motempl.cpp 17 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"


/* motion templates */
CV_IMPL void
cvUpdateMotionHistory( const void* silhouette, void* mhimg,
                       double timestamp, double mhi_duration )
{
    CvMat  silhstub, *silh = cvGetMat(silhouette, &silhstub);
    CvMat  mhistub, *mhi = cvGetMat(mhimg, &mhistub);

    if( !CV_IS_MASK_ARR( silh ))
        CV_Error( CV_StsBadMask, "" );

    if( CV_MAT_TYPE( mhi->type ) != CV_32FC1 )
        CV_Error( CV_StsUnsupportedFormat, "" );

    if( !CV_ARE_SIZES_EQ( mhi, silh ))
        CV_Error( CV_StsUnmatchedSizes, "" );

    CvSize size = cvGetMatSize( mhi );

    if( CV_IS_MAT_CONT( mhi->type & silh->type ))
    {
        size.width *= size.height;
        size.height = 1;
    }

    float ts = (float)timestamp;
    float delbound = (float)(timestamp - mhi_duration);
    int x, y;
#if CV_SSE2
    volatile bool useSIMD = cv::checkHardwareSupport(CV_CPU_SSE2);
#endif
    
    for( y = 0; y < size.height; y++ )
    {
        const uchar* silhData = silh->data.ptr + silh->step*y;
        float* mhiData = (float*)(mhi->data.ptr + mhi->step*y);
        x = 0;
        
#if CV_SSE2
        if( useSIMD )
        {
            __m128 ts4 = _mm_set1_ps(ts), db4 = _mm_set1_ps(delbound);
            for( ; x <= size.width - 8; x += 8 )
            {
                __m128i z = _mm_setzero_si128();
                __m128i s = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(silhData + x)), z);
                __m128 s0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(s, z)), s1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(s, z));
                __m128 v0 = _mm_loadu_ps(mhiData + x), v1 = _mm_loadu_ps(mhiData + x + 4);
                __m128 fz = _mm_setzero_ps();
                
                v0 = _mm_and_ps(v0, _mm_cmpge_ps(v0, db4));
                v1 = _mm_and_ps(v1, _mm_cmpge_ps(v1, db4));

                __m128 m0 = _mm_and_ps(_mm_xor_ps(v0, ts4), _mm_cmpneq_ps(s0, fz));
                __m128 m1 = _mm_and_ps(_mm_xor_ps(v1, ts4), _mm_cmpneq_ps(s1, fz));
                
                v0 = _mm_xor_ps(v0, m0);
                v1 = _mm_xor_ps(v1, m1);
                
                _mm_storeu_ps(mhiData + x, v0);
                _mm_storeu_ps(mhiData + x + 4, v1);
            }
        }
#endif
        
        for( ; x < size.width; x++ )
        {
            float val = mhiData[x];
            val = silhData[x] ? ts : val < delbound ? 0 : val;
            mhiData[x] = val;
        }
    }
}


CV_IMPL void
cvCalcMotionGradient( const CvArr* mhiimg, CvArr* maskimg,
                      CvArr* orientation,
                      double delta1, double delta2,
                      int aperture_size )
{
    cv::Ptr<CvMat> dX_min, dY_max;

    CvMat  mhistub, *mhi = cvGetMat(mhiimg, &mhistub);
    CvMat  maskstub, *mask = cvGetMat(maskimg, &maskstub);
    CvMat  orientstub, *orient = cvGetMat(orientation, &orientstub);
    CvMat  dX_min_row, dY_max_row, orient_row, mask_row;
    CvSize size;
    int x, y;

    float  gradient_epsilon = 1e-4f * aperture_size * aperture_size;
    float  min_delta, max_delta;

    if( !CV_IS_MASK_ARR( mask ))
        CV_Error( CV_StsBadMask, "" );

    if( aperture_size < 3 || aperture_size > 7 || (aperture_size & 1) == 0 )
        CV_Error( CV_StsOutOfRange, "aperture_size must be 3, 5 or 7" );

    if( delta1 <= 0 || delta2 <= 0 )
        CV_Error( CV_StsOutOfRange, "both delta's must be positive" );

    if( CV_MAT_TYPE( mhi->type ) != CV_32FC1 || CV_MAT_TYPE( orient->type ) != CV_32FC1 )
        CV_Error( CV_StsUnsupportedFormat,
        "MHI and orientation must be single-channel floating-point images" );

    if( !CV_ARE_SIZES_EQ( mhi, mask ) || !CV_ARE_SIZES_EQ( orient, mhi ))
        CV_Error( CV_StsUnmatchedSizes, "" );

    if( orient->data.ptr == mhi->data.ptr )
        CV_Error( CV_StsInplaceNotSupported, "orientation image must be different from MHI" );

    if( delta1 > delta2 )
    {
        double t;
        CV_SWAP( delta1, delta2, t );
    }

    size = cvGetMatSize( mhi );
    min_delta = (float)delta1;
    max_delta = (float)delta2;
    dX_min = cvCreateMat( mhi->rows, mhi->cols, CV_32F );
    dY_max = cvCreateMat( mhi->rows, mhi->cols, CV_32F );

