1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
// freak.cpp
//
// Copyright (C) 2011-2012 Signal processing laboratory 2, EPFL,
// Kirell Benzi (kirell.benzi@epfl.ch),
// Raphael Ortiz (raphael.ortiz@a3.epfl.ch)
// Alexandre Alahi (alexandre.alahi@epfl.ch)
// and Pierre Vandergheynst (pierre.vandergheynst@epfl.ch)
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
#include "precomp.hpp"
#include <fstream>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <bitset>
#include <sstream>
#include <algorithm>
#include <iomanip>
#include <string.h>
namespace cv
{
static const double FREAK_SQRT2 = 1.4142135623731;
static const double FREAK_INV_SQRT2 = 1.0 / FREAK_SQRT2;
static const double FREAK_LOG2 = 0.693147180559945;
static const int FREAK_NB_ORIENTATION = 256;
static const int FREAK_NB_POINTS = 43;
static const int FREAK_SMALLEST_KP_SIZE = 7; // smallest size of keypoints
static const int FREAK_NB_SCALES = FREAK::NB_SCALES;
static const int FREAK_NB_PAIRS = FREAK::NB_PAIRS;
static const int FREAK_NB_ORIENPAIRS = FREAK::NB_ORIENPAIRS;
static const int FREAK_DEF_PAIRS[FREAK::NB_PAIRS] =
{ // default pairs
404,431,818,511,181,52,311,874,774,543,719,230,417,205,11,
560,149,265,39,306,165,857,250,8,61,15,55,717,44,412,
592,134,761,695,660,782,625,487,549,516,271,665,762,392,178,
796,773,31,672,845,548,794,677,654,241,831,225,238,849,83,
691,484,826,707,122,517,583,731,328,339,571,475,394,472,580,
381,137,93,380,327,619,729,808,218,213,459,141,806,341,95,
382,568,124,750,193,749,706,843,79,199,317,329,768,198,100,
466,613,78,562,783,689,136,838,94,142,164,679,219,419,366,
418,423,77,89,523,259,683,312,555,20,470,684,123,458,453,833,
72,113,253,108,313,25,153,648,411,607,618,128,305,232,301,84,
56,264,371,46,407,360,38,99,176,710,114,578,66,372,653,
129,359,424,159,821,10,323,393,5,340,891,9,790,47,0,175,346,
236,26,172,147,574,561,32,294,429,724,755,398,787,288,299,
769,565,767,722,757,224,465,723,498,467,235,127,802,446,233,
544,482,800,318,16,532,801,441,554,173,60,530,713,469,30,
212,630,899,170,266,799,88,49,512,399,23,500,107,524,90,
194,143,135,192,206,345,148,71,119,101,563,870,158,254,214,
276,464,332,725,188,385,24,476,40,231,620,171,258,67,109,
844,244,187,388,701,690,50,7,850,479,48,522,22,154,12,659,
736,655,577,737,830,811,174,21,237,335,353,234,53,270,62,
182,45,177,245,812,673,355,556,612,166,204,54,248,365,226,
242,452,700,685,573,14,842,481,468,781,564,416,179,405,35,
819,608,624,367,98,643,448,2,460,676,440,240,130,146,184,
185,430,65,807,377,82,121,708,239,310,138,596,730,575,477,
851,797,247,27,85,586,307,779,326,494,856,324,827,96,748,
13,397,125,688,702,92,293,716,277,140,112,4,80,855,839,1,
413,347,584,493,289,696,19,751,379,76,73,115,6,590,183,734,
197,483,217,344,330,400,186,243,587,220,780,200,793,246,824,
41,735,579,81,703,322,760,720,139,480,490,91,814,813,163,
152,488,763,263,425,410,576,120,319,668,150,160,302,491,515,
260,145,428,97,251,395,272,252,18,106,358,854,485,144,550,
131,133,378,68,102,104,58,361,275,209,697,582,338,742,589,
325,408,229,28,304,191,189,110,126,486,211,547,533,70,215,
670,249,36,581,389,605,331,518,442,822
};
struct PairStat
{ // used to sort pairs during pairs selection
double mean;
int idx;
};
struct sortMean
{
