rescaler_sse2.c 16 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
// Copyright 2015 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// SSE2 Rescaling functions
//
// Author: Skal (pascal.massimino@gmail.com)

#include "src/dsp/dsp.h"

#if defined(WEBP_USE_SSE2) && !defined(WEBP_REDUCE_SIZE)
#include <emmintrin.h>

#include <assert.h>
#include "src/utils/rescaler_utils.h"
#include "src/utils/utils.h"

//------------------------------------------------------------------------------
// Implementations of critical functions ImportRow / ExportRow

#define ROUNDER (WEBP_RESCALER_ONE >> 1)
#define MULT_FIX(x, y) (((uint64_t)(x) * (y) + ROUNDER) >> WEBP_RESCALER_RFIX)
#define MULT_FIX_FLOOR(x, y) (((uint64_t)(x) * (y)) >> WEBP_RESCALER_RFIX)

// input: 8 bytes ABCDEFGH -> output: A0E0B0F0C0G0D0H0
static void LoadTwoPixels_SSE2(const uint8_t* const src, __m128i* out) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i A = _mm_loadl_epi64((const __m128i*)(src));  // ABCDEFGH
  const __m128i B = _mm_unpacklo_epi8(A, zero);              // A0B0C0D0E0F0G0H0
  const __m128i C = _mm_srli_si128(B, 8);                    // E0F0G0H0
  *out = _mm_unpacklo_epi16(B, C);
}

// input: 8 bytes ABCDEFGH -> output: A0B0C0D0E0F0G0H0
static void LoadEightPixels_SSE2(const uint8_t* const src, __m128i* out) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i A = _mm_loadl_epi64((const __m128i*)(src));  // ABCDEFGH
  *out = _mm_unpacklo_epi8(A, zero);
}

static void RescalerImportRowExpand_SSE2(WebPRescaler* const wrk,
                                         const uint8_t* src) {
  rescaler_t* frow = wrk->frow;
  const rescaler_t* const frow_end = frow + wrk->dst_width * wrk->num_channels;
  const int x_add = wrk->x_add;
  int accum = x_add;
  __m128i cur_pixels;

  // SSE2 implementation only works with 16b signed arithmetic at max.
  if (wrk->src_width < 8 || accum >= (1 << 15)) {
    WebPRescalerImportRowExpand_C(wrk, src);
    return;
  }

  assert(!WebPRescalerInputDone(wrk));
  assert(wrk->x_expand);
  if (wrk->num_channels == 4) {
    LoadTwoPixels_SSE2(src, &cur_pixels);
    src += 4;
    while (1) {
      const __m128i mult = _mm_set1_epi32(((x_add - accum) << 16) | accum);
      const __m128i out = _mm_madd_epi16(cur_pixels, mult);
      _mm_storeu_si128((__m128i*)frow, out);
      frow += 4;
      if (frow >= frow_end) break;
      accum -= wrk->x_sub;
      if (accum < 0) {
        LoadTwoPixels_SSE2(src, &cur_pixels);
        src += 4;
        accum += x_add;
      }
    }
  } else {
    int left;
    const uint8_t* const src_limit = src + wrk->src_width - 8;
    LoadEightPixels_SSE2(src, &cur_pixels);
    src += 7;
    left = 7;
    while (1) {
      const __m128i mult = _mm_cvtsi32_si128(((x_add - accum) << 16) | accum);
      const __m128i out = _mm_madd_epi16(cur_pixels, mult);
      assert(sizeof(*frow) == sizeof(uint32_t));
      WebPUint32ToMem((uint8_t*)frow, _mm_cvtsi128_si32(out));
      frow += 1;
      if (frow >= frow_end) break;
      accum -= wrk->x_sub;
      if (accum < 0) {
        if (--left) {
          cur_pixels = _mm_srli_si128(cur_pixels, 2);
        } else if (src <= src_limit) {
          LoadEightPixels_SSE2(src, &cur_pixels);
          src += 7;
          left = 7;
        } else {   // tail
          cur_pixels = _mm_srli_si128(cur_pixels, 2);
          cur_pixels = _mm_insert_epi16(cur_pixels, src[1], 1);
          src += 1;
          left = 1;
        }
        accum += x_add;
      }
    }
  }
  assert(accum == 0);
}

