mathfuncs_core.simd.hpp 23.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#include "mathfuncs.hpp"

namespace cv { namespace hal {

CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN

// forward declarations
void fastAtan32f(const float *Y, const float *X, float *angle, int len, bool angleInDegrees);
void fastAtan64f(const double *Y, const double *X, double *angle, int len, bool angleInDegrees);
void fastAtan2(const float *Y, const float *X, float *angle, int len, bool angleInDegrees);
void magnitude32f(const float* x, const float* y, float* mag, int len);
void magnitude64f(const double* x, const double* y, double* mag, int len);
void invSqrt32f(const float* src, float* dst, int len);
void invSqrt64f(const double* src, double* dst, int len);
void sqrt32f(const float* src, float* dst, int len);
void sqrt64f(const double* src, double* dst, int len);
void exp32f(const float *src, float *dst, int n);
void exp64f(const double *src, double *dst, int n);
void log32f(const float *src, float *dst, int n);
void log64f(const double *src, double *dst, int n);
float fastAtan2(float y, float x);

#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY

using namespace std;
using namespace cv;

namespace {

#ifdef __EMSCRIPTEN__
static inline float atan_f32(float y, float x)
{
    float a = atan2(y, x) * 180.0f / CV_PI;
    if (a < 0.0f)
        a += 360.0f;
    if (a >= 360.0f)
        a -= 360.0f;
    return a; // range [0; 360)
}
#else
static const float atan2_p1 = 0.9997878412794807f*(float)(180/CV_PI);
static const float atan2_p3 = -0.3258083974640975f*(float)(180/CV_PI);
static const float atan2_p5 = 0.1555786518463281f*(float)(180/CV_PI);
static const float atan2_p7 = -0.04432655554792128f*(float)(180/CV_PI);

static inline float atan_f32(float y, float x)
{
    float ax = std::abs(x), ay = std::abs(y);
    float a, c, c2;
    if( ax >= ay )
    {
        c = ay/(ax + (float)DBL_EPSILON);
        c2 = c*c;
        a = (((atan2_p7*c2 + atan2_p5)*c2 + atan2_p3)*c2 + atan2_p1)*c;
    }
    else
    {
        c = ax/(ay + (float)DBL_EPSILON);
        c2 = c*c;
        a = 90.f - (((atan2_p7*c2 + atan2_p5)*c2 + atan2_p3)*c2 + atan2_p1)*c;
    }
    if( x < 0 )
        a = 180.f - a;
    if( y < 0 )
        a = 360.f - a;
    return a;
}
#endif

#if CV_SIMD

struct v_atan_f32
{
    explicit v_atan_f32(const float& scale)
    {
        eps = vx_setall_f32((float)DBL_EPSILON);
        z = vx_setzero_f32();
        p7 = vx_setall_f32(atan2_p7);
        p5 = vx_setall_f32(atan2_p5);
        p3 = vx_setall_f32(atan2_p3);
        p1 = vx_setall_f32(atan2_p1);
        val90 = vx_setall_f32(90.f);
        val180 = vx_setall_f32(180.f);
        val360 = vx_setall_f32(360.f);
        s = vx_setall_f32(scale);
    }

    v_float32 compute(const v_float32& y, const v_float32& x)
    {
        v_float32 ax = v_abs(x);
        v_float32 ay = v_abs(y);
        v_float32 c = v_min(ax, ay) / (v_max(ax, ay) + eps);
        v_float32 cc = c * c;
        v_float32 a = v_fma(v_fma(v_fma(cc, p7, p5), cc, p3), cc, p1)*c;
        a = v_select(ax >= ay, a, val90 - a);
        a = v_select(x < z, val180 - a, a);
        a = v_select(y < z, val360 - a, a);
        return a * s;
    }

    v_float32 eps;
    v_float32 z;
    v_float32 p7;
    v_float32 p5;
    v_float32 p3;
    v_float32 p1;
    v_float32 val90;
    v_float32 val180;
    v_float32 val360;
    v_float32 s;
};

