enc_sse2.c 52.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// SSE2 version of speed-critical encoding functions.
//
// Author: Christian Duvivier (cduvivier@google.com)

#include "src/dsp/dsp.h"

#if defined(WEBP_USE_SSE2)
#include <assert.h>
#include <stdlib.h>  // for abs()
#include <emmintrin.h>

#include "src/dsp/common_sse2.h"
#include "src/enc/cost_enc.h"
#include "src/enc/vp8i_enc.h"

//------------------------------------------------------------------------------
// Transforms (Paragraph 14.4)

// Does one or two inverse transforms.
static void ITransform_SSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
                            int do_two) {
  // This implementation makes use of 16-bit fixed point versions of two
  // multiply constants:
  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
  //
  // To be able to use signed 16-bit integers, we use the following trick to
  // have constants within range:
  // - Associated constants are obtained by subtracting the 16-bit fixed point
  //   version of one:
  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
  //      K1 = 85267  =>  k1 =  20091
  //      K2 = 35468  =>  k2 = -30068
  // - The multiplication of a variable by a constant become the sum of the
  //   variable and the multiplication of that variable by the associated
  //   constant:
  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
  const __m128i k1 = _mm_set1_epi16(20091);
  const __m128i k2 = _mm_set1_epi16(-30068);
  __m128i T0, T1, T2, T3;

  // Load and concatenate the transform coefficients (we'll do two inverse
  // transforms in parallel). In the case of only one inverse transform, the
  // second half of the vectors will just contain random value we'll never
  // use nor store.
  __m128i in0, in1, in2, in3;
  {
    in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
    in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
    in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
    in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
    // a00 a10 a20 a30   x x x x
    // a01 a11 a21 a31   x x x x
    // a02 a12 a22 a32   x x x x
    // a03 a13 a23 a33   x x x x
    if (do_two) {
      const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
      const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
      const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
      const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
      in0 = _mm_unpacklo_epi64(in0, inB0);
      in1 = _mm_unpacklo_epi64(in1, inB1);
      in2 = _mm_unpacklo_epi64(in2, inB2);
      in3 = _mm_unpacklo_epi64(in3, inB3);
      // a00 a10 a20 a30   b00 b10 b20 b30
      // a01 a11 a21 a31   b01 b11 b21 b31
      // a02 a12 a22 a32   b02 b12 b22 b32
      // a03 a13 a23 a33   b03 b13 b23 b33
    }
  }

  // Vertical pass and subsequent transpose.
  {
    // First pass, c and d calculations are longer because of the "trick"
    // multiplications.
    const __m128i a = _mm_add_epi16(in0, in2);
    const __m128i b = _mm_sub_epi16(in0, in2);
    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
    const __m128i c3 = _mm_sub_epi16(in1, in3);
    const __m128i c4 = _mm_sub_epi16(c1, c2);
    const __m128i c = _mm_add_epi16(c3, c4);
    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
    const __m128i d3 = _mm_add_epi16(in1, in3);
    const __m128i d4 = _mm_add_epi16(d1, d2);
    const __m128i d = _mm_add_epi16(d3, d4);

    // Second pass.
    const __m128i tmp0 = _mm_add_epi16(a, d);
    const __m128i tmp1 = _mm_add_epi16(b, c);
    const __m128i tmp2 = _mm_sub_epi16(b, c);
    const __m128i tmp3 = _mm_sub_epi16(a, d);

    // Transpose the two 4x4.
    VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3);
  }

  // Horizontal pass and subsequent transpose.
  {
    // First pass, c and d calculations are longer because of the "trick"
    // multiplications.
    const __m128i four = _mm_set1_epi16(4);
    const __m128i dc = _mm_add_epi16(T0, four);
    const __m128i a =  _mm_add_epi16(dc, T2);
    const __m128i b =  _mm_sub_epi16(dc, T2);
    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
    const __m128i c3 = _mm_sub_epi16(T1, T3);
    const __m128i c4 = _mm_sub_epi16(c1, c2);
    const __m128i c = _mm_add_epi16(c3, c4);
    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
    const __m128i d3 = _mm_add_epi16(T1, T3);
    const __m128i d4 = _mm_add_epi16(d1, d2);
    const __m128i d = _mm_add_epi16(d3, d4);