static void RescalerImportRowShrink_SSE2(WebPRescaler* const wrk,
                                         const uint8_t* src) {
  const int x_sub = wrk->x_sub;
  int accum = 0;
  const __m128i zero = _mm_setzero_si128();
  const __m128i mult0 = _mm_set1_epi16(x_sub);
  const __m128i mult1 = _mm_set1_epi32(wrk->fx_scale);
  const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER);
  __m128i sum = zero;
  rescaler_t* frow = wrk->frow;
  const rescaler_t* const frow_end = wrk->frow + 4 * wrk->dst_width;

  if (wrk->num_channels != 4 || wrk->x_add > (x_sub << 7)) {
    WebPRescalerImportRowShrink_C(wrk, src);
    return;
  }
  assert(!WebPRescalerInputDone(wrk));
  assert(!wrk->x_expand);

  for (; frow < frow_end; frow += 4) {
    __m128i base = zero;
    accum += wrk->x_add;
    while (accum > 0) {
      const __m128i A = _mm_cvtsi32_si128(WebPMemToUint32(src));
      src += 4;
      base = _mm_unpacklo_epi8(A, zero);
      // To avoid overflow, we need: base * x_add / x_sub < 32768
      // => x_add < x_sub << 7. That's a 1/128 reduction ratio limit.
      sum = _mm_add_epi16(sum, base);
      accum -= x_sub;
    }
    {    // Emit next horizontal pixel.
      const __m128i mult = _mm_set1_epi16(-accum);
      const __m128i frac0 = _mm_mullo_epi16(base, mult);  // 16b x 16b -> 32b
      const __m128i frac1 = _mm_mulhi_epu16(base, mult);
      const __m128i frac = _mm_unpacklo_epi16(frac0, frac1);  // frac is 32b
      const __m128i A0 = _mm_mullo_epi16(sum, mult0);
      const __m128i A1 = _mm_mulhi_epu16(sum, mult0);
      const __m128i B0 = _mm_unpacklo_epi16(A0, A1);      // sum * x_sub
      const __m128i frow_out = _mm_sub_epi32(B0, frac);   // sum * x_sub - frac
      const __m128i D0 = _mm_srli_epi64(frac, 32);
      const __m128i D1 = _mm_mul_epu32(frac, mult1);      // 32b x 16b -> 64b
      const __m128i D2 = _mm_mul_epu32(D0, mult1);
      const __m128i E1 = _mm_add_epi64(D1, rounder);
      const __m128i E2 = _mm_add_epi64(D2, rounder);
      const __m128i F1 = _mm_shuffle_epi32(E1, 1 | (3 << 2));
      const __m128i F2 = _mm_shuffle_epi32(E2, 1 | (3 << 2));
      const __m128i G = _mm_unpacklo_epi32(F1, F2);
      sum = _mm_packs_epi32(G, zero);
      _mm_storeu_si128((__m128i*)frow, frow_out);
    }
  }
  assert(accum == 0);
}

//------------------------------------------------------------------------------
// Row export

// load *src as epi64, multiply by mult and store result in [out0 ... out3]
static WEBP_INLINE void LoadDispatchAndMult_SSE2(const rescaler_t* const src,
                                                 const __m128i* const mult,
                                                 __m128i* const out0,
                                                 __m128i* const out1,
                                                 __m128i* const out2,
                                                 __m128i* const out3) {
  const __m128i A0 = _mm_loadu_si128((const __m128i*)(src + 0));
  const __m128i A1 = _mm_loadu_si128((const __m128i*)(src + 4));
  const __m128i A2 = _mm_srli_epi64(A0, 32);
  const __m128i A3 = _mm_srli_epi64(A1, 32);
  if (mult != NULL) {
    *out0 = _mm_mul_epu32(A0, *mult);
    *out1 = _mm_mul_epu32(A1, *mult);
    *out2 = _mm_mul_epu32(A2, *mult);
    *out3 = _mm_mul_epu32(A3, *mult);
  } else {
    *out0 = A0;
    *out1 = A1;
    *out2 = A2;
    *out3 = A3;
  }
}