#endif

} // anonymous::

///////////////////////////////////// ATAN2 ////////////////////////////////////

static void fastAtan32f_(const float *Y, const float *X, float *angle, int len, bool angleInDegrees )
{
    float scale = angleInDegrees ? 1.f : (float)(CV_PI/180);
    int i = 0;
#if CV_SIMD
    const int VECSZ = v_float32::nlanes;
    v_atan_f32 v(scale);

    for( ; i < len; i += VECSZ*2 )
    {
        if( i + VECSZ*2 > len )
        {
            // if it's inplace operation, we cannot repeatedly process
            // the tail for the second time, so we have to use the
            // scalar code
            if( i == 0 || angle == X || angle == Y )
                break;
            i = len - VECSZ*2;
        }

        v_float32 y0 = vx_load(Y + i);
        v_float32 x0 = vx_load(X + i);
        v_float32 y1 = vx_load(Y + i + VECSZ);
        v_float32 x1 = vx_load(X + i + VECSZ);

        v_float32 r0 = v.compute(y0, x0);
        v_float32 r1 = v.compute(y1, x1);

        v_store(angle + i, r0);
        v_store(angle + i + VECSZ, r1);
    }
    vx_cleanup();
#endif

    for( ; i < len; i++ )
        angle[i] = atan_f32(Y[i], X[i])*scale;
}

void fastAtan32f(const float *Y, const float *X, float *angle, int len, bool angleInDegrees )
{
    CV_INSTRUMENT_REGION();
    fastAtan32f_(Y, X, angle, len, angleInDegrees );
}

void fastAtan64f(const double *Y, const double *X, double *angle, int len, bool angleInDegrees)
{
    CV_INSTRUMENT_REGION();

    const int BLKSZ = 128;
    float ybuf[BLKSZ], xbuf[BLKSZ], abuf[BLKSZ];
    for( int i = 0; i < len; i += BLKSZ )
    {
        int j, blksz = std::min(BLKSZ, len - i);
        for( j = 0; j < blksz; j++ )
        {
            ybuf[j] = (float)Y[i + j];
            xbuf[j] = (float)X[i + j];
        }
        fastAtan32f_(ybuf, xbuf, abuf, blksz, angleInDegrees);
        for( j = 0; j < blksz; j++ )
            angle[i + j] = abuf[j];
    }
}

// deprecated
void fastAtan2(const float *Y, const float *X, float *angle, int len, bool angleInDegrees )
{
    CV_INSTRUMENT_REGION();
    fastAtan32f(Y, X, angle, len, angleInDegrees);
}

void magnitude32f(const float* x, const float* y, float* mag, int len)
{
    CV_INSTRUMENT_REGION();

    int i = 0;

#if CV_SIMD
    const int VECSZ = v_float32::nlanes;
    for( ; i < len; i += VECSZ*2 )
    {
        if( i + VECSZ*2 > len )
        {
            if( i == 0 || mag == x || mag == y )
                break;
            i = len - VECSZ*2;
        }
        v_float32 x0 = vx_load(x + i), x1 = vx_load(x + i + VECSZ);
        v_float32 y0 = vx_load(y + i), y1 = vx_load(y + i + VECSZ);
        x0 = v_sqrt(v_muladd(x0, x0, y0*y0));
        x1 = v_sqrt(v_muladd(x1, x1, y1*y1));
        v_store(mag + i, x0);
        v_store(mag + i + VECSZ, x1);
    }
    vx_cleanup();
#endif

    for( ; i < len; i++ )
    {
        float x0 = x[i], y0 = y[i];
        mag[i] = std::sqrt(x0*x0 + y0*y0);
    }
}

void magnitude64f(const double* x, const double* y, double* mag, int len)
{
    CV_INSTRUMENT_REGION();

    int i = 0;