    // calc Dx and Dy
    cvSobel( mhi, dX_min, 1, 0, aperture_size );
    cvSobel( mhi, dY_max, 0, 1, aperture_size );
    cvGetRow( dX_min, &dX_min_row, 0 );
    cvGetRow( dY_max, &dY_max_row, 0 );
    cvGetRow( orient, &orient_row, 0 );
    cvGetRow( mask, &mask_row, 0 );

    // calc gradient
    for( y = 0; y < size.height; y++ )
    {
        dX_min_row.data.ptr = dX_min->data.ptr + y*dX_min->step;
        dY_max_row.data.ptr = dY_max->data.ptr + y*dY_max->step;
        orient_row.data.ptr = orient->data.ptr + y*orient->step;
        mask_row.data.ptr = mask->data.ptr + y*mask->step;
        cvCartToPolar( &dX_min_row, &dY_max_row, 0, &orient_row, 1 );

        // make orientation zero where the gradient is very small
        for( x = 0; x < size.width; x++ )
        {
            float dY = dY_max_row.data.fl[x];
            float dX = dX_min_row.data.fl[x];

            if( fabs(dX) < gradient_epsilon && fabs(dY) < gradient_epsilon )
            {
                mask_row.data.ptr[x] = 0;
                orient_row.data.i[x] = 0;
            }
            else
                mask_row.data.ptr[x] = 1;
        }
    }

    cvErode( mhi, dX_min, 0, (aperture_size-1)/2);
    cvDilate( mhi, dY_max, 0, (aperture_size-1)/2);

    // mask off pixels which have little motion difference in their neighborhood
    for( y = 0; y < size.height; y++ )
    {
        dX_min_row.data.ptr = dX_min->data.ptr + y*dX_min->step;
        dY_max_row.data.ptr = dY_max->data.ptr + y*dY_max->step;
        mask_row.data.ptr = mask->data.ptr + y*mask->step;
        orient_row.data.ptr = orient->data.ptr + y*orient->step;
        
        for( x = 0; x < size.width; x++ )
        {
            float d0 = dY_max_row.data.fl[x] - dX_min_row.data.fl[x];

            if( mask_row.data.ptr[x] == 0 || d0 < min_delta || max_delta < d0 )
            {
                mask_row.data.ptr[x] = 0;
                orient_row.data.i[x] = 0;
            }
        }
    }
}


CV_IMPL double
cvCalcGlobalOrientation( const void* orientation, const void* maskimg, const void* mhiimg,
                         double curr_mhi_timestamp, double mhi_duration )
{
    int hist_size = 12;
    cv::Ptr<CvHistogram> hist;

    CvMat  mhistub, *mhi = cvGetMat(mhiimg, &mhistub);
    CvMat  maskstub, *mask = cvGetMat(maskimg, &maskstub);
    CvMat  orientstub, *orient = cvGetMat(orientation, &orientstub);
    void*  _orient;
    float _ranges[] = { 0, 360 };
    float* ranges = _ranges;
    int base_orient;
    float shift_orient = 0, shift_weight = 0;
    float a, b, fbase_orient;
    float delbound;
    CvMat mhi_row, mask_row, orient_row;
    int x, y, mhi_rows, mhi_cols;

    if( !CV_IS_MASK_ARR( mask ))
        CV_Error( CV_StsBadMask, "" );

    if( CV_MAT_TYPE( mhi->type ) != CV_32FC1 || CV_MAT_TYPE( orient->type ) != CV_32FC1 )
        CV_Error( CV_StsUnsupportedFormat,
        "MHI and orientation must be single-channel floating-point images" );

    if( !CV_ARE_SIZES_EQ( mhi, mask ) || !CV_ARE_SIZES_EQ( orient, mhi ))
        CV_Error( CV_StsUnmatchedSizes, "" );

    if( mhi_duration <= 0 )
        CV_Error( CV_StsOutOfRange, "MHI duration must be positive" );

    if( orient->data.ptr == mhi->data.ptr )
        CV_Error( CV_StsInplaceNotSupported, "orientation image must be different from MHI" );

