1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#include "precomp.hpp"
#include "_latentsvm.h"
#include "_lsvm_matching.h"
/*
// Transformation filter displacement from the block space
// to the space of pixels at the initial image
//
// API
// int convertPoints(int countLevel, CvPoint *points, int *levels,
CvPoint **partsDisplacement, int kPoints, int n);
// INPUT
// countLevel - the number of levels in the feature pyramid
// points - the set of root filter positions (in the block space)
// levels - the set of levels
// partsDisplacement - displacement of part filters (in the block space)
// kPoints - number of root filter positions
// n - number of part filters
// initialImageLevel - level that contains features for initial image
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// OUTPUT
// points - the set of root filter positions (in the space of pixels)
// partsDisplacement - displacement of part filters (in the space of pixels)
// RESULT
// Error status
*/
int convertPoints(int /*countLevel*/, int lambda,
int initialImageLevel,
CvPoint *points, int *levels,
CvPoint **partsDisplacement, int kPoints, int n,
int maxXBorder,
int maxYBorder)
{
int i, j, bx, by;
float step, scale;
step = powf( 2.0f, 1.0f / ((float)lambda) );
computeBorderSize(maxXBorder, maxYBorder, &bx, &by);
for (i = 0; i < kPoints; i++)
{
// scaling factor for root filter
scale = SIDE_LENGTH * powf(step, (float)(levels[i] - initialImageLevel));
points[i].x = (int)((points[i].x - bx + 1) * scale);
points[i].y = (int)((points[i].y - by + 1) * scale);
// scaling factor for part filters
scale = SIDE_LENGTH * powf(step, (float)(levels[i] - lambda - initialImageLevel));
for (j = 0; j < n; j++)
{
partsDisplacement[i][j].x = (int)((partsDisplacement[i][j].x -
2 * bx + 1) * scale);
partsDisplacement[i][j].y = (int)((partsDisplacement[i][j].y -
2 * by + 1) * scale);
}
}
return LATENT_SVM_OK;
}
/*
// Elimination boxes that are outside the image boudaries
//
// API
// int clippingBoxes(int width, int height,
CvPoint *points, int kPoints);
// INPUT
// width - image wediht
// height - image heigth
// points - a set of points (coordinates of top left or
bottom right corners)
// kPoints - points number
// OUTPUT
// points - updated points (if coordinates less than zero then
set zero coordinate, if coordinates more than image
size then set coordinates equal image size)
// RESULT
// Error status
*/
int clippingBoxes(int width, int height,
CvPoint *points, int kPoints)
{
int i;
for (i = 0; i < kPoints; i++)
{
if (points[i].x > width - 1)
{
points[i].x = width - 1;
}
if (points[i].x < 0)
{
points[i].x = 0;
}
if (points[i].y > height - 1)
{
points[i].y = height - 1;
}
if (points[i].y < 0)
{
points[i].y = 0;
}
}
return LATENT_SVM_OK;
}
/*
// Creation feature pyramid with nullable border
//
// API
// featurePyramid* createFeaturePyramidWithBorder(const IplImage *image,
int maxXBorder, int maxYBorder);
// INPUT
// image - initial image
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// OUTPUT
// RESULT
// Feature pyramid with nullable border
*/
CvLSVMFeaturePyramid* createFeaturePyramidWithBorder(IplImage *image,
int maxXBorder, int maxYBorder)
{
int opResult;
int bx, by;
int level;
CvLSVMFeaturePyramid *H;
// Obtaining feature pyramid
opResult = getFeaturePyramid(image, &H);
if (opResult != LATENT_SVM_OK)
{
freeFeaturePyramidObject(&H);
return NULL;
} /* if (opResult != LATENT_SVM_OK) */
// Addition nullable border for each feature map
// the size of the border for root filters