#if CV_SIMD_64F
    const int VECSZ = v_float64::nlanes;
    for( ; i < len; i += VECSZ*2 )
    {
        if( i + VECSZ*2 > len )
        {
            if( i == 0 || mag == x || mag == y )
                break;
            i = len - VECSZ*2;
        }
        v_float64 x0 = vx_load(x + i), x1 = vx_load(x + i + VECSZ);
        v_float64 y0 = vx_load(y + i), y1 = vx_load(y + i + VECSZ);
        x0 = v_sqrt(v_muladd(x0, x0, y0*y0));
        x1 = v_sqrt(v_muladd(x1, x1, y1*y1));
        v_store(mag + i, x0);
        v_store(mag + i + VECSZ, x1);
    }
    vx_cleanup();
#endif

    for( ; i < len; i++ )
    {
        double x0 = x[i], y0 = y[i];
        mag[i] = std::sqrt(x0*x0 + y0*y0);
    }
}


void invSqrt32f(const float* src, float* dst, int len)
{
    CV_INSTRUMENT_REGION();

    int i = 0;

#if CV_SIMD
    const int VECSZ = v_float32::nlanes;
    for( ; i < len; i += VECSZ*2 )
    {
        if( i + VECSZ*2 > len )
        {
            if( i == 0 || src == dst )
                break;
            i = len - VECSZ*2;
        }
        v_float32 t0 = vx_load(src + i), t1 = vx_load(src + i + VECSZ);
        t0 = v_invsqrt(t0);
        t1 = v_invsqrt(t1);
        v_store(dst + i, t0); v_store(dst + i + VECSZ, t1);
    }
    vx_cleanup();
#endif

    for( ; i < len; i++ )
        dst[i] = 1/std::sqrt(src[i]);
}


void invSqrt64f(const double* src, double* dst, int len)
{
    CV_INSTRUMENT_REGION();
    int i = 0;

#if CV_SIMD_64F
    const int VECSZ = v_float64::nlanes;
    for ( ; i < len; i += VECSZ*2)
    {
        if( i + VECSZ*2 > len )
        {
            if( i == 0 || src == dst )
                break;
            i = len - VECSZ*2;
        }
        v_float64 t0 = vx_load(src + i), t1 = vx_load(src + i + VECSZ);
        t0 = v_invsqrt(t0);
        t1 = v_invsqrt(t1);
        v_store(dst + i, t0); v_store(dst + i + VECSZ, t1);
    }
#endif

    for( ; i < len; i++ )
        dst[i] = 1/std::sqrt(src[i]);
}


void sqrt32f(const float* src, float* dst, int len)
{
    CV_INSTRUMENT_REGION();

    int i = 0;

#if CV_SIMD
    const int VECSZ = v_float32::nlanes;
    for( ; i < len; i += VECSZ*2 )
    {
        if( i + VECSZ*2 > len )
        {
            if( i == 0 || src == dst )
                break;
            i = len - VECSZ*2;
        }
        v_float32 t0 = vx_load(src + i), t1 = vx_load(src + i + VECSZ);
        t0 = v_sqrt(t0);
        t1 = v_sqrt(t1);
        v_store(dst + i, t0); v_store(dst + i + VECSZ, t1);
    }
    vx_cleanup();
#endif

    for( ; i < len; i++ )
        dst[i] = std::sqrt(src[i]);
}


void sqrt64f(const double* src, double* dst, int len)
{
    CV_INSTRUMENT_REGION();

    int i = 0;

