cols == (levels_ + 1) );
CV_Assert( dp_ > 0.0);
const double idp = 1.0 / dp_;
buildEdgePointList(imageEdges_, imageDx_, imageDy_);
ensureSizeIsEnough(cvCeil(imageSize_.height * idp) + 2, cvCeil(imageSize_.width * idp) + 2, CV_32SC1, hist_);
hist_.setTo(Scalar::all(0));
if (edgePointList_.cols > 0)
{
Ballard_Pos_calcHist_gpu(edgePointList_.ptr<unsigned int>(0), edgePointList_.ptr<float>(1), edgePointList_.cols,
r_table_, r_sizes_.ptr<int>(),
hist_,
(float)dp_, levels_);
}
}
void GeneralizedHoughBallardImpl::findPosInHist()
{
using namespace cv::cuda::device::ght;
CV_Assert( votesThreshold_ > 0 );
ensureSizeIsEnough(2, maxBufferSize_, CV_32FC4, outBuf_);
posCount_ = Ballard_Pos_findPosInHist_gpu(hist_, outBuf_.ptr<float4>(0), outBuf_.ptr<int3>(1), maxBufferSize_, (float)dp_, votesThreshold_);
}
}
Ptr<GeneralizedHoughBallard> cv::cuda::createGeneralizedHoughBallard()
{
return makePtr<GeneralizedHoughBallardImpl>();
}
// GeneralizedHoughGuil
namespace
{
class GeneralizedHoughGuilImpl : public GeneralizedHoughGuil, private GeneralizedHoughBase
{
public:
GeneralizedHoughGuilImpl();
void setTemplate(InputArray templ, Point templCenter) { setTemplateImpl(templ, templCenter); }
void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter) { setTemplateImpl(edges, dx, dy, templCenter); }
void detect(InputArray image, OutputArray positions, OutputArray votes) { detectImpl(image, positions, votes); }
void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes) { detectImpl(edges, dx, dy, positions, votes); }
void setCannyLowThresh(int cannyLowThresh) { cannyLowThresh_ = cannyLowThresh; }
int getCannyLowThresh() const { return cannyLowThresh_; }
void setCannyHighThresh(int cannyHighThresh) { cannyHighThresh_ = cannyHighThresh; }
int getCannyHighThresh() const { return cannyHighThresh_; }
void setMinDist(double minDist) { minDist_ = minDist; }
double getMinDist() const { return minDist_; }
void setDp(double dp) { dp_ = dp; }
double getDp() const { return dp_; }
void setMaxBufferSize(int maxBufferSize) { maxBufferSize_ = maxBufferSize; }
int getMaxBufferSize() const { return maxBufferSize_; }
void setXi(double xi) { xi_ = xi; }
double getXi() const { return xi_; }
void setLevels(int levels) { levels_ = levels; }
int getLevels() const { return levels_; }
void setAngleEpsilon(double angleEpsilon) { angleEpsilon_ = angleEpsilon; }
double getAngleEpsilon() const { return angleEpsilon_; }
void setMinAngle(double minAngle) { minAngle_ = minAngle; }
double getMinAngle() const { return minAngle_; }
void setMaxAngle(double maxAngle) { maxAngle_ = maxAngle; }
double getMaxAngle() const { return maxAngle_; }
void setAngleStep(double angleStep) { angleStep_ = angleStep; }
double getAngleStep() const { return angleStep_; }
void setAngleThresh(int angleThresh) { angleThresh_ = angleThresh; }
int getAngleThresh() const { return angleThresh_; }
void setMinScale(double minScale) { minScale_ = minScale; }
double getMinScale() const { return minScale_; }
void setMaxScale(double maxScale) { maxScale_ = maxScale; }
double getMaxScale() const { return maxScale_; }
void setScaleStep(double scaleStep) { scaleStep_ = scaleStep; }
double getScaleStep() const { return scaleStep_; }
void setScaleThresh(int scaleThresh) { scaleThresh_ = scaleThresh; }
int getScaleThresh() const { return scaleThresh_; }
void setPosThresh(int posThresh) { posThresh_ = posThresh; }
int getPosThresh() const { return posThresh_; }
private:
void processTempl();
void processImage();
double xi_;
int levels_;
double angleEpsilon_;
double minAngle_;
double maxAngle_;
double angleStep_;
int angleThresh_;
double minScale_;
double maxScale_;
double scaleStep_;