computeBorderSize(maxXBorder, maxYBorder, &bx, &by);
for (level = 0; level < H->numLevels; level++)
{
addNullableBorder(H->pyramid[level], bx, by);
}
return H;
}
/*
// Computation of the root filter displacement and values of score function
//
// API
// int searchObject(const featurePyramid *H, const filterObject **all_F, int n,
float b,
int maxXBorder,
int maxYBorder,
CvPoint **points, int **levels, int *kPoints, float *score,
CvPoint ***partsDisplacement);
// INPUT
// image - initial image for searhing object
// all_F - the set of filters (the first element is root filter,
other elements - part filters)
// n - the number of part filters
// b - linear term of the score function
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// OUTPUT
// points - positions (x, y) of the upper-left corner
of root filter frame
// levels - levels that correspond to each position
// kPoints - number of positions
// score - value of the score function
// partsDisplacement - part filters displacement for each position
of the root filter
// RESULT
// Error status
*/
int searchObject(const CvLSVMFeaturePyramid *H, const CvLSVMFilterObject **all_F,
int n, float b,
int maxXBorder,
int maxYBorder,
CvPoint **points, int **levels, int *kPoints, float *score,
CvPoint ***partsDisplacement)
{
int opResult;
// Matching
opResult = maxFunctionalScore(all_F, n, H, b, maxXBorder, maxYBorder,
score, points, levels,
kPoints, partsDisplacement);
if (opResult != LATENT_SVM_OK)
{
return LATENT_SVM_SEARCH_OBJECT_FAILED;
}
// Transformation filter displacement from the block space
// to the space of pixels at the initial image
// that settles at the level number LAMBDA
convertPoints(H->numLevels, LAMBDA, LAMBDA, (*points),
(*levels), (*partsDisplacement), (*kPoints), n,
maxXBorder, maxYBorder);
return LATENT_SVM_OK;
}
/*
// Computation right bottom corners coordinates of bounding boxes
//
// API
// int estimateBoxes(CvPoint *points, int *levels, int kPoints,
int sizeX, int sizeY, CvPoint **oppositePoints);
// INPUT
// points - left top corners coordinates of bounding boxes
// levels - levels of feature pyramid where points were found
// (sizeX, sizeY) - size of root filter
// OUTPUT
// oppositePoins - right bottom corners coordinates of bounding boxes
// RESULT
// Error status
*/
int estimateBoxes(CvPoint *points, int *levels, int kPoints,
int sizeX, int sizeY, CvPoint **oppositePoints)
{
int i;
float step;
step = powf( 2.0f, 1.0f / ((float)(LAMBDA)));
*oppositePoints = (CvPoint *)malloc(sizeof(CvPoint) * kPoints);
for (i = 0; i < kPoints; i++)
{
getOppositePoint(points[i], sizeX, sizeY, step, levels[i] - LAMBDA, &((*oppositePoints)[i]));
}
return LATENT_SVM_OK;
}
/*
// Computation of the root filter displacement and values of score function
//
// API
// int searchObjectThreshold(const featurePyramid *H,
const filterObject **all_F, int n,
float b,
int maxXBorder, int maxYBorder,
float scoreThreshold,
CvPoint **points, int **levels, int *kPoints,
float **score, CvPoint ***partsDisplacement);
// INPUT
// H - feature pyramid
// all_F - the set of filters (the first element is root filter,
other elements - part filters)
// n - the number of part filters
// b - linear term of the score function
// maxXBorder - the largest root filter size (X-direction)
// maxYBorder - the largest root filter size (Y-direction)
// scoreThreshold - score threshold
// OUTPUT
// points - positions (x, y) of the upper-left corner
of root filter frame
// levels - levels that correspond to each position