    // Second pass.
    const __m128i tmp0 = _mm_add_epi16(a, d);
    const __m128i tmp1 = _mm_add_epi16(b, c);
    const __m128i tmp2 = _mm_sub_epi16(b, c);
    const __m128i tmp3 = _mm_sub_epi16(a, d);
    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);

    // Transpose the two 4x4.
    VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
                           &T2, &T3);
  }

  // Add inverse transform to 'ref' and store.
  {
    const __m128i zero = _mm_setzero_si128();
    // Load the reference(s).
    __m128i ref0, ref1, ref2, ref3;
    if (do_two) {
      // Load eight bytes/pixels per line.
      ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
      ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
      ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
      ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
    } else {
      // Load four bytes/pixels per line.
      ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS]));
      ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS]));
      ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS]));
      ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS]));
    }
    // Convert to 16b.
    ref0 = _mm_unpacklo_epi8(ref0, zero);
    ref1 = _mm_unpacklo_epi8(ref1, zero);
    ref2 = _mm_unpacklo_epi8(ref2, zero);
    ref3 = _mm_unpacklo_epi8(ref3, zero);
    // Add the inverse transform(s).
    ref0 = _mm_add_epi16(ref0, T0);
    ref1 = _mm_add_epi16(ref1, T1);
    ref2 = _mm_add_epi16(ref2, T2);
    ref3 = _mm_add_epi16(ref3, T3);
    // Unsigned saturate to 8b.
    ref0 = _mm_packus_epi16(ref0, ref0);
    ref1 = _mm_packus_epi16(ref1, ref1);
    ref2 = _mm_packus_epi16(ref2, ref2);
    ref3 = _mm_packus_epi16(ref3, ref3);
    // Store the results.
    if (do_two) {
      // Store eight bytes/pixels per line.
      _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
      _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
      _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
      _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
    } else {
      // Store four bytes/pixels per line.
      WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0));
      WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1));
      WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2));
      WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3));
    }
  }
}

static void FTransformPass1_SSE2(const __m128i* const in01,
                                 const __m128i* const in23,
                                 __m128i* const out01,
                                 __m128i* const out32) {
  const __m128i k937 = _mm_set1_epi32(937);
  const __m128i k1812 = _mm_set1_epi32(1812);

  const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
  const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
  const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
                                            2217, 5352, 2217, 5352);
  const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
                                            -5352, 2217, -5352, 2217);

  // *in01 = 00 01 10 11 02 03 12 13
  // *in23 = 20 21 30 31 22 23 32 33
  const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
  const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
  // 00 01 10 11 03 02 13 12
  // 20 21 30 31 23 22 33 32
  const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
  const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
  // 00 01 10 11 20 21 30 31
  // 03 02 13 12 23 22 33 32
  const __m128i a01 = _mm_add_epi16(s01, s32);
  const __m128i a32 = _mm_sub_epi16(s01, s32);
  // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
  // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]

  const __m128i tmp0   = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
  const __m128i tmp2   = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
  const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
  const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
  const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
  const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
  const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
  const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
  const __m128i s03    = _mm_packs_epi32(tmp0, tmp2);
  const __m128i s12    = _mm_packs_epi32(tmp1, tmp3);
  const __m128i s_lo   = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
  const __m128i s_hi   = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
  const __m128i v23    = _mm_unpackhi_epi32(s_lo, s_hi);
  *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
  *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
}

static void FTransformPass2_SSE2(const __m128i* const v01,
                                 const __m128i* const v32,
                                 int16_t* out) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i seven = _mm_set1_epi16(7);
  const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
                                           5352,  2217, 5352,  2217);
  const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
                                           2217, -5352, 2217, -5352);
  const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
  const __m128i k51000 = _mm_set1_epi32(51000);