bool operator()( const PairStat& a, const PairStat& b ) const {
return a.mean < b.mean;
}
};
void FREAK::buildPattern()
{
if( patternScale == patternScale0 && nOctaves == nOctaves0 && !patternLookup.empty() )
return;
nOctaves0 = nOctaves;
patternScale0 = patternScale;
patternLookup.resize(FREAK_NB_SCALES*FREAK_NB_ORIENTATION*FREAK_NB_POINTS);
double scaleStep = std::pow(2.0, (double)(nOctaves)/FREAK_NB_SCALES ); // 2 ^ ( (nOctaves-1) /nbScales)
double scalingFactor, alpha, beta, theta = 0;
// pattern definition, radius normalized to 1.0 (outer point position+sigma=1.0)
const int n[8] = {6,6,6,6,6,6,6,1}; // number of points on each concentric circle (from outer to inner)
const double bigR(2.0/3.0); // bigger radius
const double smallR(2.0/24.0); // smaller radius
const double unitSpace( (bigR-smallR)/21.0 ); // define spaces between concentric circles (from center to outer: 1,2,3,4,5,6)
// radii of the concentric cirles (from outer to inner)
const double radius[8] = {bigR, bigR-6*unitSpace, bigR-11*unitSpace, bigR-15*unitSpace, bigR-18*unitSpace, bigR-20*unitSpace, smallR, 0.0};
// sigma of pattern points (each group of 6 points on a concentric cirle has the same sigma)
const double sigma[8] = {radius[0]/2.0, radius[1]/2.0, radius[2]/2.0,
radius[3]/2.0, radius[4]/2.0, radius[5]/2.0,
radius[6]/2.0, radius[6]/2.0
};
// fill the lookup table
for( int scaleIdx=0; scaleIdx < FREAK_NB_SCALES; ++scaleIdx ) {
patternSizes[scaleIdx] = 0; // proper initialization
scalingFactor = std::pow(scaleStep,scaleIdx); //scale of the pattern, scaleStep ^ scaleIdx
for( int orientationIdx = 0; orientationIdx < FREAK_NB_ORIENTATION; ++orientationIdx ) {
theta = double(orientationIdx)* 2*CV_PI/double(FREAK_NB_ORIENTATION); // orientation of the pattern
int pointIdx = 0;
PatternPoint* patternLookupPtr = &patternLookup[0];
for( size_t i = 0; i < 8; ++i ) {
for( int k = 0 ; k < n[i]; ++k ) {
beta = CV_PI/n[i] * (i%2); // orientation offset so that groups of points on each circles are staggered
alpha = double(k)* 2*CV_PI/double(n[i])+beta+theta;
// add the point to the look-up table
PatternPoint& point = patternLookupPtr[ scaleIdx*FREAK_NB_ORIENTATION*FREAK_NB_POINTS+orientationIdx*FREAK_NB_POINTS+pointIdx ];
point.x = static_cast<float>(radius[i] * cos(alpha) * scalingFactor * patternScale);
point.y = static_cast<float>(radius[i] * sin(alpha) * scalingFactor * patternScale);
point.sigma = static_cast<float>(sigma[i] * scalingFactor * patternScale);
// adapt the sizeList if necessary
const int sizeMax = static_cast<int>(ceil((radius[i]+sigma[i])*scalingFactor*patternScale)) + 1;
if( patternSizes[scaleIdx] < sizeMax )
patternSizes[scaleIdx] = sizeMax;
++pointIdx;
}
}
}
}
// build the list of orientation pairs
orientationPairs[0].i=0; orientationPairs[0].j=3; orientationPairs[1].i=1; orientationPairs[1].j=4; orientationPairs[2].i=2; orientationPairs[2].j=5;
orientationPairs[3].i=0; orientationPairs[3].j=2; orientationPairs[4].i=1; orientationPairs[4].j=3; orientationPairs[5].i=2; orientationPairs[5].j=4;
orientationPairs[6].i=3; orientationPairs[6].j=5; orientationPairs[7].i=4; orientationPairs[7].j=0; orientationPairs[8].i=5; orientationPairs[8].j=1;
orientationPairs[9].i=6; orientationPairs[9].j=9; orientationPairs[10].i=7; orientationPairs[10].j=10; orientationPairs[11].i=8; orientationPairs[11].j=11;