static WEBP_INLINE void ProcessRow_SSE2(const __m128i* const A0,
                                        const __m128i* const A1,
                                        const __m128i* const A2,
                                        const __m128i* const A3,
                                        const __m128i* const mult,
                                        uint8_t* const dst) {
  const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER);
  const __m128i mask = _mm_set_epi32(0xffffffffu, 0, 0xffffffffu, 0);
  const __m128i B0 = _mm_mul_epu32(*A0, *mult);
  const __m128i B1 = _mm_mul_epu32(*A1, *mult);
  const __m128i B2 = _mm_mul_epu32(*A2, *mult);
  const __m128i B3 = _mm_mul_epu32(*A3, *mult);
  const __m128i C0 = _mm_add_epi64(B0, rounder);
  const __m128i C1 = _mm_add_epi64(B1, rounder);
  const __m128i C2 = _mm_add_epi64(B2, rounder);
  const __m128i C3 = _mm_add_epi64(B3, rounder);
  const __m128i D0 = _mm_srli_epi64(C0, WEBP_RESCALER_RFIX);
  const __m128i D1 = _mm_srli_epi64(C1, WEBP_RESCALER_RFIX);
#if (WEBP_RESCALER_RFIX < 32)
  const __m128i D2 =
      _mm_and_si128(_mm_slli_epi64(C2, 32 - WEBP_RESCALER_RFIX), mask);
  const __m128i D3 =
      _mm_and_si128(_mm_slli_epi64(C3, 32 - WEBP_RESCALER_RFIX), mask);
#else
  const __m128i D2 = _mm_and_si128(C2, mask);
  const __m128i D3 = _mm_and_si128(C3, mask);
#endif
  const __m128i E0 = _mm_or_si128(D0, D2);
  const __m128i E1 = _mm_or_si128(D1, D3);
  const __m128i F = _mm_packs_epi32(E0, E1);
  const __m128i G = _mm_packus_epi16(F, F);
  _mm_storel_epi64((__m128i*)dst, G);
}

static WEBP_INLINE void ProcessRow_Floor_SSE2(const __m128i* const A0,
                                              const __m128i* const A1,
                                              const __m128i* const A2,
                                              const __m128i* const A3,
                                              const __m128i* const mult,
                                              uint8_t* const dst) {
  const __m128i mask = _mm_set_epi32(0xffffffffu, 0, 0xffffffffu, 0);
  const __m128i B0 = _mm_mul_epu32(*A0, *mult);
  const __m128i B1 = _mm_mul_epu32(*A1, *mult);
  const __m128i B2 = _mm_mul_epu32(*A2, *mult);
  const __m128i B3 = _mm_mul_epu32(*A3, *mult);
  const __m128i D0 = _mm_srli_epi64(B0, WEBP_RESCALER_RFIX);
  const __m128i D1 = _mm_srli_epi64(B1, WEBP_RESCALER_RFIX);
#if (WEBP_RESCALER_RFIX < 32)
  const __m128i D2 =
      _mm_and_si128(_mm_slli_epi64(B2, 32 - WEBP_RESCALER_RFIX), mask);
  const __m128i D3 =
      _mm_and_si128(_mm_slli_epi64(B3, 32 - WEBP_RESCALER_RFIX), mask);
#else
  const __m128i D2 = _mm_and_si128(B2, mask);
  const __m128i D3 = _mm_and_si128(B3, mask);
#endif
  const __m128i E0 = _mm_or_si128(D0, D2);
  const __m128i E1 = _mm_or_si128(D1, D3);
  const __m128i F = _mm_packs_epi32(E0, E1);
  const __m128i G = _mm_packus_epi16(F, F);
  _mm_storel_epi64((__m128i*)dst, G);
}