  // Same operations are done on the (0,3) and (1,2) pairs.
  // a3 = v0 - v3
  // a2 = v1 - v2
  const __m128i a32 = _mm_sub_epi16(*v01, *v32);
  const __m128i a22 = _mm_unpackhi_epi64(a32, a32);

  const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
  const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
  const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
  const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
  const __m128i d3 = _mm_add_epi32(c3, k51000);
  const __m128i e1 = _mm_srai_epi32(d1, 16);
  const __m128i e3 = _mm_srai_epi32(d3, 16);
  // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
  // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
  const __m128i f1 = _mm_packs_epi32(e1, e1);
  const __m128i f3 = _mm_packs_epi32(e3, e3);
  // g1 = f1 + (a3 != 0);
  // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
  // desired (0, 1), we add one earlier through k12000_plus_one.
  // -> g1 = f1 + 1 - (a3 == 0)
  const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));

  // a0 = v0 + v3
  // a1 = v1 + v2
  const __m128i a01 = _mm_add_epi16(*v01, *v32);
  const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
  const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
  const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
  const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
  // d0 = (a0 + a1 + 7) >> 4;
  // d2 = (a0 - a1 + 7) >> 4;
  const __m128i d0 = _mm_srai_epi16(c0, 4);
  const __m128i d2 = _mm_srai_epi16(c2, 4);

  const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
  const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
  _mm_storeu_si128((__m128i*)&out[0], d0_g1);
  _mm_storeu_si128((__m128i*)&out[8], d2_f3);
}

static void FTransform_SSE2(const uint8_t* src, const uint8_t* ref,
                            int16_t* out) {
  const __m128i zero = _mm_setzero_si128();
  // Load src.
  const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
  const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
  const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
  const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
  // 00 01 02 03 *
  // 10 11 12 13 *
  // 20 21 22 23 *
  // 30 31 32 33 *
  // Shuffle.
  const __m128i src_0 = _mm_unpacklo_epi16(src0, src1);
  const __m128i src_1 = _mm_unpacklo_epi16(src2, src3);
  // 00 01 10 11 02 03 12 13 * * ...
  // 20 21 30 31 22 22 32 33 * * ...

  // Load ref.
  const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
  const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
  const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
  const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
  const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1);
  const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3);

  // Convert both to 16 bit.
  const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero);
  const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero);
  const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero);
  const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero);

  // Compute the difference.
  const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b);
  const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b);
  __m128i v01, v32;

  // First pass
  FTransformPass1_SSE2(&row01, &row23, &v01, &v32);

  // Second pass
  FTransformPass2_SSE2(&v01, &v32, out);
}

static void FTransform2_SSE2(const uint8_t* src, const uint8_t* ref,
                             int16_t* out) {
  const __m128i zero = _mm_setzero_si128();

  // Load src and convert to 16b.
  const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
  const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
  const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
  const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
  const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
  const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
  const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
  const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
  // Load ref and convert to 16b.
  const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
  const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
  const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
  const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
  const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
  const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
  const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
  const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
  // Compute difference. -> 00 01 02 03  00' 01' 02' 03'
  const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
  const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
  const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
  const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);

  // Unpack and shuffle
  // 00 01 02 03   0 0 0 0
  // 10 11 12 13   0 0 0 0
  // 20 21 22 23   0 0 0 0
  // 30 31 32 33   0 0 0 0
  const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
  const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
  const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
  const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
  __m128i v01l, v32l;
  __m128i v01h, v32h;

  // First pass
  FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l);
  FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h);

  // Second pass
  FTransformPass2_SSE2(&v01l, &v32l, out + 0);
  FTransformPass2_SSE2(&v01h, &v32h, out + 16);
}

static void FTransformWHTRow_SSE2(const int16_t* const in, __m128i* const out) {
  const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1);
  const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
  const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
  const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
  const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
  const __m128i A01 = _mm_unpacklo_epi16(src0, src1);  // A0 A1 | ...
  const __m128i A23 = _mm_unpacklo_epi16(src2, src3);  // A2 A3 | ...
  const __m128i B0 = _mm_adds_epi16(A01, A23);    // a0 | a1 | ...
  const __m128i B1 = _mm_subs_epi16(A01, A23);    // a3 | a2 | ...
  const __m128i C0 = _mm_unpacklo_epi32(B0, B1);  // a0 | a1 | a3 | a2 | ...
  const __m128i C1 = _mm_unpacklo_epi32(B1, B0);  // a3 | a2 | a0 | a1 | ...
  const __m128i D = _mm_unpacklo_epi64(C0, C1);   // a0 a1 a3 a2 a3 a2 a0 a1
  *out = _mm_madd_epi16(D, kMult);
}

