_kdtree.hpp 14.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2008, Xavier Delacour, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

// 2008-05-13, Xavier Delacour <xavier.delacour@gmail.com>

#ifndef __cv_kdtree_h__
#define __cv_kdtree_h__

#include "precomp.hpp"

#include <vector>
#include <algorithm>
#include <limits>
#include <iostream>
#include "assert.h"
#include "math.h"

// J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbor search
// in highdimensional spaces. In Proc. IEEE Conf. Comp. Vision Patt. Recog.,
// pages 1000--1006, 1997. http://citeseer.ist.psu.edu/beis97shape.html
#undef __deref
#undef __valuetype

template < class __valuetype, class __deref >
class CvKDTree {
public:
  typedef __deref deref_type;
  typedef typename __deref::scalar_type scalar_type;
  typedef typename __deref::accum_type accum_type;

private:
  struct node {
    int dim;      // split dimension; >=0 for nodes, -1 for leaves
    __valuetype value;    // if leaf, value of leaf
    int left, right;    // node indices of left and right branches
    scalar_type boundary; // left if deref(value,dim)<=boundary, otherwise right
  };
  typedef std::vector < node > node_array;

  __deref deref;    // requires operator() (__valuetype lhs,int dim)

  node_array nodes;   // node storage
  int point_dim;    // dimension of points (the k in kd-tree)
  int root_node;    // index of root node, -1 if empty tree

  // for given set of point indices, compute dimension of highest variance
  template < class __instype, class __valuector >
  int dimension_of_highest_variance(__instype * first, __instype * last,
            __valuector ctor) {
    assert(last - first > 0);

    accum_type maxvar = -std::numeric_limits < accum_type >::max();
    int maxj = -1;
    for (int j = 0; j < point_dim; ++j) {
      accum_type mean = 0;
      for (__instype * k = first; k < last; ++k)
  mean += deref(ctor(*k), j);
      mean /= last - first;
      accum_type var = 0;
      for (__instype * k = first; k < last; ++k) {
  accum_type diff = accum_type(deref(ctor(*k), j)) - mean;
  var += diff * diff;
      }
      var /= last - first;

      assert(maxj != -1 || var >= maxvar);

      if (var >= maxvar) {
  maxvar = var;
  maxj = j;
      }
    }

    return maxj;
  }

  // given point indices and dimension, find index of median; (almost) modifies [first,last)
  // such that points_in[first,median]<=point[median], points_in(median,last)>point[median].
  // implemented as partial quicksort; expected linear perf.
  template < class __instype, class __valuector >
  __instype * median_partition(__instype * first, __instype * last,
             int dim, __valuector ctor) {
    assert(last - first > 0);
    __instype *k = first + (last - first) / 2;
    median_partition(first, last, k, dim, ctor);
    return k;
  }

  template < class __instype, class __valuector >
  struct median_pr {
    const __instype & pivot;
    int dim;
    __deref deref;
    __valuector ctor;
    median_pr(const __instype & _pivot, int _dim, __deref _deref, __valuector _ctor)
      : pivot(_pivot), dim(_dim), deref(_deref), ctor(_ctor) {
    }
    bool operator() (const __instype & lhs) const {
      return deref(ctor(lhs), dim) <= deref(ctor(pivot), dim);
    }
  private:
    median_pr& operator=(const median_pr&);
  };

  template < class __instype, class __valuector >
  void median_partition(__instype * first, __instype * last,
      __instype * k, int dim, __valuector ctor) {
    int pivot = (int)((last - first) / 2);

    std::swap(first[pivot], last[-1]);
    __instype *middle = std::partition(first, last - 1,
               median_pr < __instype, __valuector >
               (last[-1], dim, deref, ctor));
    std::swap(*middle, last[-1]);

    if (middle < k)
      median_partition(middle + 1, last, k, dim, ctor);
    else if (middle > k)
      median_partition(first, middle, k, dim, ctor);
  }

  // insert given points into the tree; return created node
  template < class __instype, class __valuector >
  int insert(__instype * first, __instype * last, __valuector ctor) {
    if (first == last)
      return -1;
    else {

      int dim = dimension_of_highest_variance(first, last, ctor);
      __instype *median = median_partition(first, last, dim, ctor);