orientationPairs[12].i=6; orientationPairs[12].j=8; orientationPairs[13].i=7; orientationPairs[13].j=9; orientationPairs[14].i=8; orientationPairs[14].j=10;
orientationPairs[15].i=9; orientationPairs[15].j=11; orientationPairs[16].i=10; orientationPairs[16].j=6; orientationPairs[17].i=11; orientationPairs[17].j=7;
orientationPairs[18].i=12; orientationPairs[18].j=15; orientationPairs[19].i=13; orientationPairs[19].j=16; orientationPairs[20].i=14; orientationPairs[20].j=17;
orientationPairs[21].i=12; orientationPairs[21].j=14; orientationPairs[22].i=13; orientationPairs[22].j=15; orientationPairs[23].i=14; orientationPairs[23].j=16;
orientationPairs[24].i=15; orientationPairs[24].j=17; orientationPairs[25].i=16; orientationPairs[25].j=12; orientationPairs[26].i=17; orientationPairs[26].j=13;
orientationPairs[27].i=18; orientationPairs[27].j=21; orientationPairs[28].i=19; orientationPairs[28].j=22; orientationPairs[29].i=20; orientationPairs[29].j=23;
orientationPairs[30].i=18; orientationPairs[30].j=20; orientationPairs[31].i=19; orientationPairs[31].j=21; orientationPairs[32].i=20; orientationPairs[32].j=22;
orientationPairs[33].i=21; orientationPairs[33].j=23; orientationPairs[34].i=22; orientationPairs[34].j=18; orientationPairs[35].i=23; orientationPairs[35].j=19;
orientationPairs[36].i=24; orientationPairs[36].j=27; orientationPairs[37].i=25; orientationPairs[37].j=28; orientationPairs[38].i=26; orientationPairs[38].j=29;
orientationPairs[39].i=30; orientationPairs[39].j=33; orientationPairs[40].i=31; orientationPairs[40].j=34; orientationPairs[41].i=32; orientationPairs[41].j=35;
orientationPairs[42].i=36; orientationPairs[42].j=39; orientationPairs[43].i=37; orientationPairs[43].j=40; orientationPairs[44].i=38; orientationPairs[44].j=41;
for( unsigned m = FREAK_NB_ORIENPAIRS; m--; ) {
const float dx = patternLookup[orientationPairs[m].i].x-patternLookup[orientationPairs[m].j].x;
const float dy = patternLookup[orientationPairs[m].i].y-patternLookup[orientationPairs[m].j].y;
const float norm_sq = (dx*dx+dy*dy);
orientationPairs[m].weight_dx = int((dx/(norm_sq))*4096.0+0.5);
orientationPairs[m].weight_dy = int((dy/(norm_sq))*4096.0+0.5);
}
// build the list of description pairs
std::vector<DescriptionPair> allPairs;
for( unsigned int i = 1; i < (unsigned int)FREAK_NB_POINTS; ++i ) {
// (generate all the pairs)
for( unsigned int j = 0; (unsigned int)j < i; ++j ) {
DescriptionPair pair = {(uchar)i,(uchar)j};
allPairs.push_back(pair);
}
}
// Input vector provided
if( !selectedPairs0.empty() ) {
if( (int)selectedPairs0.size() == FREAK_NB_PAIRS ) {
for( int i = 0; i < FREAK_NB_PAIRS; ++i )
descriptionPairs[i] = allPairs[selectedPairs0.at(i)];
}
else {
CV_Error(CV_StsVecLengthErr, "Input vector does not match the required size");
}
}
else { // default selected pairs
for( int i = 0; i < FREAK_NB_PAIRS; ++i )
descriptionPairs[i] = allPairs[FREAK_DEF_PAIRS[i]];
}
}
void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const {
if( image.empty() )
return;
if( keypoints.empty() )
return;
((FREAK*)this)->buildPattern();
Mat imgIntegral;
integral(image, imgIntegral);