static void FTransformWHT_SSE2(const int16_t* in, int16_t* out) {
  // Input is 12b signed.
  __m128i row0, row1, row2, row3;
  // Rows are 14b signed.
  FTransformWHTRow_SSE2(in + 0 * 64, &row0);
  FTransformWHTRow_SSE2(in + 1 * 64, &row1);
  FTransformWHTRow_SSE2(in + 2 * 64, &row2);
  FTransformWHTRow_SSE2(in + 3 * 64, &row3);

  {
    // The a* are 15b signed.
    const __m128i a0 = _mm_add_epi32(row0, row2);
    const __m128i a1 = _mm_add_epi32(row1, row3);
    const __m128i a2 = _mm_sub_epi32(row1, row3);
    const __m128i a3 = _mm_sub_epi32(row0, row2);
    const __m128i a0a3 = _mm_packs_epi32(a0, a3);
    const __m128i a1a2 = _mm_packs_epi32(a1, a2);

    // The b* are 16b signed.
    const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2);
    const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2);
    const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2);
    const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2);

    _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1));
    _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1));
  }
}

//------------------------------------------------------------------------------
// Compute susceptibility based on DCT-coeff histograms:
// the higher, the "easier" the macroblock is to compress.

static void CollectHistogram_SSE2(const uint8_t* ref, const uint8_t* pred,
                                  int start_block, int end_block,
                                  VP8Histogram* const histo) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
  int j;
  int distribution[MAX_COEFF_THRESH + 1] = { 0 };
  for (j = start_block; j < end_block; ++j) {
    int16_t out[16];
    int k;

    FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out);

    // Convert coefficients to bin (within out[]).
    {
      // Load.
      const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
      const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
      const __m128i d0 = _mm_sub_epi16(zero, out0);
      const __m128i d1 = _mm_sub_epi16(zero, out1);
      const __m128i abs0 = _mm_max_epi16(out0, d0);   // abs(v), 16b
      const __m128i abs1 = _mm_max_epi16(out1, d1);
      // v = abs(out) >> 3
      const __m128i v0 = _mm_srai_epi16(abs0, 3);
      const __m128i v1 = _mm_srai_epi16(abs1, 3);
      // bin = min(v, MAX_COEFF_THRESH)
      const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
      const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
      // Store.
      _mm_storeu_si128((__m128i*)&out[0], bin0);
      _mm_storeu_si128((__m128i*)&out[8], bin1);
    }

    // Convert coefficients to bin.
    for (k = 0; k < 16; ++k) {
      ++distribution[out[k]];
    }
  }
  VP8SetHistogramData(distribution, histo);
}

//------------------------------------------------------------------------------
// Intra predictions

// helper for chroma-DC predictions
static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) {
  int j;
  const __m128i values = _mm_set1_epi8(v);
  for (j = 0; j < 8; ++j) {
    _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
  }
}

static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) {
  int j;
  const __m128i values = _mm_set1_epi8(v);
  for (j = 0; j < 16; ++j) {
    _mm_store_si128((__m128i*)(dst + j * BPS), values);
  }
}

static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) {
  if (size == 4) {
    int j;
    for (j = 0; j < 4; ++j) {
      memset(dst + j * BPS, value, 4);
    }
  } else if (size == 8) {
    Put8x8uv_SSE2(value, dst);
  } else {
    Put16_SSE2(value, dst);
  }
}

static WEBP_INLINE void VE8uv_SSE2(uint8_t* dst, const uint8_t* top) {
  int j;
  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
  for (j = 0; j < 8; ++j) {
    _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
  }
}

static WEBP_INLINE void VE16_SSE2(uint8_t* dst, const uint8_t* top) {
  const __m128i top_values = _mm_load_si128((const __m128i*)top);
  int j;
  for (j = 0; j < 16; ++j) {
    _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
  }
}