      __instype *split = median;
      for (; split != last && deref(ctor(*split), dim) ==
       deref(ctor(*median), dim); ++split) {}

      if (split == last) { // leaf
  int nexti = -1;
  for (--split; split >= first; --split) {
    int i = (int)nodes.size();
    node & n = *nodes.insert(nodes.end(), node());
    n.dim = -1;
    n.value = ctor(*split);
    n.left = -1;
    n.right = nexti;
    nexti = i;
  }

  return nexti;
      } else { // node
  int i = (int)nodes.size();
  // note that recursive insert may invalidate this ref
  node & n = *nodes.insert(nodes.end(), node());

  n.dim = dim;
  n.boundary = deref(ctor(*median), dim);

  int left = insert(first, split, ctor);
  nodes[i].left = left;
  int right = insert(split, last, ctor);
  nodes[i].right = right;

  return i;
      }
    }
  }

  // run to leaf; linear search for p;
  // if found, remove paths to empty leaves on unwind
  bool remove(int *i, const __valuetype & p) {
    if (*i == -1)
      return false;
    node & n = nodes[*i];
    bool r;

    if (n.dim >= 0) { // node
      if (deref(p, n.dim) <= n.boundary) // left
  r = remove(&n.left, p);
      else // right
  r = remove(&n.right, p);

      // if terminal, remove this node
      if (n.left == -1 && n.right == -1)
  *i = -1;

      return r;
    } else { // leaf
      if (n.value == p) {
  *i = n.right;
  return true;
      } else
  return remove(&n.right, p);
    }
  }

public:
  struct identity_ctor {
    const __valuetype & operator() (const __valuetype & rhs) const {
      return rhs;
    }
  };

  // initialize an empty tree
  CvKDTree(__deref _deref = __deref())
    : deref(_deref), root_node(-1) {
  }
  // given points, initialize a balanced tree
  CvKDTree(__valuetype * first, __valuetype * last, int _point_dim,
     __deref _deref = __deref())
    : deref(_deref) {
    set_data(first, last, _point_dim, identity_ctor());
  }
  // given points, initialize a balanced tree
  template < class __instype, class __valuector >
  CvKDTree(__instype * first, __instype * last, int _point_dim,
     __valuector ctor, __deref _deref = __deref())
    : deref(_deref) {
    set_data(first, last, _point_dim, ctor);
  }

  void set_deref(__deref _deref) {
    deref = _deref;
  }

  void set_data(__valuetype * first, __valuetype * last, int _point_dim) {
    set_data(first, last, _point_dim, identity_ctor());
  }
  template < class __instype, class __valuector >
  void set_data(__instype * first, __instype * last, int _point_dim,
    __valuector ctor) {
    point_dim = _point_dim;
    nodes.clear();
    nodes.reserve(last - first);
    root_node = insert(first, last, ctor);
  }

  int dims() const {
    return point_dim;
  }

  // remove the given point
  bool remove(const __valuetype & p) {
    return remove(&root_node, p);
  }

  void print() const {
    print(root_node);
  }
  void print(int i, int indent = 0) const {
    if (i == -1)
      return;
    for (int j = 0; j < indent; ++j)
      std::cout << " ";
    const node & n = nodes[i];
    if (n.dim >= 0) {
      std::cout << "node " << i << ", left " << nodes[i].left << ", right " <<
  nodes[i].right << ", dim " << nodes[i].dim << ", boundary " <<
  nodes[i].boundary << std::endl;
      print(n.left, indent + 3);
      print(n.right, indent + 3);
    } else
      std::cout << "leaf " << i << ", value = " << nodes[i].value << std::endl;
  }

  ////////////////////////////////////////////////////////////////////////////////////////
  // bbf search
public:
  struct bbf_nn {   // info on found neighbors (approx k nearest)
    const __valuetype *p; // nearest neighbor
    accum_type dist;    // distance from d to query point
    bbf_nn(const __valuetype & _p, accum_type _dist)
      : p(&_p), dist(_dist) {
    }
    bool operator<(const bbf_nn & rhs) const {
      return dist < rhs.dist;
    }
  };
  typedef std::vector < bbf_nn > bbf_nn_pqueue;
private:
  struct bbf_node {   // info on branches not taken
    int node;     // corresponding node
    accum_type dist;    // minimum distance from bounds to query point
    bbf_node(int _node, accum_type _dist)
      : node(_node), dist(_dist) {
    }
    bool operator<(const bbf_node & rhs) const {
      return dist > rhs.dist;
    }
  };
  typedef std::vector < bbf_node > bbf_pqueue;
  mutable bbf_pqueue tmp_pq;

  // called for branches not taken, as bbf walks to leaf;
  // construct bbf_node given minimum distance to bounds of alternate branch
  void pq_alternate(int alt_n, bbf_pqueue & pq, scalar_type dist) const {
    if (alt_n == -1)
      return;

    // add bbf_node for alternate branch in priority queue
    pq.push_back(bbf_node(alt_n, dist));
    std::push_heap(pq.begin(), pq.end());
  }