std::vector<int> kpScaleIdx(keypoints.size()); // used to save pattern scale index corresponding to each keypoints
const std::vector<int>::iterator ScaleIdxBegin = kpScaleIdx.begin(); // used in std::vector erase function
const std::vector<cv::KeyPoint>::iterator kpBegin = keypoints.begin(); // used in std::vector erase function
const float sizeCst = static_cast<float>(FREAK_NB_SCALES/(FREAK_LOG2* nOctaves));
uchar pointsValue[FREAK_NB_POINTS];
int thetaIdx = 0;
int direction0;
int direction1;
// compute the scale index corresponding to the keypoint size and remove keypoints close to the border
if( scaleNormalized ) {
for( size_t k = keypoints.size(); k--; ) {
//Is k non-zero? If so, decrement it and continue"
kpScaleIdx[k] = std::max( (int)(std::log(keypoints[k].size/FREAK_SMALLEST_KP_SIZE)*sizeCst+0.5) ,0);
if( kpScaleIdx[k] >= FREAK_NB_SCALES )
kpScaleIdx[k] = FREAK_NB_SCALES-1;
if( keypoints[k].pt.x <= patternSizes[kpScaleIdx[k]] || //check if the description at this specific position and scale fits inside the image
keypoints[k].pt.y <= patternSizes[kpScaleIdx[k]] ||
keypoints[k].pt.x >= image.cols-patternSizes[kpScaleIdx[k]] ||
keypoints[k].pt.y >= image.rows-patternSizes[kpScaleIdx[k]]
) {
keypoints.erase(kpBegin+k);
kpScaleIdx.erase(ScaleIdxBegin+k);
}
}
}
else {
const int scIdx = std::max( (int)(1.0986122886681*sizeCst+0.5) ,0);
for( size_t k = keypoints.size(); k--; ) {
kpScaleIdx[k] = scIdx; // equivalent to the formule when the scale is normalized with a constant size of keypoints[k].size=3*SMALLEST_KP_SIZE
if( kpScaleIdx[k] >= FREAK_NB_SCALES ) {
kpScaleIdx[k] = FREAK_NB_SCALES-1;
}
if( keypoints[k].pt.x <= patternSizes[kpScaleIdx[k]] ||
keypoints[k].pt.y <= patternSizes[kpScaleIdx[k]] ||
keypoints[k].pt.x >= image.cols-patternSizes[kpScaleIdx[k]] ||
keypoints[k].pt.y >= image.rows-patternSizes[kpScaleIdx[k]]
) {
keypoints.erase(kpBegin+k);
kpScaleIdx.erase(ScaleIdxBegin+k);
}
}
}
// allocate descriptor memory, estimate orientations, extract descriptors
if( !extAll ) {
// extract the best comparisons only
descriptors = cv::Mat::zeros((int)keypoints.size(), FREAK_NB_PAIRS/8, CV_8U);
#if CV_SSE2
__m128i* ptr= (__m128i*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
#else
std::bitset<FREAK_NB_PAIRS>* ptr = (std::bitset<FREAK_NB_PAIRS>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
#endif
for( size_t k = keypoints.size(); k--; ) {
// estimate orientation (gradient)
if( !orientationNormalized ) {
thetaIdx = 0; // assign 0° to all keypoints
keypoints[k].angle = 0.0;
}
else {
// get the points intensity value in the un-rotated pattern
for( int i = FREAK_NB_POINTS; i--; ) {
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], 0, i);
}
direction0 = 0;
direction1 = 0;
for( int m = 45; m--; ) {
//iterate through the orientation pairs
const int delta = (pointsValue[ orientationPairs[m].i ]-pointsValue[ orientationPairs[m].j ]);
direction0 += delta*(orientationPairs[m].weight_dx)/2048;
direction1 += delta*(orientationPairs[m].weight_dy)/2048;
}
keypoints[k].angle = static_cast<float>(atan2((float)direction1,(float)direction0)*(180.0/CV_PI));//estimate orientation
thetaIdx = int(FREAK_NB_ORIENTATION*keypoints[k].angle*(1/360.0)+0.5);
if( thetaIdx < 0 )
thetaIdx += FREAK_NB_ORIENTATION;
if( thetaIdx >= FREAK_NB_ORIENTATION )