// kPoints - number of positions
// score - values of the score function
// partsDisplacement - part filters displacement for each position
of the root filter
// RESULT
// Error status
*/
int searchObjectThreshold(const CvLSVMFeaturePyramid *H,
const CvLSVMFilterObject **all_F, int n,
float b,
int maxXBorder, int maxYBorder,
float scoreThreshold,
CvPoint **points, int **levels, int *kPoints,
float **score, CvPoint ***partsDisplacement,
int numThreads)
{
int opResult;
// Matching
#ifdef HAVE_TBB
if (numThreads <= 0)
{
opResult = LATENT_SVM_TBB_NUMTHREADS_NOT_CORRECT;
return opResult;
}
opResult = tbbThresholdFunctionalScore(all_F, n, H, b, maxXBorder, maxYBorder,
scoreThreshold, numThreads, score,
points, levels, kPoints,
partsDisplacement);
#else
opResult = thresholdFunctionalScore(all_F, n, H, b,
maxXBorder, maxYBorder,
scoreThreshold,
score, points, levels,
kPoints, partsDisplacement);
(void)numThreads;
#endif
if (opResult != LATENT_SVM_OK)
{
return LATENT_SVM_SEARCH_OBJECT_FAILED;
}
// Transformation filter displacement from the block space
// to the space of pixels at the initial image
// that settles at the level number LAMBDA
convertPoints(H->numLevels, LAMBDA, LAMBDA, (*points),
(*levels), (*partsDisplacement), (*kPoints), n,
maxXBorder, maxYBorder);
return LATENT_SVM_OK;
}
/*
// Compute opposite point for filter box
//
// API
// int getOppositePoint(CvPoint point,
int sizeX, int sizeY,
float step, int degree,
CvPoint *oppositePoint);
// INPUT
// point - coordinates of filter top left corner
(in the space of pixels)
// (sizeX, sizeY) - filter dimension in the block space
// step - scaling factor
// degree - degree of the scaling factor
// OUTPUT
// oppositePoint - coordinates of filter bottom corner
(in the space of pixels)
// RESULT
// Error status
*/
int getOppositePoint(CvPoint point,
int sizeX, int sizeY,
float step, int degree,
CvPoint *oppositePoint)
{
float scale;
scale = SIDE_LENGTH * powf(step, (float)degree);
oppositePoint->x = (int)(point.x + sizeX * scale);
oppositePoint->y = (int)(point.y + sizeY * scale);
return LATENT_SVM_OK;
}
/*
// Drawing root filter boxes
//
// API
// int showRootFilterBoxes(const IplImage *image,
const filterObject *filter,
CvPoint *points, int *levels, int kPoints,
CvScalar color, int thickness,
int line_type, int shift);
// INPUT
// image - initial image
// filter - root filter object
// points - a set of points
// levels - levels of feature pyramid
// kPoints - number of points
// color - line color for each box
// thickness - line thickness
// line_type - line type
// shift - shift
// OUTPUT
// window contained initial image and filter boxes
// RESULT
// Error status
*/
int showRootFilterBoxes(IplImage *image,
const CvLSVMFilterObject *filter,
CvPoint *points, int *levels, int kPoints,
CvScalar color, int thickness,
int line_type, int shift)
{
int i;
float step;
CvPoint oppositePoint;
step = powf( 2.0f, 1.0f / ((float)LAMBDA));
for (i = 0; i < kPoints; i++)
{
// Drawing rectangle for filter
getOppositePoint(points[i], filter->sizeX, filter->sizeY,
step, levels[i] - LAMBDA, &oppositePoint);
cvRectangle(image, points[i], oppositePoint,
color, thickness, line_type, shift);
}
cvShowImage("Initial image", image);
return LATENT_SVM_OK;
}
/*
// Drawing part filter boxes
//
// API
// int showPartFilterBoxes(const IplImage *image,
const filterObject *filter,
CvPoint *points, int *levels, int kPoints,
CvScalar color, int thickness,
int line_type, int shift);
// INPUT
// image - initial image