  // called by bbf to walk to leaf;
  // takes one step down the tree towards query point d
  template < class __desctype >
  int bbf_branch(int i, const __desctype * d, bbf_pqueue & pq) const {
    const node & n = nodes[i];
    // push bbf_node with bounds of alternate branch, then branch
    if (d[n.dim] <= n.boundary) { // left
      pq_alternate(n.right, pq, n.boundary - d[n.dim]);
      return n.left;
    } else {      // right
      pq_alternate(n.left, pq, d[n.dim] - n.boundary);
      return n.right;
    }
  }

  // compute euclidean distance between two points
  template < class __desctype >
  accum_type distance(const __desctype * d, const __valuetype & p) const {
    accum_type dist = 0;
    for (int j = 0; j < point_dim; ++j) {
      accum_type diff = accum_type(d[j]) - accum_type(deref(p, j));
      dist += diff * diff;
    } return (accum_type) sqrt(dist);
  }

  // called per candidate nearest neighbor; constructs new bbf_nn for
  // candidate and adds it to priority queue of all candidates; if
  // queue len exceeds k, drops the point furthest from query point d.
  template < class __desctype >
  void bbf_new_nn(bbf_nn_pqueue & nn_pq, int k,
      const __desctype * d, const __valuetype & p) const {
    bbf_nn nn(p, distance(d, p));
    if ((int) nn_pq.size() < k) {
      nn_pq.push_back(nn);
      std::push_heap(nn_pq.begin(), nn_pq.end());
    } else if (nn_pq[0].dist > nn.dist) {
      std::pop_heap(nn_pq.begin(), nn_pq.end());
      nn_pq.end()[-1] = nn;
      std::push_heap(nn_pq.begin(), nn_pq.end());
    }
    assert(nn_pq.size() < 2 || nn_pq[0].dist >= nn_pq[1].dist);
  }

public:
  // finds (with high probability) the k nearest neighbors of d,
  // searching at most emax leaves/bins.
  // ret_nn_pq is an array containing the (at most) k nearest neighbors
  // (see bbf_nn structure def above).
  template < class __desctype >
  int find_nn_bbf(const __desctype * d, int k, int emax, bbf_nn_pqueue & ret_nn_pq) const
  {
    assert(k > 0);
    ret_nn_pq.clear();

    if (root_node == -1)
      return 0;

    // add root_node to bbf_node priority queue;
    // iterate while queue non-empty and emax>0
    tmp_pq.clear();
    tmp_pq.push_back(bbf_node(root_node, 0));
    while (tmp_pq.size() && emax > 0)
    {

      // from node nearest query point d, run to leaf
      std::pop_heap(tmp_pq.begin(), tmp_pq.end());
      bbf_node bbf(tmp_pq.end()[-1]);
      tmp_pq.erase(tmp_pq.end() - 1);

      int i;
      for (i = bbf.node; i != -1 && nodes[i].dim >= 0; i = bbf_branch(i, d, tmp_pq)) {}

      if (i != -1)
      {

        // add points in leaf/bin to ret_nn_pq
        do {
          bbf_new_nn(ret_nn_pq, k, d, nodes[i].value);
        } while (-1 != (i = nodes[i].right));

        --emax;
      }
    }

    tmp_pq.clear();
    return (int)ret_nn_pq.size();
  }

  ////////////////////////////////////////////////////////////////////////////////////////
  // orthogonal range search
private:
  void find_ortho_range(int i, scalar_type * bounds_min,
      scalar_type * bounds_max,
      std::vector < __valuetype > &inbounds) const {
    if (i == -1)
      return;
    const node & n = nodes[i];
    if (n.dim >= 0) { // node
      if (bounds_min[n.dim] <= n.boundary)
  find_ortho_range(n.left, bounds_min, bounds_max, inbounds);
      if (bounds_max[n.dim] > n.boundary)
  find_ortho_range(n.right, bounds_min, bounds_max, inbounds);
    } else { // leaf
      do {
  inbounds.push_back(nodes[i].value);
      } while (-1 != (i = nodes[i].right));
    }
  }
public:
  // return all points that lie within the given bounds; inbounds is cleared
  int find_ortho_range(scalar_type * bounds_min,
           scalar_type * bounds_max,
           std::vector < __valuetype > &inbounds) const {
    inbounds.clear();
    find_ortho_range(root_node, bounds_min, bounds_max, inbounds);
    return (int)inbounds.size();
  }
};

#endif // __cv_kdtree_h__

// Local Variables:
// mode:C++
// End: