dlasda.c 15.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
#include "clapack.h"

/* Table of constant values */

static integer c__0 = 0;
static doublereal c_b11 = 0.;
static doublereal c_b12 = 1.;
static integer c__1 = 1;
static integer c__2 = 2;

/* Subroutine */ int dlasda_(integer *icompq, integer *smlsiz, integer *n, 
	integer *sqre, doublereal *d__, doublereal *e, doublereal *u, integer 
	*ldu, doublereal *vt, integer *k, doublereal *difl, doublereal *difr, 
	doublereal *z__, doublereal *poles, integer *givptr, integer *givcol, 
	integer *ldgcol, integer *perm, doublereal *givnum, doublereal *c__, 
	doublereal *s, doublereal *work, integer *iwork, integer *info)
{
    /* System generated locals */
    integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1, 
	    difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, 
	    poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, 
	    z_dim1, z_offset, i__1, i__2;

    /* Builtin functions */
    integer pow_ii(integer *, integer *);

    /* Local variables */
    integer i__, j, m, i1, ic, lf, nd, ll, nl, vf, nr, vl, im1, ncc, nlf, nrf,
	     vfi, iwk, vli, lvl, nru, ndb1, nlp1, lvl2, nrp1;
    doublereal beta;
    integer idxq, nlvl;
    doublereal alpha;
    integer inode, ndiml, ndimr, idxqi, itemp;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    integer sqrei;
    extern /* Subroutine */ int dlasd6_(integer *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
	     doublereal *, integer *, integer *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
	     doublereal *, integer *, integer *);
    integer nwork1, nwork2;
    extern /* Subroutine */ int dlasdq_(char *, integer *, integer *, integer 
	    *, integer *, integer *, doublereal *, doublereal *, doublereal *, 
	     integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *), dlasdt_(integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *), dlaset_(
	    char *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *), xerbla_(char *, integer *);
    integer smlszp;


/*  -- LAPACK auxiliary routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  Using a divide and conquer approach, DLASDA computes the singular */
/*  value decomposition (SVD) of a real upper bidiagonal N-by-M matrix */
/*  B with diagonal D and offdiagonal E, where M = N + SQRE. The */
/*  algorithm computes the singular values in the SVD B = U * S * VT. */
/*  The orthogonal matrices U and VT are optionally computed in */
/*  compact form. */

/*  A related subroutine, DLASD0, computes the singular values and */
/*  the singular vectors in explicit form. */

/*  Arguments */
/*  ========= */

/*  ICOMPQ (input) INTEGER */
/*         Specifies whether singular vectors are to be computed */
/*         in compact form, as follows */
/*         = 0: Compute singular values only. */
/*         = 1: Compute singular vectors of upper bidiagonal */
/*              matrix in compact form. */

/*  SMLSIZ (input) INTEGER */
/*         The maximum size of the subproblems at the bottom of the */
/*         computation tree. */

/*  N      (input) INTEGER */
/*         The row dimension of the upper bidiagonal matrix. This is */
/*         also the dimension of the main diagonal array D. */

/*  SQRE   (input) INTEGER */
/*         Specifies the column dimension of the bidiagonal matrix. */
/*         = 0: The bidiagonal matrix has column dimension M = N; */
/*         = 1: The bidiagonal matrix has column dimension M = N + 1. */

/*  D      (input/output) DOUBLE PRECISION array, dimension ( N ) */
/*         On entry D contains the main diagonal of the bidiagonal */
/*         matrix. On exit D, if INFO = 0, contains its singular values. */

/*  E      (input) DOUBLE PRECISION array, dimension ( M-1 ) */
/*         Contains the subdiagonal entries of the bidiagonal matrix. */
/*         On exit, E has been destroyed. */

/*  U      (output) DOUBLE PRECISION array, */
/*         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced */
/*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left */
/*         singular vector matrices of all subproblems at the bottom */
/*         level. */

/*  LDU    (input) INTEGER, LDU = > N. */
/*         The leading dimension of arrays U, VT, DIFL, DIFR, POLES, */
/*         GIVNUM, and Z. */

/*  VT     (output) DOUBLE PRECISION array, */
/*         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced */
/*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right */
/*         singular vector matrices of all subproblems at the bottom */
/*         level. */

/*  K      (output) INTEGER array, */
/*         dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. */
/*         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th */
/*         secular equation on the computation tree. */

/*  DIFL   (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ), */
/*         where NLVL = floor(log_2 (N/SMLSIZ))). */

/*  DIFR   (output) DOUBLE PRECISION array, */
/*                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and */
/*                  dimension ( N ) if ICOMPQ = 0. */
/*         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) */
/*         record distances between singular values on the I-th */
/*         level and singular values on the (I -1)-th level, and */
/*         DIFR(1:N, 2 * I ) contains the normalizing factors for */
/*         the right singular vector matrix. See DLASD8 for details. */

/*  Z      (output) DOUBLE PRECISION array, */
/*                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and */
/*                  dimension ( N ) if ICOMPQ = 0. */
/*         The first K elements of Z(1, I) contain the components of */
/*         the deflation-adjusted updating row vector for subproblems */
/*         on the I-th level. */

/*  POLES  (output) DOUBLE PRECISION array, */
/*         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced */
/*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and */
/*         POLES(1, 2*I) contain  the new and old singular values */
/*         involved in the secular equations on the I-th level. */

/*  GIVPTR (output) INTEGER array, */
/*         dimension ( N ) if ICOMPQ = 1, and not referenced if */
/*         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records */
/*         the number of Givens rotations performed on the I-th */
/*         problem on the computation tree. */

/*  GIVCOL (output) INTEGER array, */
/*         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not */
/*         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
/*         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations */
/*         of Givens rotations performed on the I-th level on the */
/*         computation tree. */

/*  LDGCOL (input) INTEGER, LDGCOL = > N. */
/*         The leading dimension of arrays GIVCOL and PERM. */

/*  PERM   (output) INTEGER array, */
/*         dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced */
/*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records */
/*         permutations done on the I-th level of the computation tree. */

/*  GIVNUM (output) DOUBLE PRECISION array, */
/*         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not */
/*         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, */
/*         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- */
/*         values of Givens rotations performed on the I-th level on */
/*         the computation tree. */

/*  C      (output) DOUBLE PRECISION array, */
/*         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. */
/*         If ICOMPQ = 1 and the I-th subproblem is not square, on exit, */
/*         C( I ) contains the C-value of a Givens rotation related to */
/*         the right null space of the I-th subproblem. */

/*  S      (output) DOUBLE PRECISION array, dimension ( N ) if */
/*         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 */
/*         and the I-th subproblem is not square, on exit, S( I ) */
/*         contains the S-value of a Givens rotation related to */
/*         the right null space of the I-th subproblem. */

/*  WORK   (workspace) DOUBLE PRECISION array, dimension */
/*         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). */

/*  IWORK  (workspace) INTEGER array. */
/*         Dimension must be at least (7 * N). */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = 1, an singular value did not converge */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Ming Gu and Huan Ren, Computer Science Division, University of */
/*     California at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    givnum_dim1 = *ldu;
    givnum_offset = 1 + givnum_dim1;
    givnum -= givnum_offset;
    poles_dim1 = *ldu;
    poles_offset = 1 + poles_dim1;
    poles -= poles_offset;
    z_dim1 = *ldu;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    difr_dim1 = *ldu;
    difr_offset = 1 + difr_dim1;
    difr -= difr_offset;
    difl_dim1 = *ldu;
    difl_offset = 1 + difl_dim1;
    difl -= difl_offset;
    vt_dim1 = *ldu;
    vt_offset = 1 + vt_dim1;
    vt -= vt_offset;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    --k;
    --givptr;
    perm_dim1 = *ldgcol;
    perm_offset = 1 + perm_dim1;
    perm -= perm_offset;
    givcol_dim1 = *ldgcol;
    givcol_offset = 1 + givcol_dim1;
    givcol -= givcol_offset;
    --c__;
    --s;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;

    if (*icompq < 0 || *icompq > 1) {
	*info = -1;
    } else if (*smlsiz < 3) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*sqre < 0 || *sqre > 1) {
	*info = -4;
    } else if (*ldu < *n + *sqre) {
	*info = -8;
    } else if (*ldgcol < *n) {
	*info = -17;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLASDA", &i__1);
	return 0;
    }

    m = *n + *sqre;

/*     If the input matrix is too small, call DLASDQ to find the SVD. */

    if (*n <= *smlsiz) {
	if (*icompq == 0) {
	    dlasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
		    vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, &
		    work[1], info);
	} else {
	    dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
, ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], 
		    info);
	}
	return 0;
    }

/*     Book-keeping and  set up the computation tree. */

    inode = 1;
    ndiml = inode + *n;
    ndimr = ndiml + *n;
    idxq = ndimr + *n;
    iwk = idxq + *n;

    ncc = 0;
    nru = 0;

    smlszp = *smlsiz + 1;
    vf = 1;
    vl = vf + m;
    nwork1 = vl + m;
    nwork2 = nwork1 + smlszp * smlszp;

    dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], 
	    smlsiz);