// filters - a set of part filters
// n - number of part filters
// partsDisplacement - a set of points
// levels - levels of feature pyramid
// kPoints - number of foot filter positions
// color - line color for each box
// thickness - line thickness
// line_type - line type
// shift - shift
// OUTPUT
// window contained initial image and filter boxes
// RESULT
// Error status
*/
int showPartFilterBoxes(IplImage *image,
const CvLSVMFilterObject **filters,
int n, CvPoint **partsDisplacement,
int *levels, int kPoints,
CvScalar color, int thickness,
int line_type, int shift)
{
int i, j;
float step;
CvPoint oppositePoint;
step = powf( 2.0f, 1.0f / ((float)LAMBDA));
for (i = 0; i < kPoints; i++)
{
for (j = 0; j < n; j++)
{
// Drawing rectangles for part filters
getOppositePoint(partsDisplacement[i][j],
filters[j + 1]->sizeX, filters[j + 1]->sizeY,
step, levels[i] - 2 * LAMBDA, &oppositePoint);
cvRectangle(image, partsDisplacement[i][j], oppositePoint,
color, thickness, line_type, shift);
}
}
cvShowImage("Initial image", image);
return LATENT_SVM_OK;
}
/*
// Drawing boxes
//
// API
// int showBoxes(const IplImage *img,
const CvPoint *points, const CvPoint *oppositePoints, int kPoints,
CvScalar color, int thickness, int line_type, int shift);
// INPUT
// img - initial image
// points - top left corner coordinates
// oppositePoints - right bottom corner coordinates
// kPoints - points number
// color - line color for each box
// thickness - line thickness
// line_type - line type
// shift - shift
// OUTPUT
// RESULT
// Error status
*/
int showBoxes(IplImage *img,
const CvPoint *points, const CvPoint *oppositePoints, int kPoints,
CvScalar color, int thickness, int line_type, int shift)
{
int i;
for (i = 0; i < kPoints; i++)
{
cvRectangle(img, points[i], oppositePoints[i],
color, thickness, line_type, shift);
}
cvShowImage("Initial image", img);
return LATENT_SVM_OK;
}
/*
// Computation maximum filter size for each dimension
//
// API
// int getMaxFilterDims(const filterObject **filters, int kComponents,
const int *kPartFilters,
unsigned int *maxXBorder, unsigned int *maxYBorder);
// INPUT
// filters - a set of filters (at first root filter, then part filters
and etc. for all components)
// kComponents - number of components
// kPartFilters - number of part filters for each component
// OUTPUT
// maxXBorder - maximum of filter size at the horizontal dimension
// maxYBorder - maximum of filter size at the vertical dimension
// RESULT
// Error status
*/
int getMaxFilterDims(const CvLSVMFilterObject **filters, int kComponents,
const int *kPartFilters,
unsigned int *maxXBorder, unsigned int *maxYBorder)
{
int i, componentIndex;
*maxXBorder = filters[0]->sizeX;
*maxYBorder = filters[0]->sizeY;
componentIndex = kPartFilters[0] + 1;
for (i = 1; i < kComponents; i++)
{
if ((unsigned)filters[componentIndex]->sizeX > *maxXBorder)
{
*maxXBorder = filters[componentIndex]->sizeX;
}
if ((unsigned)filters[componentIndex]->sizeY > *maxYBorder)
{
*maxYBorder = filters[componentIndex]->sizeY;
}
componentIndex += (kPartFilters[i] + 1);
}
return LATENT_SVM_OK;
}
/*
// Computation root filters displacement and values of score function
//
// API
// int searchObjectThresholdSomeComponents(const featurePyramid *H,
const filterObject **filters,
int kComponents, const int *kPartFilters,
const float *b, float scoreThreshold,
CvPoint **points, CvPoint **oppPoints,
float **score, int *kPoints);
// INPUT
// H - feature pyramid
// filters - filters (root filter then it's part filters, etc.)