#if CV_SIMD_64F
    const int VECSZ = v_float64::nlanes;
    for( ; i < len; i += VECSZ*2 )
    {
        if( i + VECSZ*2 > len )
        {
            if( i == 0 || src == dst )
                break;
            i = len - VECSZ*2;
        }
        v_float64 t0 = vx_load(src + i), t1 = vx_load(src + i + VECSZ);
        t0 = v_sqrt(t0);
        t1 = v_sqrt(t1);
        v_store(dst + i, t0); v_store(dst + i + VECSZ, t1);
    }
    vx_cleanup();
#endif

    for( ; i < len; i++ )
        dst[i] = std::sqrt(src[i]);
}

// Workaround for ICE in MSVS 2015 update 3 (issue #7795)
// CV_AVX is not used here, because generated code is faster in non-AVX mode.
// (tested with disabled IPP on i5-6300U)
#if (defined _MSC_VER && _MSC_VER >= 1900) || defined(__EMSCRIPTEN__)
void exp32f(const float *src, float *dst, int n)
{
    CV_INSTRUMENT_REGION();

    for (int i = 0; i < n; i++)
    {
        dst[i] = std::exp(src[i]);
    }
}

void exp64f(const double *src, double *dst, int n)
{
    CV_INSTRUMENT_REGION();

    for (int i = 0; i < n; i++)
    {
        dst[i] = std::exp(src[i]);
    }
}

void log32f(const float *src, float *dst, int n)
{
    CV_INSTRUMENT_REGION();

    for (int i = 0; i < n; i++)
    {
        dst[i] = std::log(src[i]);
    }
}
void log64f(const double *src, double *dst, int n)
{
    CV_INSTRUMENT_REGION();

    for (int i = 0; i < n; i++)
    {
        dst[i] = std::log(src[i]);
    }
}
#else

////////////////////////////////////// EXP /////////////////////////////////////

#define EXPTAB_SCALE 6
#define EXPTAB_MASK  ((1 << EXPTAB_SCALE) - 1)

#define EXPPOLY_32F_A0 .9670371139572337719125840413672004409288e-2

// the code below uses _mm_cast* intrinsics, which are not available on VS2005
#if (defined _MSC_VER && _MSC_VER < 1500) || \
(!defined __APPLE__ && defined __GNUC__ && __GNUC__*100 + __GNUC_MINOR__ < 402)
#undef CV_SSE2
#define CV_SSE2 0
#endif

static const double exp_prescale = 1.4426950408889634073599246810019 * (1 << EXPTAB_SCALE);
static const double exp_postscale = 1./(1 << EXPTAB_SCALE);
static const double exp_max_val = 3000.*(1 << EXPTAB_SCALE); // log10(DBL_MAX) < 3000

void exp32f( const float *_x, float *y, int n )
{
    CV_INSTRUMENT_REGION();

    const float* const expTab_f = cv::details::getExpTab32f();

    const float
    A4 = (float)(1.000000000000002438532970795181890933776 / EXPPOLY_32F_A0),
    A3 = (float)(.6931471805521448196800669615864773144641 / EXPPOLY_32F_A0),
    A2 = (float)(.2402265109513301490103372422686535526573 / EXPPOLY_32F_A0),
    A1 = (float)(.5550339366753125211915322047004666939128e-1 / EXPPOLY_32F_A0);

    int i = 0;
    const Cv32suf* x = (const Cv32suf*)_x;
    float minval = (float)(-exp_max_val/exp_prescale);
    float maxval = (float)(exp_max_val/exp_prescale);
    float postscale = (float)exp_postscale;

#if CV_SIMD
    const int VECSZ = v_float32::nlanes;
    const v_float32 vprescale = vx_setall_f32((float)exp_prescale);
    const v_float32 vpostscale = vx_setall_f32((float)exp_postscale);
    const v_float32 vminval = vx_setall_f32(minval);
    const v_float32 vmaxval = vx_setall_f32(maxval);

    const v_float32 vA1 = vx_setall_f32((float)A1);
    const v_float32 vA2 = vx_setall_f32((float)A2);
    const v_float32 vA3 = vx_setall_f32((float)A3);
    const v_float32 vA4 = vx_setall_f32((float)A4);

    const v_int32 vidxmask = vx_setall_s32(EXPTAB_MASK);
    bool y_aligned = (size_t)(void*)y % 32 == 0;