thetaIdx -= FREAK_NB_ORIENTATION;
}
// extract descriptor at the computed orientation
for( int i = FREAK_NB_POINTS; i--; ) {
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], thetaIdx, i);
}
#if CV_SSE2
// note that comparisons order is modified in each block (but first 128 comparisons remain globally the same-->does not affect the 128,384 bits segmanted matching strategy)
int cnt = 0;
for( int n = FREAK_NB_PAIRS/128; n-- ; )
{
__m128i result128 = _mm_setzero_si128();
for( int m = 128/16; m--; cnt += 16 )
{
__m128i operand1 = _mm_set_epi8(
pointsValue[descriptionPairs[cnt+0].i],
pointsValue[descriptionPairs[cnt+1].i],
pointsValue[descriptionPairs[cnt+2].i],
pointsValue[descriptionPairs[cnt+3].i],
pointsValue[descriptionPairs[cnt+4].i],
pointsValue[descriptionPairs[cnt+5].i],
pointsValue[descriptionPairs[cnt+6].i],
pointsValue[descriptionPairs[cnt+7].i],
pointsValue[descriptionPairs[cnt+8].i],
pointsValue[descriptionPairs[cnt+9].i],
pointsValue[descriptionPairs[cnt+10].i],
pointsValue[descriptionPairs[cnt+11].i],
pointsValue[descriptionPairs[cnt+12].i],
pointsValue[descriptionPairs[cnt+13].i],
pointsValue[descriptionPairs[cnt+14].i],
pointsValue[descriptionPairs[cnt+15].i]);
__m128i operand2 = _mm_set_epi8(
pointsValue[descriptionPairs[cnt+0].j],
pointsValue[descriptionPairs[cnt+1].j],
pointsValue[descriptionPairs[cnt+2].j],
pointsValue[descriptionPairs[cnt+3].j],
pointsValue[descriptionPairs[cnt+4].j],
pointsValue[descriptionPairs[cnt+5].j],
pointsValue[descriptionPairs[cnt+6].j],
pointsValue[descriptionPairs[cnt+7].j],
pointsValue[descriptionPairs[cnt+8].j],
pointsValue[descriptionPairs[cnt+9].j],
pointsValue[descriptionPairs[cnt+10].j],
pointsValue[descriptionPairs[cnt+11].j],
pointsValue[descriptionPairs[cnt+12].j],
pointsValue[descriptionPairs[cnt+13].j],
pointsValue[descriptionPairs[cnt+14].j],
pointsValue[descriptionPairs[cnt+15].j]);
__m128i workReg = _mm_min_epu8(operand1, operand2); // emulated "not less than" for 8-bit UNSIGNED integers
workReg = _mm_cmpeq_epi8(workReg, operand2); // emulated "not less than" for 8-bit UNSIGNED integers
workReg = _mm_and_si128(_mm_set1_epi16(short(0x8080 >> m)), workReg); // merge the last 16 bits with the 128bits std::vector until full
result128 = _mm_or_si128(result128, workReg);
}
(*ptr) = result128;
++ptr;
}
ptr -= 8;
#else
// extracting descriptor preserving the order of SSE version
int cnt = 0;
for( int n = 7; n < FREAK_NB_PAIRS; n += 128)
{
for( int m = 8; m--; )
{
int nm = n-m;
for(int kk = nm+15*8; kk >= nm; kk-=8, ++cnt)
{
ptr->set(kk, pointsValue[descriptionPairs[cnt].i] >= pointsValue[descriptionPairs[cnt].j]);
}
}
}
--ptr;
#endif
}
}
else { // extract all possible comparisons for selection
descriptors = cv::Mat::zeros((int)keypoints.size(), 128, CV_8U);
std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
for( size_t k = keypoints.size(); k--; ) {
//estimate orientation (gradient)
if( !orientationNormalized ) {
thetaIdx = 0;//assign 0° to all keypoints
keypoints[k].angle = 0.0;
}
else {
//get the points intensity value in the un-rotated pattern
for( int i = FREAK_NB_POINTS;i--; )
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], 0, i);
direction0 = 0;
direction1 = 0;
for( int m = 45; m--; ) {
//iterate through the orientation pairs
