1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "test_precomp.hpp"
#ifdef HAVE_INF_ENGINE
#include <opencv2/core/utils/filesystem.hpp>
//
// Synchronize headers include statements with src/op_inf_engine.hpp
//
//#define INFERENCE_ENGINE_DEPRECATED // turn off deprecation warnings from IE
//there is no way to suppress warnings from IE only at this moment, so we are forced to suppress warnings globally
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
#ifdef _MSC_VER
#pragma warning(disable: 4996) // was declared deprecated
#endif
#if defined(__GNUC__)
#pragma GCC visibility push(default)
#endif
#include <inference_engine.hpp>
#include <ie_icnn_network.hpp>
#include <ie_extension.h>
#if defined(__GNUC__)
#pragma GCC visibility pop
#endif
namespace opencv_test { namespace {
static void initDLDTDataPath()
{
#ifndef WINRT
static bool initialized = false;
if (!initialized)
{
#if INF_ENGINE_RELEASE <= 2018050000
const char* dldtTestDataPath = getenv("INTEL_CVSDK_DIR");
if (dldtTestDataPath)
cvtest::addDataSearchPath(dldtTestDataPath);
#else
const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH");
if (omzDataPath)
cvtest::addDataSearchPath(omzDataPath);
const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH");
if (dnnDataPath)
cvtest::addDataSearchPath(std::string(dnnDataPath) + "/omz_intel_models");
#endif
initialized = true;
}
#endif
}
using namespace cv;
using namespace cv::dnn;
using namespace InferenceEngine;
struct OpenVINOModelTestCaseInfo
{
const char* modelPathFP32;
const char* modelPathFP16;
};
static const std::map<std::string, OpenVINOModelTestCaseInfo>& getOpenVINOTestModels()
{
static std::map<std::string, OpenVINOModelTestCaseInfo> g_models {
#if INF_ENGINE_RELEASE <= 2018050000
{ "age-gender-recognition-retail-0013", {
"deployment_tools/intel_models/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013",
"deployment_tools/intel_models/age-gender-recognition-retail-0013/FP16/age-gender-recognition-retail-0013"
}},
{ "face-person-detection-retail-0002", {
"deployment_tools/intel_models/face-person-detection-retail-0002/FP32/face-person-detection-retail-0002",
"deployment_tools/intel_models/face-person-detection-retail-0002/FP16/face-person-detection-retail-0002"
}},
{ "head-pose-estimation-adas-0001", {
"deployment_tools/intel_models/head-pose-estimation-adas-0001/FP32/head-pose-estimation-adas-0001",
"deployment_tools/intel_models/head-pose-estimation-adas-0001/FP16/head-pose-estimation-adas-0001"
}},
{ "person-detection-retail-0002", {
"deployment_tools/intel_models/person-detection-retail-0002/FP32/person-detection-retail-0002",
"deployment_tools/intel_models/person-detection-retail-0002/FP16/person-detection-retail-0002"
}},
{ "vehicle-detection-adas-0002", {
"deployment_tools/intel_models/vehicle-detection-adas-0002/FP32/vehicle-detection-adas-0002",
"deployment_tools/intel_models/vehicle-detection-adas-0002/FP16/vehicle-detection-adas-0002"
}}
#else
// layout is defined by open_model_zoo/model_downloader
// Downloaded using these parameters for Open Model Zoo downloader (2019R1):
// ./downloader.py -o ${OPENCV_DNN_TEST_DATA_PATH}/omz_intel_models --cache_dir ${OPENCV_DNN_TEST_DATA_PATH}/.omz_cache/ \
// --name face-person-detection-retail-0002,face-person-detection-retail-0002-fp16,age-gender-recognition-retail-0013,age-gender-recognition-retail-0013-fp16,head-pose-estimation-adas-0001,head-pose-estimation-adas-0001-fp16,person-detection-retail-0002,person-detection-retail-0002-fp16,vehicle-detection-adas-0002,vehicle-detection-adas-0002-fp16
{ "age-gender-recognition-retail-0013", {
"Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013",
"Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013-fp16"
}},
{ "face-person-detection-retail-0002", {
"Retail/object_detection/face_pedestrian/rmnet-ssssd-2heads/0002/dldt/face-person-detection-retail-0002",