    for( ; i < n; i += VECSZ*2 )
    {
        if( i + VECSZ*2 > n )
        {
            if( i == 0 || _x == y )
                break;
            i = n - VECSZ*2;
            y_aligned = false;
        }

        v_float32 xf0 = vx_load(&x[i].f), xf1 = vx_load(&x[i + VECSZ].f);

        xf0 = v_min(v_max(xf0, vminval), vmaxval);
        xf1 = v_min(v_max(xf1, vminval), vmaxval);

        xf0 *= vprescale;
        xf1 *= vprescale;

        v_int32 xi0 = v_round(xf0);
        v_int32 xi1 = v_round(xf1);
        xf0 = (xf0 - v_cvt_f32(xi0))*vpostscale;
        xf1 = (xf1 - v_cvt_f32(xi1))*vpostscale;

        v_float32 yf0 = v_lut(expTab_f, xi0 & vidxmask);
        v_float32 yf1 = v_lut(expTab_f, xi1 & vidxmask);

        v_int32 v0 = vx_setzero_s32(), v127 = vx_setall_s32(127), v255 = vx_setall_s32(255);
        xi0 = v_min(v_max(v_shr<EXPTAB_SCALE>(xi0) + v127, v0), v255);
        xi1 = v_min(v_max(v_shr<EXPTAB_SCALE>(xi1) + v127, v0), v255);

        yf0 *= v_reinterpret_as_f32(v_shl<23>(xi0));
        yf1 *= v_reinterpret_as_f32(v_shl<23>(xi1));

        v_float32 zf0 = xf0 + vA1;
        v_float32 zf1 = xf1 + vA1;

        zf0 = v_fma(zf0, xf0, vA2);
        zf1 = v_fma(zf1, xf1, vA2);

        zf0 = v_fma(zf0, xf0, vA3);
        zf1 = v_fma(zf1, xf1, vA3);

        zf0 = v_fma(zf0, xf0, vA4);
        zf1 = v_fma(zf1, xf1, vA4);

        zf0 *= yf0;
        zf1 *= yf1;

        if( y_aligned )
        {
            v_store_aligned(y + i, zf0);
            v_store_aligned(y + i + VECSZ, zf1);
        }
        else
        {
            v_store(y + i, zf0);
            v_store(y + i + VECSZ, zf1);
        }
    }
    vx_cleanup();
#endif

    for( ; i < n; i++ )
    {
        float x0 = x[i].f;
        x0 = std::min(std::max(x0, minval), maxval);
        x0 *= (float)exp_prescale;
        Cv32suf buf;

        int xi = saturate_cast<int>(x0);
        x0 = (x0 - xi)*postscale;

        int t = (xi >> EXPTAB_SCALE) + 127;
        t = !(t & ~255) ? t : t < 0 ? 0 : 255;
        buf.i = t << 23;

        y[i] = buf.f * expTab_f[xi & EXPTAB_MASK] * ((((x0 + A1)*x0 + A2)*x0 + A3)*x0 + A4);
    }
}

void exp64f( const double *_x, double *y, int n )
{
    CV_INSTRUMENT_REGION();

    const double* const expTab = cv::details::getExpTab64f();

    const double
    A5 = .99999999999999999998285227504999 / EXPPOLY_32F_A0,
    A4 = .69314718055994546743029643825322 / EXPPOLY_32F_A0,
    A3 = .24022650695886477918181338054308 / EXPPOLY_32F_A0,
    A2 = .55504108793649567998466049042729e-1 / EXPPOLY_32F_A0,
    A1 = .96180973140732918010002372686186e-2 / EXPPOLY_32F_A0,
    A0 = .13369713757180123244806654839424e-2 / EXPPOLY_32F_A0;

    int i = 0;
    const Cv64suf* x = (const Cv64suf*)_x;
    double minval = (-exp_max_val/exp_prescale);
    double maxval = (exp_max_val/exp_prescale);