static void RescalerExportRowExpand_SSE2(WebPRescaler* const wrk) {
  int x_out;
  uint8_t* const dst = wrk->dst;
  rescaler_t* const irow = wrk->irow;
  const int x_out_max = wrk->dst_width * wrk->num_channels;
  const rescaler_t* const frow = wrk->frow;
  const __m128i mult = _mm_set_epi32(0, wrk->fy_scale, 0, wrk->fy_scale);

  assert(!WebPRescalerOutputDone(wrk));
  assert(wrk->y_accum <= 0 && wrk->y_sub + wrk->y_accum >= 0);
  assert(wrk->y_expand);
  if (wrk->y_accum == 0) {
    for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) {
      __m128i A0, A1, A2, A3;
      LoadDispatchAndMult_SSE2(frow + x_out, NULL, &A0, &A1, &A2, &A3);
      ProcessRow_SSE2(&A0, &A1, &A2, &A3, &mult, dst + x_out);
    }
    for (; x_out < x_out_max; ++x_out) {
      const uint32_t J = frow[x_out];
      const int v = (int)MULT_FIX(J, wrk->fy_scale);
      assert(v >= 0 && v <= 255);
      dst[x_out] = v;
    }
  } else {
    const uint32_t B = WEBP_RESCALER_FRAC(-wrk->y_accum, wrk->y_sub);
    const uint32_t A = (uint32_t)(WEBP_RESCALER_ONE - B);
    const __m128i mA = _mm_set_epi32(0, A, 0, A);
    const __m128i mB = _mm_set_epi32(0, B, 0, B);
    const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER);
    for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) {
      __m128i A0, A1, A2, A3, B0, B1, B2, B3;
      LoadDispatchAndMult_SSE2(frow + x_out, &mA, &A0, &A1, &A2, &A3);
      LoadDispatchAndMult_SSE2(irow + x_out, &mB, &B0, &B1, &B2, &B3);
      {
        const __m128i C0 = _mm_add_epi64(A0, B0);
        const __m128i C1 = _mm_add_epi64(A1, B1);
        const __m128i C2 = _mm_add_epi64(A2, B2);
        const __m128i C3 = _mm_add_epi64(A3, B3);
        const __m128i D0 = _mm_add_epi64(C0, rounder);
        const __m128i D1 = _mm_add_epi64(C1, rounder);
        const __m128i D2 = _mm_add_epi64(C2, rounder);
        const __m128i D3 = _mm_add_epi64(C3, rounder);
        const __m128i E0 = _mm_srli_epi64(D0, WEBP_RESCALER_RFIX);
        const __m128i E1 = _mm_srli_epi64(D1, WEBP_RESCALER_RFIX);
        const __m128i E2 = _mm_srli_epi64(D2, WEBP_RESCALER_RFIX);
        const __m128i E3 = _mm_srli_epi64(D3, WEBP_RESCALER_RFIX);
        ProcessRow_SSE2(&E0, &E1, &E2, &E3, &mult, dst + x_out);
      }
    }
    for (; x_out < x_out_max; ++x_out) {
      const uint64_t I = (uint64_t)A * frow[x_out]
                       + (uint64_t)B * irow[x_out];
      const uint32_t J = (uint32_t)((I + ROUNDER) >> WEBP_RESCALER_RFIX);
      const int v = (int)MULT_FIX(J, wrk->fy_scale);
      assert(v >= 0 && v <= 255);
      dst[x_out] = v;
    }
  }
}