"Retail/object_detection/face_pedestrian/rmnet-ssssd-2heads/0002/dldt/face-person-detection-retail-0002-fp16"
}},
{ "head-pose-estimation-adas-0001", {
"Transportation/object_attributes/headpose/vanilla_cnn/dldt/head-pose-estimation-adas-0001",
"Transportation/object_attributes/headpose/vanilla_cnn/dldt/head-pose-estimation-adas-0001-fp16"
}},
{ "person-detection-retail-0002", {
"Retail/object_detection/pedestrian/hypernet-rfcn/0026/dldt/person-detection-retail-0002",
"Retail/object_detection/pedestrian/hypernet-rfcn/0026/dldt/person-detection-retail-0002-fp16"
}},
{ "vehicle-detection-adas-0002", {
"Transportation/object_detection/vehicle/mobilenet-reduced-ssd/dldt/vehicle-detection-adas-0002",
"Transportation/object_detection/vehicle/mobilenet-reduced-ssd/dldt/vehicle-detection-adas-0002-fp16"
}}
#endif
};
return g_models;
}
static const std::vector<std::string> getOpenVINOTestModelsList()
{
std::vector<std::string> result;
const std::map<std::string, OpenVINOModelTestCaseInfo>& models = getOpenVINOTestModels();
for (const auto& it : models)
result.push_back(it.first);
return result;
}
static inline void genData(const std::vector<size_t>& dims, Mat& m, Blob::Ptr& dataPtr)
{
m.create(std::vector<int>(dims.begin(), dims.end()), CV_32F);
randu(m, -1, 1);
dataPtr = make_shared_blob<float>({Precision::FP32, dims, Layout::ANY}, (float*)m.data);
}
void runIE(Target target, const std::string& xmlPath, const std::string& binPath,
std::map<std::string, cv::Mat>& inputsMap, std::map<std::string, cv::Mat>& outputsMap)
{
CNNNetReader reader;
reader.ReadNetwork(xmlPath);
reader.ReadWeights(binPath);
CNNNetwork net = reader.getNetwork();
std::string device_name;
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2019010000)
Core ie;
#else
InferenceEnginePluginPtr enginePtr;
InferencePlugin plugin;
#endif
ExecutableNetwork netExec;
InferRequest infRequest;
try
{
switch (target)
{
case DNN_TARGET_CPU:
device_name = "CPU";
break;
case DNN_TARGET_OPENCL:
case DNN_TARGET_OPENCL_FP16:
device_name = "GPU";
break;
case DNN_TARGET_MYRIAD:
device_name = "MYRIAD";
break;
case DNN_TARGET_FPGA:
device_name = "FPGA";
break;
default:
CV_Error(Error::StsNotImplemented, "Unknown target");
};
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000)
auto dispatcher = InferenceEngine::PluginDispatcher({""});
enginePtr = dispatcher.getPluginByDevice(device_name);
#endif
if (target == DNN_TARGET_CPU || target == DNN_TARGET_FPGA)
{
std::string suffixes[] = {"_avx2", "_sse4", ""};
bool haveFeature[] = {
checkHardwareSupport(CPU_AVX2),
checkHardwareSupport(CPU_SSE4_2),
true
};
for (int i = 0; i < 3; ++i)
{
if (!haveFeature[i])
continue;
#ifdef _WIN32
std::string libName = "cpu_extension" + suffixes[i] + ".dll";
#elif defined(__APPLE__)
std::string libName = "libcpu_extension" + suffixes[i] + ".dylib";
#else
std::string libName = "libcpu_extension" + suffixes[i] + ".so";
#endif // _WIN32
try
{
IExtensionPtr extension = make_so_pointer<IExtension>(libName);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2019010000)
ie.AddExtension(extension, device_name);
#else
enginePtr->AddExtension(extension, 0);
#endif
break;
}
catch(...) {}
}
// Some of networks can work without a library of extra layers.
}
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GT(2019010000)
netExec = ie.LoadNetwork(net, device_name);
#else
plugin = InferencePlugin(enginePtr);
netExec = plugin.LoadNetwork(net, {});
#endif
infRequest = netExec.CreateInferRequest();
}
catch (const std::exception& ex)
{
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
}
// Fill input blobs.
inputsMap.clear();
BlobMap inputBlobs;
for (auto& it : net.getInputsInfo())
{
genData(it.second->getTensorDesc().getDims(), inputsMap[it.first], inputBlobs[it.first]);
}
infRequest.SetInput(inputBlobs);
// Fill output blobs.