static WEBP_INLINE void VerticalPred_SSE2(uint8_t* dst,
                                          const uint8_t* top, int size) {
  if (top != NULL) {
    if (size == 8) {
      VE8uv_SSE2(dst, top);
    } else {
      VE16_SSE2(dst, top);
    }
  } else {
    Fill_SSE2(dst, 127, size);
  }
}

static WEBP_INLINE void HE8uv_SSE2(uint8_t* dst, const uint8_t* left) {
  int j;
  for (j = 0; j < 8; ++j) {
    const __m128i values = _mm_set1_epi8(left[j]);
    _mm_storel_epi64((__m128i*)dst, values);
    dst += BPS;
  }
}

static WEBP_INLINE void HE16_SSE2(uint8_t* dst, const uint8_t* left) {
  int j;
  for (j = 0; j < 16; ++j) {
    const __m128i values = _mm_set1_epi8(left[j]);
    _mm_store_si128((__m128i*)dst, values);
    dst += BPS;
  }
}

static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* dst,
                                            const uint8_t* left, int size) {
  if (left != NULL) {
    if (size == 8) {
      HE8uv_SSE2(dst, left);
    } else {
      HE16_SSE2(dst, left);
    }
  } else {
    Fill_SSE2(dst, 129, size);
  }
}

static WEBP_INLINE void TM_SSE2(uint8_t* dst, const uint8_t* left,
                                const uint8_t* top, int size) {
  const __m128i zero = _mm_setzero_si128();
  int y;
  if (size == 8) {
    const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
    const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
    for (y = 0; y < 8; ++y, dst += BPS) {
      const int val = left[y] - left[-1];
      const __m128i base = _mm_set1_epi16(val);
      const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
      _mm_storel_epi64((__m128i*)dst, out);
    }
  } else {
    const __m128i top_values = _mm_load_si128((const __m128i*)top);
    const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
    const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
    for (y = 0; y < 16; ++y, dst += BPS) {
      const int val = left[y] - left[-1];
      const __m128i base = _mm_set1_epi16(val);
      const __m128i out_0 = _mm_add_epi16(base, top_base_0);
      const __m128i out_1 = _mm_add_epi16(base, top_base_1);
      const __m128i out = _mm_packus_epi16(out_0, out_1);
      _mm_store_si128((__m128i*)dst, out);
    }
  }
}

static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, const uint8_t* left,
                                        const uint8_t* top, int size) {
  if (left != NULL) {
    if (top != NULL) {
      TM_SSE2(dst, left, top, size);
    } else {
      HorizontalPred_SSE2(dst, left, size);
    }
  } else {
    // true motion without left samples (hence: with default 129 value)
    // is equivalent to VE prediction where you just copy the top samples.
    // Note that if top samples are not available, the default value is
    // then 129, and not 127 as in the VerticalPred case.
    if (top != NULL) {
      VerticalPred_SSE2(dst, top, size);
    } else {
      Fill_SSE2(dst, 129, size);
    }
  }
}

static WEBP_INLINE void DC8uv_SSE2(uint8_t* dst, const uint8_t* left,
                                   const uint8_t* top) {
  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
  const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
  const __m128i combined = _mm_unpacklo_epi64(top_values, left_values);
  const int DC = VP8HorizontalAdd8b(&combined) + 8;
  Put8x8uv_SSE2(DC >> 4, dst);
}

static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
  const __m128i sum = _mm_sad_epu8(top_values, zero);
  const int DC = _mm_cvtsi128_si32(sum) + 4;
  Put8x8uv_SSE2(DC >> 3, dst);
}

static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* dst, const uint8_t* left) {
  // 'left' is contiguous so we can reuse the top summation.
  DC8uvNoLeft_SSE2(dst, left);
}

static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) {
  Put8x8uv_SSE2(0x80, dst);
}

static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* dst, const uint8_t* left,
                                       const uint8_t* top) {
  if (top != NULL) {
    if (left != NULL) {  // top and left present
      DC8uv_SSE2(dst, left, top);
    } else {  // top, but no left
      DC8uvNoLeft_SSE2(dst, top);
    }
  } else if (left != NULL) {  // left but no top
    DC8uvNoTop_SSE2(dst, left);
  } else {  // no top, no left, nothing.
    DC8uvNoTopLeft_SSE2(dst);
  }
}