int scaleThresh_;
int posThresh_;
struct Feature
{
GpuMat p1_pos;
GpuMat p1_theta;
GpuMat p2_pos;
GpuMat d12;
GpuMat r1;
GpuMat r2;
GpuMat sizes;
int maxSize;
void create(int levels, int maxCapacity, bool isTempl);
};
typedef void (*set_func_t)(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
typedef void (*build_func_t)(const unsigned int* coordList, const float* thetaList, int pointsCount,
int* sizes, int maxSize,
float xi, float angleEpsilon, int levels,
float2 center, float maxDist);
void buildFeatureList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Feature& features,
set_func_t set_func, build_func_t build_func, bool isTempl, Point2d center = Point2d());
void calcOrientation();
void calcScale(double angle);
void calcPosition(double angle, int angleVotes, double scale, int scaleVotes);
Feature templFeatures_;
Feature imageFeatures_;
std::vector< std::pair<double, int> > angles_;
std::vector< std::pair<double, int> > scales_;
GpuMat hist_;
std::vector<int> h_buf_;
};
double toRad(double a)
{
return a * CV_PI / 180.0;
}
double clampAngle(double a)
{
double res = a;
while (res > 360.0)
res -= 360.0;
while (res < 0)
res += 360.0;
return res;
}
bool angleEq(double a, double b, double eps = 1.0)
{
return (fabs(clampAngle(a - b)) <= eps);
}
GeneralizedHoughGuilImpl::GeneralizedHoughGuilImpl()
{
maxBufferSize_ = 1000;
xi_ = 90.0;
levels_ = 360;
angleEpsilon_ = 1.0;
minAngle_ = 0.0;
maxAngle_ = 360.0;
angleStep_ = 1.0;
angleThresh_ = 15000;
minScale_ = 0.5;
maxScale_ = 2.0;
scaleStep_ = 0.05;
scaleThresh_ = 1000;
posThresh_ = 100;
}
void GeneralizedHoughGuilImpl::processTempl()
{
using namespace cv::cuda::device::ght;
buildFeatureList(templEdges_, templDx_, templDy_, templFeatures_,
Guil_Full_setTemplFeatures, Guil_Full_buildTemplFeatureList_gpu,
true, templCenter_);
h_buf_.resize(templFeatures_.sizes.cols);
cudaSafeCall( cudaMemcpy(&h_buf_[0], templFeatures_.sizes.data, h_buf_.size() * sizeof(int), cudaMemcpyDeviceToHost) );
templFeatures_.maxSize = *std::max_element(h_buf_.begin(), h_buf_.end());
}
void GeneralizedHoughGuilImpl::processImage()
{
using namespace cv::cuda::device::ght;
CV_Assert( levels_ > 0 );
CV_Assert( templFeatures_.sizes.cols == levels_ + 1 );
CV_Assert( minAngle_ >= 0.0 && minAngle_ < maxAngle_ && maxAngle_ <= 360.0 );
CV_Assert( angleStep_ > 0.0 && angleStep_ < 360.0 );
CV_Assert( angleThresh_ > 0 );
CV_Assert( minScale_ > 0.0 && minScale_ < maxScale_ );
CV_Assert( scaleStep_ > 0.0 );
CV_Assert( scaleThresh_ > 0 );
CV_Assert( dp_ > 0.0 );
CV_Assert( posThresh_ > 0 );
const double iAngleStep = 1.0 / angleStep_;
const int angleRange = cvCeil((maxAngle_ - minAngle_) * iAngleStep);
const double iScaleStep = 1.0 / scaleStep_;
const int scaleRange = cvCeil((maxScale_ - minScale_) * iScaleStep);
const double idp = 1.0 / dp_;
const int histRows = cvCeil(imageSize_.height * idp);
const int histCols = cvCeil(imageSize_.width * idp);
ensureSizeIsEnough(histRows + 2, std::max(angleRange + 1, std::max(scaleRange + 1, histCols + 2)), CV_32SC1, hist_);
h_buf_.resize(std::max(angleRange + 1, scaleRange + 1));
ensureSizeIsEnough(2, maxBufferSize_, CV_32FC4, outBuf_);
buildFeatureList(imageEdges_, imageDx_, imageDy_, imageFeatures_,
Guil_Full_setImageFeatures, Guil_Full_buildImageFeatureList_gpu,
false);
calcOrientation();
for (size_t i = 0; i < angles_.size(); ++i)
{
const double angle = angles_[i].first;
const int angleVotes = angles_[i].second;
calcScale(angle);
for (size_t j = 0; j < scales_.size(); ++j)
{
const double scale = scales_[j].first;
const int scaleVotes = scales_[j].second;
calcPosition(angle, angleVotes, scale, scaleVotes);
}
}
}