#if CV_SIMD_64F
    const int VECSZ = v_float64::nlanes;
    const v_float64 vprescale = vx_setall_f64(exp_prescale);
    const v_float64 vpostscale = vx_setall_f64(exp_postscale);
    const v_float64 vminval = vx_setall_f64(minval);
    const v_float64 vmaxval = vx_setall_f64(maxval);

    const v_float64 vA1 = vx_setall_f64(A1);
    const v_float64 vA2 = vx_setall_f64(A2);
    const v_float64 vA3 = vx_setall_f64(A3);
    const v_float64 vA4 = vx_setall_f64(A4);
    const v_float64 vA5 = vx_setall_f64(A5);

    const v_int32 vidxmask = vx_setall_s32(EXPTAB_MASK);
    bool y_aligned = (size_t)(void*)y % 32 == 0;

    for( ; i < n; i += VECSZ*2 )
    {
        if( i + VECSZ*2 > n )
        {
            if( i == 0 || _x == y )
                break;
            i = n - VECSZ*2;
            y_aligned = false;
        }

        v_float64 xf0 = vx_load(&x[i].f), xf1 = vx_load(&x[i + VECSZ].f);

        xf0 = v_min(v_max(xf0, vminval), vmaxval);
        xf1 = v_min(v_max(xf1, vminval), vmaxval);

        xf0 *= vprescale;
        xf1 *= vprescale;

        v_int32 xi0 = v_round(xf0);
        v_int32 xi1 = v_round(xf1);
        xf0 = (xf0 - v_cvt_f64(xi0))*vpostscale;
        xf1 = (xf1 - v_cvt_f64(xi1))*vpostscale;

        v_float64 yf0 = v_lut(expTab, xi0 & vidxmask);
        v_float64 yf1 = v_lut(expTab, xi1 & vidxmask);

        v_int32 v0 = vx_setzero_s32(), v1023 = vx_setall_s32(1023), v2047 = vx_setall_s32(2047);
        xi0 = v_min(v_max(v_shr<EXPTAB_SCALE>(xi0) + v1023, v0), v2047);
        xi1 = v_min(v_max(v_shr<EXPTAB_SCALE>(xi1) + v1023, v0), v2047);

        v_int64 xq0, xq1, dummy;
        v_expand(xi0, xq0, dummy);
        v_expand(xi1, xq1, dummy);

        yf0 *= v_reinterpret_as_f64(v_shl<52>(xq0));
        yf1 *= v_reinterpret_as_f64(v_shl<52>(xq1));

        v_float64 zf0 = xf0 + vA1;
        v_float64 zf1 = xf1 + vA1;

        zf0 = v_fma(zf0, xf0, vA2);
        zf1 = v_fma(zf1, xf1, vA2);

        zf0 = v_fma(zf0, xf0, vA3);
        zf1 = v_fma(zf1, xf1, vA3);

        zf0 = v_fma(zf0, xf0, vA4);
        zf1 = v_fma(zf1, xf1, vA4);

        zf0 = v_fma(zf0, xf0, vA5);
        zf1 = v_fma(zf1, xf1, vA5);

        zf0 *= yf0;
        zf1 *= yf1;

        if( y_aligned )
        {
            v_store_aligned(y + i, zf0);
            v_store_aligned(y + i + VECSZ, zf1);
        }
        else
        {
            v_store(y + i, zf0);
            v_store(y + i + VECSZ, zf1);
        }
    }
    vx_cleanup();
#endif

    for( ; i < n; i++ )
    {
        double x0 = x[i].f;
        x0 = std::min(std::max(x0, minval), maxval);
        x0 *= exp_prescale;
        Cv64suf buf;

        int xi = saturate_cast<int>(x0);
        x0 = (x0 - xi)*exp_postscale;

        int t = (xi >> EXPTAB_SCALE) + 1023;
        t = !(t & ~2047) ? t : t < 0 ? 0 : 2047;
        buf.i = (int64)t << 52;

        y[i] = buf.f * expTab[xi & EXPTAB_MASK] * (((((A0*x0 + A1)*x0 + A2)*x0 + A3)*x0 + A4)*x0 + A5);
    }
}