const int delta = (pointsValue[ orientationPairs[m].i ]-pointsValue[ orientationPairs[m].j ]);
direction0 += delta*(orientationPairs[m].weight_dx)/2048;
direction1 += delta*(orientationPairs[m].weight_dy)/2048;
}
keypoints[k].angle = static_cast<float>(atan2((float)direction1,(float)direction0)*(180.0/CV_PI)); //estimate orientation
thetaIdx = int(FREAK_NB_ORIENTATION*keypoints[k].angle*(1/360.0)+0.5);
if( thetaIdx < 0 )
thetaIdx += FREAK_NB_ORIENTATION;
if( thetaIdx >= FREAK_NB_ORIENTATION )
thetaIdx -= FREAK_NB_ORIENTATION;
}
// get the points intensity value in the rotated pattern
for( int i = FREAK_NB_POINTS; i--; ) {
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,
keypoints[k].pt.y, kpScaleIdx[k], thetaIdx, i);
}
int cnt(0);
for( int i = 1; i < FREAK_NB_POINTS; ++i ) {
//(generate all the pairs)
for( int j = 0; j < i; ++j ) {
ptr->set(cnt, pointsValue[i] >= pointsValue[j] );
++cnt;
}
}
--ptr;
}
}
}
// simply take average on a square patch, not even gaussian approx
uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral,
const float kp_x,
const float kp_y,
const unsigned int scale,
const unsigned int rot,
const unsigned int point) const {
// get point position in image
const PatternPoint& FreakPoint = patternLookup[scale*FREAK_NB_ORIENTATION*FREAK_NB_POINTS + rot*FREAK_NB_POINTS + point];
const float xf = FreakPoint.x+kp_x;
const float yf = FreakPoint.y+kp_y;
const int x = int(xf);
const int y = int(yf);
const int& imagecols = image.cols;
// get the sigma:
const float radius = FreakPoint.sigma;
// calculate output:
if( radius < 0.5 ) {
// interpolation multipliers:
const int r_x = static_cast<int>((xf-x)*1024);
const int r_y = static_cast<int>((yf-y)*1024);
const int r_x_1 = (1024-r_x);
const int r_y_1 = (1024-r_y);
uchar* ptr = image.data+x+y*imagecols;
unsigned int ret_val;
// linear interpolation:
ret_val = (r_x_1*r_y_1*int(*ptr));
ptr++;
ret_val += (r_x*r_y_1*int(*ptr));
ptr += imagecols;
ret_val += (r_x*r_y*int(*ptr));
ptr--;
ret_val += (r_x_1*r_y*int(*ptr));
//return the rounded mean
ret_val += 2 * 1024 * 1024;
return static_cast<uchar>(ret_val / (4 * 1024 * 1024));
}
// expected case:
// calculate borders
const int x_left = int(xf-radius+0.5);
const int y_top = int(yf-radius+0.5);
const int x_right = int(xf+radius+1.5);//integral image is 1px wider
const int y_bottom = int(yf+radius+1.5);//integral image is 1px higher
int ret_val;
ret_val = integral.at<int>(y_bottom,x_right);//bottom right corner
ret_val -= integral.at<int>(y_bottom,x_left);
ret_val += integral.at<int>(y_top,x_left);
ret_val -= integral.at<int>(y_top,x_right);
ret_val = ret_val/( (x_right-x_left)* (y_bottom-y_top) );
//~ std::cout<<integral.step[1]<<std::endl;
return static_cast<uchar>(ret_val);
}
// pair selection algorithm from a set of training images and corresponding keypoints
std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
, std::vector<std::vector<KeyPoint> >& keypoints
, const double corrTresh
, bool verbose )
{
extAll = true;
// compute descriptors with all pairs
Mat descriptors;
if( verbose )
std::cout << "Number of images: " << images.size() << std::endl;
for( size_t i = 0;i < images.size(); ++i ) {
Mat descriptorsTmp;
computeImpl(images[i],keypoints[i],descriptorsTmp);