void GeneralizedHoughGuilImpl::Feature::create(int levels, int maxCapacity, bool isTempl)
{
if (!isTempl)
{
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, p1_pos);
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, p2_pos);
}
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC1, p1_theta);
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC1, d12);
if (isTempl)
{
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, r1);
ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, r2);
}
ensureSizeIsEnough(1, levels + 1, CV_32SC1, sizes);
sizes.setTo(Scalar::all(0));
maxSize = 0;
}
void GeneralizedHoughGuilImpl::buildFeatureList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Feature& features,
set_func_t set_func, build_func_t build_func, bool isTempl, Point2d center)
{
CV_Assert( levels_ > 0 );
const double maxDist = sqrt((double) templSize_.width * templSize_.width + templSize_.height * templSize_.height) * maxScale_;
features.create(levels_, maxBufferSize_, isTempl);
set_func(features.p1_pos, features.p1_theta, features.p2_pos, features.d12, features.r1, features.r2);
buildEdgePointList(edges, dx, dy);
if (edgePointList_.cols > 0)
{
build_func(edgePointList_.ptr<unsigned int>(0), edgePointList_.ptr<float>(1), edgePointList_.cols,
features.sizes.ptr<int>(), maxBufferSize_, (float)xi_, (float)angleEpsilon_, levels_, make_float2((float)center.x, (float)center.y), (float)maxDist);
}
}
void GeneralizedHoughGuilImpl::calcOrientation()
{
using namespace cv::cuda::device::ght;
const double iAngleStep = 1.0 / angleStep_;
const int angleRange = cvCeil((maxAngle_ - minAngle_) * iAngleStep);
hist_.setTo(Scalar::all(0));
Guil_Full_calcOHist_gpu(templFeatures_.sizes.ptr<int>(), imageFeatures_.sizes.ptr<int>(0), hist_.ptr<int>(),
(float)minAngle_, (float)maxAngle_, (float)angleStep_, angleRange, levels_, templFeatures_.maxSize);
cudaSafeCall( cudaMemcpy(&h_buf_[0], hist_.data, h_buf_.size() * sizeof(int), cudaMemcpyDeviceToHost) );
angles_.clear();
for (int n = 0; n < angleRange; ++n)
{
if (h_buf_[n] >= angleThresh_)
{
const double angle = minAngle_ + n * angleStep_;
angles_.push_back(std::make_pair(angle, h_buf_[n]));
}
}
}
void GeneralizedHoughGuilImpl::calcScale(double angle)
{
using namespace cv::cuda::device::ght;
const double iScaleStep = 1.0 / scaleStep_;
const int scaleRange = cvCeil((maxScale_ - minScale_) * iScaleStep);
hist_.setTo(Scalar::all(0));
Guil_Full_calcSHist_gpu(templFeatures_.sizes.ptr<int>(), imageFeatures_.sizes.ptr<int>(0), hist_.ptr<int>(),
(float)angle, (float)angleEpsilon_, (float)minScale_, (float)maxScale_,
(float)iScaleStep, scaleRange, levels_, templFeatures_.maxSize);
cudaSafeCall( cudaMemcpy(&h_buf_[0], hist_.data, h_buf_.size() * sizeof(int), cudaMemcpyDeviceToHost) );
scales_.clear();
for (int s = 0; s < scaleRange; ++s)
{
if (h_buf_[s] >= scaleThresh_)
{
const double scale = minScale_ + s * scaleStep_;
scales_.push_back(std::make_pair(scale, h_buf_[s]));
}
}
}
void GeneralizedHoughGuilImpl::calcPosition(double angle, int angleVotes, double scale, int scaleVotes)
{
using namespace cv::cuda::device::ght;
hist_.setTo(Scalar::all(0));
Guil_Full_calcPHist_gpu(templFeatures_.sizes.ptr<int>(), imageFeatures_.sizes.ptr<int>(0), hist_,
(float)angle, (float)angleEpsilon_, (float)scale, (float)dp_, levels_, templFeatures_.maxSize);
posCount_ = Guil_Full_findPosInHist_gpu(hist_, outBuf_.ptr<float4>(0), outBuf_.ptr<int3>(1),
posCount_, maxBufferSize_, (float)angle, angleVotes,
(float)scale, scaleVotes, (float)dp_, posThresh_);
}
}
Ptr<GeneralizedHoughGuil> cv::cuda::createGeneralizedHoughGuil()
{
return makePtr<GeneralizedHoughGuilImpl>();
}
#endif /* !defined (HAVE_CUDA) */