static void RescalerExportRowShrink_SSE2(WebPRescaler* const wrk) {
  int x_out;
  uint8_t* const dst = wrk->dst;
  rescaler_t* const irow = wrk->irow;
  const int x_out_max = wrk->dst_width * wrk->num_channels;
  const rescaler_t* const frow = wrk->frow;
  const uint32_t yscale = wrk->fy_scale * (-wrk->y_accum);
  assert(!WebPRescalerOutputDone(wrk));
  assert(wrk->y_accum <= 0);
  assert(!wrk->y_expand);
  if (yscale) {
    const int scale_xy = wrk->fxy_scale;
    const __m128i mult_xy = _mm_set_epi32(0, scale_xy, 0, scale_xy);
    const __m128i mult_y = _mm_set_epi32(0, yscale, 0, yscale);
    const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER);
    for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) {
      __m128i A0, A1, A2, A3, B0, B1, B2, B3;
      LoadDispatchAndMult_SSE2(irow + x_out, NULL, &A0, &A1, &A2, &A3);
      LoadDispatchAndMult_SSE2(frow + x_out, &mult_y, &B0, &B1, &B2, &B3);
      {
        const __m128i C0 = _mm_add_epi64(B0, rounder);
        const __m128i C1 = _mm_add_epi64(B1, rounder);
        const __m128i C2 = _mm_add_epi64(B2, rounder);
        const __m128i C3 = _mm_add_epi64(B3, rounder);
        const __m128i D0 = _mm_srli_epi64(C0, WEBP_RESCALER_RFIX);   // = frac
        const __m128i D1 = _mm_srli_epi64(C1, WEBP_RESCALER_RFIX);
        const __m128i D2 = _mm_srli_epi64(C2, WEBP_RESCALER_RFIX);
        const __m128i D3 = _mm_srli_epi64(C3, WEBP_RESCALER_RFIX);
        const __m128i E0 = _mm_sub_epi64(A0, D0);   // irow[x] - frac
        const __m128i E1 = _mm_sub_epi64(A1, D1);
        const __m128i E2 = _mm_sub_epi64(A2, D2);
        const __m128i E3 = _mm_sub_epi64(A3, D3);
        const __m128i F2 = _mm_slli_epi64(D2, 32);
        const __m128i F3 = _mm_slli_epi64(D3, 32);
        const __m128i G0 = _mm_or_si128(D0, F2);
        const __m128i G1 = _mm_or_si128(D1, F3);
        _mm_storeu_si128((__m128i*)(irow + x_out + 0), G0);
        _mm_storeu_si128((__m128i*)(irow + x_out + 4), G1);
        ProcessRow_Floor_SSE2(&E0, &E1, &E2, &E3, &mult_xy, dst + x_out);
      }
    }
    for (; x_out < x_out_max; ++x_out) {
      const uint32_t frac = (int)MULT_FIX(frow[x_out], yscale);
      const int v = (int)MULT_FIX_FLOOR(irow[x_out] - frac, wrk->fxy_scale);
      assert(v >= 0 && v <= 255);
      dst[x_out] = v;
      irow[x_out] = frac;   // new fractional start
    }
  } else {
    const uint32_t scale = wrk->fxy_scale;
    const __m128i mult = _mm_set_epi32(0, scale, 0, scale);
    const __m128i zero = _mm_setzero_si128();
    for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) {
      __m128i A0, A1, A2, A3;
      LoadDispatchAndMult_SSE2(irow + x_out, NULL, &A0, &A1, &A2, &A3);
      _mm_storeu_si128((__m128i*)(irow + x_out + 0), zero);
      _mm_storeu_si128((__m128i*)(irow + x_out + 4), zero);
      ProcessRow_SSE2(&A0, &A1, &A2, &A3, &mult, dst + x_out);
    }
    for (; x_out < x_out_max; ++x_out) {
      const int v = (int)MULT_FIX(irow[x_out], scale);
      assert(v >= 0 && v <= 255);
      dst[x_out] = v;
      irow[x_out] = 0;
    }
  }
}

#undef MULT_FIX_FLOOR
#undef MULT_FIX
#undef ROUNDER

//------------------------------------------------------------------------------

extern void WebPRescalerDspInitSSE2(void);

WEBP_TSAN_IGNORE_FUNCTION void WebPRescalerDspInitSSE2(void) {
  WebPRescalerImportRowExpand = RescalerImportRowExpand_SSE2;
  WebPRescalerImportRowShrink = RescalerImportRowShrink_SSE2;
  WebPRescalerExportRowExpand = RescalerExportRowExpand_SSE2;
  WebPRescalerExportRowShrink = RescalerExportRowShrink_SSE2;
}

#else  // !WEBP_USE_SSE2

WEBP_DSP_INIT_STUB(WebPRescalerDspInitSSE2)

#endif  // WEBP_USE_SSE2