    // calculate histogram of different orientation values
    hist = cvCreateHist( 1, &hist_size, CV_HIST_ARRAY, &ranges );
    _orient = orient;
    cvCalcArrHist( &_orient, hist, 0, mask );

    // find the maximum index (the dominant orientation)
    cvGetMinMaxHistValue( hist, 0, 0, 0, &base_orient );
    fbase_orient = base_orient*360.f/hist_size;

    // override timestamp with the maximum value in MHI
    cvMinMaxLoc( mhi, 0, &curr_mhi_timestamp, 0, 0, mask );

    // find the shift relative to the dominant orientation as weighted sum of relative angles
    a = (float)(254. / 255. / mhi_duration);
    b = (float)(1. - curr_mhi_timestamp * a);
    delbound = (float)(curr_mhi_timestamp - mhi_duration);
    mhi_rows = mhi->rows;
    mhi_cols = mhi->cols;

    if( CV_IS_MAT_CONT( mhi->type & mask->type & orient->type ))
    {
        mhi_cols *= mhi_rows;
        mhi_rows = 1;
    }

    cvGetRow( mhi, &mhi_row, 0 );
    cvGetRow( mask, &mask_row, 0 );
    cvGetRow( orient, &orient_row, 0 );

    /*
       a = 254/(255*dt)
       b = 1 - t*a = 1 - 254*t/(255*dur) =
       (255*dt - 254*t)/(255*dt) =
       (dt - (t - dt)*254)/(255*dt);
       --------------------------------------------------------
       ax + b = 254*x/(255*dt) + (dt - (t - dt)*254)/(255*dt) =
       (254*x + dt - (t - dt)*254)/(255*dt) =
       ((x - (t - dt))*254 + dt)/(255*dt) =
       (((x - (t - dt))/dt)*254 + 1)/255 = (((x - low_time)/dt)*254 + 1)/255
     */
    for( y = 0; y < mhi_rows; y++ )
    {
        mhi_row.data.ptr = mhi->data.ptr + mhi->step*y;
        mask_row.data.ptr = mask->data.ptr + mask->step*y;
        orient_row.data.ptr = orient->data.ptr + orient->step*y;

        for( x = 0; x < mhi_cols; x++ )
            if( mask_row.data.ptr[x] != 0 && mhi_row.data.fl[x] > delbound )
            {
                /*
                   orient in 0..360, base_orient in 0..360
                   -> (rel_angle = orient - base_orient) in -360..360.
                   rel_angle is translated to -180..180
                 */
                float weight = mhi_row.data.fl[x] * a + b;
                float rel_angle = orient_row.data.fl[x] - fbase_orient;

                rel_angle += (rel_angle < -180 ? 360 : 0);
                rel_angle += (rel_angle > 180 ? -360 : 0);

                if( fabs(rel_angle) < 45 )
                {
                    shift_orient += weight * rel_angle;
                    shift_weight += weight;
                }
            }
    }

    // add the dominant orientation and the relative shift
    if( shift_weight == 0 )
        shift_weight = 0.01f;

    fbase_orient += shift_orient / shift_weight;
    fbase_orient -= (fbase_orient < 360 ? 0 : 360);
    fbase_orient += (fbase_orient >= 0 ? 0 : 360);

    return fbase_orient;
}


CV_IMPL CvSeq*
cvSegmentMotion( const CvArr* mhiimg, CvArr* segmask, CvMemStorage* storage,
                 double timestamp, double seg_thresh )
{
    CvSeq* components = 0;
    cv::Ptr<CvMat> mask8u;

    CvMat  mhistub, *mhi = cvGetMat(mhiimg, &mhistub);
    CvMat  maskstub, *mask = cvGetMat(segmask, &maskstub);
    Cv32suf v, comp_idx;
    int stub_val, ts;
    int x, y;

    if( !storage )
        CV_Error( CV_StsNullPtr, "NULL memory storage" );

    mhi = cvGetMat( mhi, &mhistub );
    mask = cvGetMat( mask, &maskstub );

    if( CV_MAT_TYPE( mhi->type ) != CV_32FC1 || CV_MAT_TYPE( mask->type ) != CV_32FC1 )
        CV_Error( CV_BadDepth, "Both MHI and the destination mask" );

    if( !CV_ARE_SIZES_EQ( mhi, mask ))
        CV_Error( CV_StsUnmatchedSizes, "" );

    mask8u = cvCreateMat( mhi->rows + 2, mhi->cols + 2, CV_8UC1 );
    cvZero( mask8u );
    cvZero( mask );
    components = cvCreateSeq( CV_SEQ_KIND_GENERIC, sizeof(CvSeq),
                              sizeof(CvConnectedComp), storage );
    