descriptors.push_back(descriptorsTmp);
}
if( verbose )
std::cout << "number of keypoints: " << descriptors.rows << std::endl;
//descriptor in floating point format (each bit is a float)
Mat descriptorsFloat = Mat::zeros(descriptors.rows, 903, CV_32F);
std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(descriptors.rows-1)*descriptors.step[0]);
for( int m = descriptors.rows; m--; ) {
for( int n = 903; n--; ) {
if( ptr->test(n) == true )
descriptorsFloat.at<float>(m,n)=1.0f;
}
--ptr;
}
std::vector<PairStat> pairStat;
for( int n = 903; n--; ) {
// the higher the variance, the better --> mean = 0.5
PairStat tmp = { fabs( mean(descriptorsFloat.col(n))[0]-0.5 ) ,n};
pairStat.push_back(tmp);
}
std::sort( pairStat.begin(),pairStat.end(), sortMean() );
std::vector<PairStat> bestPairs;
for( int m = 0; m < 903; ++m ) {
if( verbose )
std::cout << m << ":" << bestPairs.size() << " " << std::flush;
double corrMax(0);
for( size_t n = 0; n < bestPairs.size(); ++n ) {
int idxA = bestPairs[n].idx;
int idxB = pairStat[m].idx;
double corr(0);
// compute correlation between 2 pairs
corr = fabs(compareHist(descriptorsFloat.col(idxA), descriptorsFloat.col(idxB), CV_COMP_CORREL));
if( corr > corrMax ) {
corrMax = corr;
if( corrMax >= corrTresh )
break;
}
}
if( corrMax < corrTresh/*0.7*/ )
bestPairs.push_back(pairStat[m]);
if( bestPairs.size() >= 512 ) {
if( verbose )
std::cout << m << std::endl;
break;
}
}
std::vector<int> idxBestPairs;
if( (int)bestPairs.size() >= FREAK_NB_PAIRS ) {
for( int i = 0; i < FREAK_NB_PAIRS; ++i )
idxBestPairs.push_back(bestPairs[i].idx);
}
else {
if( verbose )
std::cout << "correlation threshold too small (restrictive)" << std::endl;
CV_Error(CV_StsError, "correlation threshold too small (restrictive)");
}
extAll = false;
return idxBestPairs;
}
/*
void FREAKImpl::drawPattern()
{ // create an image showing the brisk pattern
Mat pattern = Mat::zeros(1000, 1000, CV_8UC3) + Scalar(255,255,255);
int sFac = 500 / patternScale;
for( int n = 0; n < kNB_POINTS; ++n ) {
PatternPoint& pt = patternLookup[n];
circle(pattern, Point( pt.x*sFac,pt.y*sFac)+Point(500,500), pt.sigma*sFac, Scalar(0,0,255),2);
// rectangle(pattern, Point( (pt.x-pt.sigma)*sFac,(pt.y-pt.sigma)*sFac)+Point(500,500), Point( (pt.x+pt.sigma)*sFac,(pt.y+pt.sigma)*sFac)+Point(500,500), Scalar(0,0,255),2);
circle(pattern, Point( pt.x*sFac,pt.y*sFac)+Point(500,500), 1, Scalar(0,0,0),3);
std::ostringstream oss;
oss << n;
putText( pattern, oss.str(), Point( pt.x*sFac,pt.y*sFac)+Point(500,500), FONT_HERSHEY_SIMPLEX,0.5, Scalar(0,0,0), 1);
}
imshow( "FreakDescriptorExtractor pattern", pattern );
waitKey(0);
}
*/
// -------------------------------------------------
/* FREAK interface implementation */
FREAK::FREAK( bool _orientationNormalized, bool _scaleNormalized
, float _patternScale, int _nOctaves, const std::vector<int>& _selectedPairs )
: orientationNormalized(_orientationNormalized), scaleNormalized(_scaleNormalized),
patternScale(_patternScale), nOctaves(_nOctaves), extAll(false), nOctaves0(0), selectedPairs0(_selectedPairs)
{
}
FREAK::~FREAK()
{
}
int FREAK::descriptorSize() const {
return FREAK_NB_PAIRS / 8; // descriptor length in bytes
}
int FREAK::descriptorType() const {
return CV_8U;
}
} // END NAMESPACE CV