#undef EXPTAB_SCALE
#undef EXPTAB_MASK
#undef EXPPOLY_32F_A0

/////////////////////////////////////////// LOG ///////////////////////////////////////

#define LOGTAB_SCALE        8
#define LOGTAB_MASK         ((1 << LOGTAB_SCALE) - 1)

#define LOGTAB_TRANSLATE(tab, x, h) (((x) - 1.f)*tab[(h)+1])
static const double ln_2 = 0.69314718055994530941723212145818;

void log32f( const float *_x, float *y, int n )
{
    CV_INSTRUMENT_REGION();

    const float* const logTab_f = cv::details::getLogTab32f();

    const int LOGTAB_MASK2_32F = (1 << (23 - LOGTAB_SCALE)) - 1;
    const float
    A0 = 0.3333333333333333333333333f,
    A1 = -0.5f,
    A2 = 1.f;

    int i = 0;
    const int* x = (const int*)_x;

#if CV_SIMD
    const int VECSZ = v_float32::nlanes;
    const v_float32 vln2 = vx_setall_f32((float)ln_2);
    const v_float32 v1 = vx_setall_f32(1.f);
    const v_float32 vshift = vx_setall_f32(-1.f/512);

    const v_float32 vA0 = vx_setall_f32(A0);
    const v_float32 vA1 = vx_setall_f32(A1);
    const v_float32 vA2 = vx_setall_f32(A2);

    for( ; i < n; i += VECSZ )
    {
        if( i + VECSZ > n )
        {
            if( i == 0 || _x == y )
                break;
            i = n - VECSZ;
        }

        v_int32 h0 = vx_load(x + i);
        v_int32 yi0 = (v_shr<23>(h0) & vx_setall_s32(255)) - vx_setall_s32(127);
        v_int32 xi0 = (h0 & vx_setall_s32(LOGTAB_MASK2_32F)) | vx_setall_s32(127 << 23);

        h0 = v_shr<23 - LOGTAB_SCALE - 1>(h0) & vx_setall_s32(LOGTAB_MASK*2);
        v_float32 yf0, xf0;

        v_lut_deinterleave(logTab_f, h0, yf0, xf0);

        yf0 = v_fma(v_cvt_f32(yi0), vln2, yf0);

        v_float32 delta = v_reinterpret_as_f32(h0 == vx_setall_s32(510)) & vshift;
        xf0 = v_fma((v_reinterpret_as_f32(xi0) - v1), xf0, delta);

        v_float32 zf0 = v_fma(xf0, vA0, vA1);
        zf0 = v_fma(zf0, xf0, vA2);
        zf0 = v_fma(zf0, xf0, yf0);

        v_store(y + i, zf0);
    }
    vx_cleanup();
#endif

    for( ; i < n; i++ )
    {
        Cv32suf buf;
        int i0 = x[i];

        buf.i = (i0 & LOGTAB_MASK2_32F) | (127 << 23);
        int idx = (i0 >> (23 - LOGTAB_SCALE - 1)) & (LOGTAB_MASK*2);

        float y0 = (((i0 >> 23) & 0xff) - 127) * (float)ln_2 + logTab_f[idx];
        float x0 = (buf.f - 1.f)*logTab_f[idx + 1] + (idx == 510 ? -1.f/512 : 0.f);
        y[i] = ((A0*x0 + A1)*x0 + A2)*x0 + y0;
    }
}

void log64f( const double *x, double *y, int n )
{
    CV_INSTRUMENT_REGION();

    const double* const logTab = cv::details::getLogTab64f();

    const int64 LOGTAB_MASK2_64F = ((int64)1 << (52 - LOGTAB_SCALE)) - 1;
    const double
    A7 = 1.0,
    A6 = -0.5,
    A5 = 0.333333333333333314829616256247390992939472198486328125,
    A4 = -0.25,
    A3 = 0.2,
    A2 = -0.1666666666666666574148081281236954964697360992431640625,
    A1 = 0.1428571428571428769682682968777953647077083587646484375,
    A0 = -0.125;

    int i = 0;