    v.f = (float)timestamp; ts = v.i;
    v.f = FLT_MAX*0.1f; stub_val = v.i;
    comp_idx.f = 1;

    for( y = 0; y < mhi->rows; y++ )
    {
        int* mhi_row = (int*)(mhi->data.ptr + y*mhi->step);
        for( x = 0; x < mhi->cols; x++ )
        {
            if( mhi_row[x] == 0 )
                mhi_row[x] = stub_val;
        }
    }

    for( y = 0; y < mhi->rows; y++ )
    {
        int* mhi_row = (int*)(mhi->data.ptr + y*mhi->step);
        uchar* mask8u_row = mask8u->data.ptr + (y+1)*mask8u->step + 1;

        for( x = 0; x < mhi->cols; x++ )
        {
            if( mhi_row[x] == ts && mask8u_row[x] == 0 )
            {
                CvConnectedComp comp;
                int x1, y1;
                CvScalar _seg_thresh = cvRealScalar(seg_thresh);
                CvPoint seed = cvPoint(x,y);

                cvFloodFill( mhi, seed, cvRealScalar(0), _seg_thresh, _seg_thresh,
                            &comp, CV_FLOODFILL_MASK_ONLY + 2*256 + 4, mask8u );

                for( y1 = 0; y1 < comp.rect.height; y1++ )
                {
                    int* mask_row1 = (int*)(mask->data.ptr +
                                    (comp.rect.y + y1)*mask->step) + comp.rect.x;
                    uchar* mask8u_row1 = mask8u->data.ptr +
                                    (comp.rect.y + y1+1)*mask8u->step + comp.rect.x+1;

                    for( x1 = 0; x1 < comp.rect.width; x1++ )
                    {
                        if( mask8u_row1[x1] > 1 )
                        {
                            mask8u_row1[x1] = 1;
                            mask_row1[x1] = comp_idx.i;
                        }
                    }
                }
                comp_idx.f++;
                cvSeqPush( components, &comp );
            }
        }
    }

    for( y = 0; y < mhi->rows; y++ )
    {
        int* mhi_row = (int*)(mhi->data.ptr + y*mhi->step);
        for( x = 0; x < mhi->cols; x++ )
        {
            if( mhi_row[x] == stub_val )
                mhi_row[x] = 0;
        }
    }

    return components;
}


void cv::updateMotionHistory( InputArray _silhouette, InputOutputArray _mhi,
                              double timestamp, double duration )
{
    Mat silhouette = _silhouette.getMat();
    CvMat c_silhouette = silhouette, c_mhi = _mhi.getMat();
    cvUpdateMotionHistory( &c_silhouette, &c_mhi, timestamp, duration );
}

void cv::calcMotionGradient( InputArray _mhi, OutputArray _mask,
                             OutputArray _orientation,
                             double delta1, double delta2,
                             int aperture_size )
{
    Mat mhi = _mhi.getMat();
    _mask.create(mhi.size(), CV_8U);
    _orientation.create(mhi.size(), CV_32F);
    CvMat c_mhi = mhi, c_mask = _mask.getMat(), c_orientation = _orientation.getMat();
    cvCalcMotionGradient(&c_mhi, &c_mask, &c_orientation, delta1, delta2, aperture_size);
}

double cv::calcGlobalOrientation( InputArray _orientation, InputArray _mask,
                                  InputArray _mhi, double timestamp,
                                  double duration )
{
    Mat orientation = _orientation.getMat(), mask = _mask.getMat(), mhi = _mhi.getMat();
    CvMat c_orientation = orientation, c_mask = mask, c_mhi = mhi;
    return cvCalcGlobalOrientation(&c_orientation, &c_mask, &c_mhi, timestamp, duration);
}

void cv::segmentMotion(InputArray _mhi, OutputArray _segmask,
                       vector<Rect>& boundingRects,
                       double timestamp, double segThresh)
{
    Mat mhi = _mhi.getMat();
    _segmask.create(mhi.size(), CV_32F);
    CvMat c_mhi = mhi, c_segmask = _segmask.getMat();
    Ptr<CvMemStorage> storage = cvCreateMemStorage();
    Seq<CvConnectedComp> comps = cvSegmentMotion(&c_mhi, &c_segmask, storage, timestamp, segThresh);
    Seq<CvConnectedComp>::const_iterator it(comps);
    size_t i, ncomps = comps.size();
    boundingRects.resize(ncomps); 
    for( i = 0; i < ncomps; i++, ++it)
        boundingRects[i] = (*it).rect;
}
    
/* End of file. */