/*     for the nodes on bottom level of the tree, solve */
/*     their subproblems by DLASDQ. */

    ndb1 = (nd + 1) / 2;
    i__1 = nd;
    for (i__ = ndb1; i__ <= i__1; ++i__) {

/*        IC : center row of each node */
/*        NL : number of rows of left  subproblem */
/*        NR : number of rows of right subproblem */
/*        NLF: starting row of the left   subproblem */
/*        NRF: starting row of the right  subproblem */

	i1 = i__ - 1;
	ic = iwork[inode + i1];
	nl = iwork[ndiml + i1];
	nlp1 = nl + 1;
	nr = iwork[ndimr + i1];
	nlf = ic - nl;
	nrf = ic + 1;
	idxqi = idxq + nlf - 2;
	vfi = vf + nlf - 1;
	vli = vl + nlf - 1;
	sqrei = 1;
	if (*icompq == 0) {
	    dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
	    dlasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], &
		    work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2], 
		    &nl, &work[nwork2], info);
	    itemp = nwork1 + nl * smlszp;
	    dcopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1);
	    dcopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1);
	} else {
	    dlaset_("A", &nl, &nl, &c_b11, &c_b12, &u[nlf + u_dim1], ldu);
	    dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &vt[nlf + vt_dim1], 
		    ldu);
	    dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &
		    vt[nlf + vt_dim1], ldu, &u[nlf + u_dim1], ldu, &u[nlf + 
		    u_dim1], ldu, &work[nwork1], info);
	    dcopy_(&nlp1, &vt[nlf + vt_dim1], &c__1, &work[vfi], &c__1);
	    dcopy_(&nlp1, &vt[nlf + nlp1 * vt_dim1], &c__1, &work[vli], &c__1)
		    ;
	}
	if (*info != 0) {
	    return 0;
	}
	i__2 = nl;
	for (j = 1; j <= i__2; ++j) {
	    iwork[idxqi + j] = j;
/* L10: */
	}
	if (i__ == nd && *sqre == 0) {
	    sqrei = 0;
	} else {
	    sqrei = 1;
	}
	idxqi += nlp1;
	vfi += nlp1;
	vli += nlp1;
	nrp1 = nr + sqrei;
	if (*icompq == 0) {
	    dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &work[nwork1], &smlszp);
	    dlasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], &
		    work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2], 
		    &nr, &work[nwork2], info);
	    itemp = nwork1 + (nrp1 - 1) * smlszp;
	    dcopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1);
	    dcopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1);
	} else {
	    dlaset_("A", &nr, &nr, &c_b11, &c_b12, &u[nrf + u_dim1], ldu);
	    dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &vt[nrf + vt_dim1], 
		    ldu);
	    dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &
		    vt[nrf + vt_dim1], ldu, &u[nrf + u_dim1], ldu, &u[nrf + 
		    u_dim1], ldu, &work[nwork1], info);
	    dcopy_(&nrp1, &vt[nrf + vt_dim1], &c__1, &work[vfi], &c__1);
	    dcopy_(&nrp1, &vt[nrf + nrp1 * vt_dim1], &c__1, &work[vli], &c__1)
		    ;
	}
	if (*info != 0) {
	    return 0;
	}
	i__2 = nr;
	for (j = 1; j <= i__2; ++j) {
	    iwork[idxqi + j] = j;
/* L20: */
	}
/* L30: */
    }

/*     Now conquer each subproblem bottom-up. */

    j = pow_ii(&c__2, &nlvl);
    for (lvl = nlvl; lvl >= 1; --lvl) {
	lvl2 = (lvl << 1) - 1;

/*        Find the first node LF and last node LL on */
/*        the current level LVL. */

	if (lvl == 1) {
	    lf = 1;
	    ll = 1;
	} else {
	    i__1 = lvl - 1;
	    lf = pow_ii(&c__2, &i__1);
	    ll = (lf << 1) - 1;
	}
	i__1 = ll;
	for (i__ = lf; i__ <= i__1; ++i__) {
	    im1 = i__ - 1;
	    ic = iwork[inode + im1];
	    nl = iwork[ndiml + im1];
	    nr = iwork[ndimr + im1];
	    nlf = ic - nl;
	    nrf = ic + 1;
	    if (i__ == ll) {
		sqrei = *sqre;
	    } else {
		sqrei = 1;
	    }
	    vfi = vf + nlf - 1;
	    vli = vl + nlf - 1;
	    idxqi = idxq + nlf - 1;
	    alpha = d__[ic];
	    beta = e[ic];
	    if (*icompq == 0) {
		dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
			work[vli], &alpha, &beta, &iwork[idxqi], &perm[
			perm_offset], &givptr[1], &givcol[givcol_offset], 
			ldgcol, &givnum[givnum_offset], ldu, &poles[
			poles_offset], &difl[difl_offset], &difr[difr_offset], 
			 &z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1], 
			 &iwork[iwk], info);
	    } else {
		--j;
		dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &
			work[vli], &alpha, &beta, &iwork[idxqi], &perm[nlf + 
			lvl * perm_dim1], &givptr[j], &givcol[nlf + lvl2 * 
			givcol_dim1], ldgcol, &givnum[nlf + lvl2 * 
			givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &
			difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 * 
			difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[j], 
			&s[j], &work[nwork1], &iwork[iwk], info);
	    }
	    if (*info != 0) {
		return 0;
	    }
/* L40: */
	}
/* L50: */
    }

    return 0;

/*     End of DLASDA */

} /* dlasda_ */