// kComponents - root filters number
// kPartFilters - array of part filters number for each component
// b - array of linear terms
// scoreThreshold - score threshold
// OUTPUT
// points - root filters displacement (top left corners)
// oppPoints - root filters displacement (bottom right corners)
// score - array of score values
// kPoints - number of boxes
// RESULT
// Error status
*/
int searchObjectThresholdSomeComponents(const CvLSVMFeaturePyramid *H,
const CvLSVMFilterObject **filters,
int kComponents, const int *kPartFilters,
const float *b, float scoreThreshold,
CvPoint **points, CvPoint **oppPoints,
float **score, int *kPoints,
int numThreads)
{
int error = 0;
int i, j, s, f, componentIndex;
unsigned int maxXBorder, maxYBorder;
CvPoint **pointsArr, **oppPointsArr, ***partsDisplacementArr;
float **scoreArr;
int *kPointsArr, **levelsArr;
// Allocation memory
pointsArr = (CvPoint **)malloc(sizeof(CvPoint *) * kComponents);
oppPointsArr = (CvPoint **)malloc(sizeof(CvPoint *) * kComponents);
scoreArr = (float **)malloc(sizeof(float *) * kComponents);
kPointsArr = (int *)malloc(sizeof(int) * kComponents);
levelsArr = (int **)malloc(sizeof(int *) * kComponents);
partsDisplacementArr = (CvPoint ***)malloc(sizeof(CvPoint **) * kComponents);
// Getting maximum filter dimensions
error = getMaxFilterDims(filters, kComponents, kPartFilters, &maxXBorder, &maxYBorder);
componentIndex = 0;
*kPoints = 0;
// For each component perform searching
for (i = 0; i < kComponents; i++)
{
#ifdef HAVE_TBB
error = searchObjectThreshold(H, &(filters[componentIndex]), kPartFilters[i],
b[i], maxXBorder, maxYBorder, scoreThreshold,
&(pointsArr[i]), &(levelsArr[i]), &(kPointsArr[i]),
&(scoreArr[i]), &(partsDisplacementArr[i]), numThreads);
if (error != LATENT_SVM_OK)
{
// Release allocated memory
free(pointsArr);
free(oppPointsArr);
free(scoreArr);
free(kPointsArr);
free(levelsArr);
free(partsDisplacementArr);
return LATENT_SVM_SEARCH_OBJECT_FAILED;
}
#else
(void)numThreads;
searchObjectThreshold(H, &(filters[componentIndex]), kPartFilters[i],
b[i], maxXBorder, maxYBorder, scoreThreshold,
&(pointsArr[i]), &(levelsArr[i]), &(kPointsArr[i]),
&(scoreArr[i]), &(partsDisplacementArr[i]));
#endif
estimateBoxes(pointsArr[i], levelsArr[i], kPointsArr[i],
filters[componentIndex]->sizeX, filters[componentIndex]->sizeY, &(oppPointsArr[i]));
componentIndex += (kPartFilters[i] + 1);
*kPoints += kPointsArr[i];
}
*points = (CvPoint *)malloc(sizeof(CvPoint) * (*kPoints));
*oppPoints = (CvPoint *)malloc(sizeof(CvPoint) * (*kPoints));
*score = (float *)malloc(sizeof(float) * (*kPoints));
s = 0;
for (i = 0; i < kComponents; i++)
{
f = s + kPointsArr[i];
for (j = s; j < f; j++)
{
(*points)[j].x = pointsArr[i][j - s].x;
(*points)[j].y = pointsArr[i][j - s].y;
(*oppPoints)[j].x = oppPointsArr[i][j - s].x;
(*oppPoints)[j].y = oppPointsArr[i][j - s].y;
(*score)[j] = scoreArr[i][j - s];
}
s = f;
}
// Release allocated memory
for (i = 0; i < kComponents; i++)
{
free(pointsArr[i]);
free(oppPointsArr[i]);
free(scoreArr[i]);
free(levelsArr[i]);
for (j = 0; j < kPointsArr[i]; j++)
{
free(partsDisplacementArr[i][j]);
}
free(partsDisplacementArr[i]);
}
free(pointsArr);
free(oppPointsArr);
free(scoreArr);
free(kPointsArr);
free(levelsArr);
free(partsDisplacementArr);
return LATENT_SVM_OK;
}