outputsMap.clear();
BlobMap outputBlobs;
for (auto& it : net.getOutputsInfo())
{
genData(it.second->getTensorDesc().getDims(), outputsMap[it.first], outputBlobs[it.first]);
}
infRequest.SetOutput(outputBlobs);
infRequest.Infer();
}
void runCV(Backend backendId, Target targetId, const std::string& xmlPath, const std::string& binPath,
const std::map<std::string, cv::Mat>& inputsMap,
std::map<std::string, cv::Mat>& outputsMap)
{
Net net = readNet(xmlPath, binPath);
for (auto& it : inputsMap)
net.setInput(it.second, it.first);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
std::vector<String> outNames = net.getUnconnectedOutLayersNames();
std::vector<Mat> outs;
net.forward(outs, outNames);
outputsMap.clear();
EXPECT_EQ(outs.size(), outNames.size());
for (int i = 0; i < outs.size(); ++i)
{
EXPECT_TRUE(outputsMap.insert({outNames[i], outs[i]}).second);
}
}
typedef TestWithParam<tuple< tuple<Backend, Target>, std::string> > DNNTestOpenVINO;
TEST_P(DNNTestOpenVINO, models)
{
initDLDTDataPath();
const Backend backendId = get<0>(get<0>(GetParam()));
const Target targetId = get<1>(get<0>(GetParam()));
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
throw SkipTestException("No support for async forward");
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
else
FAIL() << "Unknown backendId";
std::string modelName = get<1>(GetParam());
bool isFP16 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD);
const std::map<std::string, OpenVINOModelTestCaseInfo>& models = getOpenVINOTestModels();
const auto it = models.find(modelName);
ASSERT_TRUE(it != models.end()) << modelName;
OpenVINOModelTestCaseInfo modelInfo = it->second;
std::string modelPath = isFP16 ? modelInfo.modelPathFP16 : modelInfo.modelPathFP32;
std::string xmlPath = findDataFile(modelPath + ".xml");
std::string binPath = findDataFile(modelPath + ".bin");
std::map<std::string, cv::Mat> inputsMap;
std::map<std::string, cv::Mat> ieOutputsMap, cvOutputsMap;
// Single Myriad device cannot be shared across multiple processes.
if (targetId == DNN_TARGET_MYRIAD)
resetMyriadDevice();
runIE(targetId, xmlPath, binPath, inputsMap, ieOutputsMap);
runCV(backendId, targetId, xmlPath, binPath, inputsMap, cvOutputsMap);
EXPECT_EQ(ieOutputsMap.size(), cvOutputsMap.size());
for (auto& srcIt : ieOutputsMap)
{
auto dstIt = cvOutputsMap.find(srcIt.first);
CV_Assert(dstIt != cvOutputsMap.end());
double normInf = cvtest::norm(srcIt.second, dstIt->second, cv::NORM_INF);
EXPECT_EQ(normInf, 0);
}
}
INSTANTIATE_TEST_CASE_P(/**/,
DNNTestOpenVINO,
Combine(dnnBackendsAndTargetsIE(),
testing::ValuesIn(getOpenVINOTestModelsList())
)
);
typedef TestWithParam<Target> DNNTestHighLevelAPI;
TEST_P(DNNTestHighLevelAPI, predict)
{
initDLDTDataPath();
Target target = (dnn::Target)(int)GetParam();
bool isFP16 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD);
OpenVINOModelTestCaseInfo modelInfo = getOpenVINOTestModels().find("age-gender-recognition-retail-0013")->second;
std::string modelPath = isFP16 ? modelInfo.modelPathFP16 : modelInfo.modelPathFP32;
std::string xmlPath = findDataFile(modelPath + ".xml");
std::string binPath = findDataFile(modelPath + ".bin");
Model model(xmlPath, binPath);
Mat frame = imread(findDataFile("dnn/googlenet_1.png"));
std::vector<Mat> outs;
model.setPreferableBackend(DNN_BACKEND_INFERENCE_ENGINE);
model.setPreferableTarget(target);
model.predict(frame, outs);
Net net = readNet(xmlPath, binPath);
Mat input = blobFromImage(frame, 1.0, Size(62, 62));
net.setInput(input);
net.setPreferableBackend(DNN_BACKEND_INFERENCE_ENGINE);
net.setPreferableTarget(target);
std::vector<String> outNames = net.getUnconnectedOutLayersNames();
std::vector<Mat> refs;
net.forward(refs, outNames);
CV_Assert(refs.size() == outs.size());
for (int i = 0; i < refs.size(); ++i)
normAssert(outs[i], refs[i]);
}
INSTANTIATE_TEST_CASE_P(/**/,
DNNTestHighLevelAPI, testing::ValuesIn(getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE))
);
}}
#endif // HAVE_INF_ENGINE