#if CV_SIMD_64F
    const int VECSZ = v_float64::nlanes;
    const v_float64 vln2 = vx_setall_f64(ln_2);

    const v_float64
        vA0 = vx_setall_f64(A0), vA1 = vx_setall_f64(A1),
        vA2 = vx_setall_f64(A2), vA3 = vx_setall_f64(A3),
        vA4 = vx_setall_f64(A4), vA5 = vx_setall_f64(A5),
        vA6 = vx_setall_f64(A6), vA7 = vx_setall_f64(A7);

    for( ; i < n; i += VECSZ )
    {
        if( i + VECSZ > n )
        {
            if( i == 0 || x == y )
                break;
            i = n - VECSZ;
        }

        v_int64 h0 = vx_load((const int64*)x + i);
        v_int32 yi0 = v_pack(v_shr<52>(h0), vx_setzero_s64());
        yi0 = (yi0 & vx_setall_s32(0x7ff)) - vx_setall_s32(1023);

        v_int64 xi0 = (h0 & vx_setall_s64(LOGTAB_MASK2_64F)) | vx_setall_s64((int64)1023 << 52);
        h0 = v_shr<52 - LOGTAB_SCALE - 1>(h0);
        v_int32 idx = v_pack(h0, h0) & vx_setall_s32(LOGTAB_MASK*2);

        v_float64 xf0, yf0;
        v_lut_deinterleave(logTab, idx, yf0, xf0);

        yf0 = v_fma(v_cvt_f64(yi0), vln2, yf0);
        v_float64 delta = v_cvt_f64(idx == vx_setall_s32(510))*vx_setall_f64(1./512);
        xf0 = v_fma(v_reinterpret_as_f64(xi0) - vx_setall_f64(1.), xf0, delta);

        v_float64 xq = xf0*xf0;
        v_float64 zf0 = v_fma(xq, vA0, vA2);
        v_float64 zf1 = v_fma(xq, vA1, vA3);
        zf0 = v_fma(zf0, xq, vA4);
        zf1 = v_fma(zf1, xq, vA5);
        zf0 = v_fma(zf0, xq, vA6);
        zf1 = v_fma(zf1, xq, vA7);
        zf1 = v_fma(zf1, xf0, yf0);
        zf0 = v_fma(zf0, xq, zf1);

        v_store(y + i, zf0);
    }
#endif

    for( ; i < n; i++ )
    {
        Cv64suf buf;
        int64 i0 = ((const int64*)x)[i];

        buf.i = (i0 & LOGTAB_MASK2_64F) | ((int64)1023 << 52);
        int idx = (int)(i0 >> (52 - LOGTAB_SCALE - 1)) & (LOGTAB_MASK*2);

        double y0 = (((int)(i0 >> 52) & 0x7ff) - 1023) * ln_2 + logTab[idx];
        double x0 = (buf.f - 1.)*logTab[idx + 1] + (idx == 510 ? -1./512 : 0.);

        double xq = x0*x0;
        y[i] = (((A0*xq + A2)*xq + A4)*xq + A6)*xq + (((A1*xq + A3)*xq + A5)*xq + A7)*x0 + y0;
    }
}

#endif // issue 7795

float fastAtan2( float y, float x )
{
    return atan_f32(y, x);
}

#endif // CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY

CV_CPU_OPTIMIZATION_NAMESPACE_END

}} // namespace cv::hal