static WEBP_INLINE void DC16_SSE2(uint8_t* dst, const uint8_t* left,
                                  const uint8_t* top) {
  const __m128i top_row = _mm_load_si128((const __m128i*)top);
  const __m128i left_row = _mm_load_si128((const __m128i*)left);
  const int DC =
      VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16;
  Put16_SSE2(DC >> 5, dst);
}

static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* dst, const uint8_t* top) {
  const __m128i top_row = _mm_load_si128((const __m128i*)top);
  const int DC = VP8HorizontalAdd8b(&top_row) + 8;
  Put16_SSE2(DC >> 4, dst);
}

static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* dst, const uint8_t* left) {
  // 'left' is contiguous so we can reuse the top summation.
  DC16NoLeft_SSE2(dst, left);
}

static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) {
  Put16_SSE2(0x80, dst);
}

static WEBP_INLINE void DC16Mode_SSE2(uint8_t* dst, const uint8_t* left,
                                      const uint8_t* top) {
  if (top != NULL) {
    if (left != NULL) {  // top and left present
      DC16_SSE2(dst, left, top);
    } else {  // top, but no left
      DC16NoLeft_SSE2(dst, top);
    }
  } else if (left != NULL) {  // left but no top
    DC16NoTop_SSE2(dst, left);
  } else {  // no top, no left, nothing.
    DC16NoTopLeft_SSE2(dst);
  }
}

//------------------------------------------------------------------------------
// 4x4 predictions

#define DST(x, y) dst[(x) + (y) * BPS]
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
#define AVG2(a, b) (((a) + (b) + 1) >> 1)

// We use the following 8b-arithmetic tricks:
//     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
//   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
// and:
//     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
//   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
//   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1

static WEBP_INLINE void VE4_SSE2(uint8_t* dst,
                                 const uint8_t* top) {  // vertical
  const __m128i one = _mm_set1_epi8(1);
  const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
  const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
  const __m128i b = _mm_subs_epu8(a, lsb);
  const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
  const uint32_t vals = _mm_cvtsi128_si32(avg);
  int i;
  for (i = 0; i < 4; ++i) {
    WebPUint32ToMem(dst + i * BPS, vals);
  }
}

static WEBP_INLINE void HE4_SSE2(uint8_t* dst,
                                 const uint8_t* top) {  // horizontal
  const int X = top[-1];
  const int I = top[-2];
  const int J = top[-3];
  const int K = top[-4];
  const int L = top[-5];
  WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
  WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
  WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
  WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
}

static WEBP_INLINE void DC4_SSE2(uint8_t* dst, const uint8_t* top) {
  uint32_t dc = 4;
  int i;
  for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
  Fill_SSE2(dst, dc >> 3, 4);
}

static WEBP_INLINE void LD4_SSE2(uint8_t* dst,
                                 const uint8_t* top) {  // Down-Left
  const __m128i one = _mm_set1_epi8(1);
  const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
  const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
  const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
  const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
  const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
}

static WEBP_INLINE void VR4_SSE2(uint8_t* dst,
                                 const uint8_t* top) {  // Vertical-Right
  const __m128i one = _mm_set1_epi8(1);
  const int I = top[-2];
  const int J = top[-3];
  const int K = top[-4];
  const int X = top[-1];
  const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
  const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
  const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
  const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
  const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
  const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
  const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));

  // these two are hard to implement in SSE2, so we keep the C-version:
  DST(0, 2) = AVG3(J, I, X);
  DST(0, 3) = AVG3(K, J, I);
}

static WEBP_INLINE void VL4_SSE2(uint8_t* dst,
                                 const uint8_t* top) {  // Vertical-Left
  const __m128i one = _mm_set1_epi8(1);
  const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
  const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
  const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
  const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
  const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
  const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
  const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
  const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
  const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
  const __m128i abbc = _mm_or_si128(ab, bc);
  const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
  const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
  const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));

  // these two are hard to get and irregular
  DST(3, 2) = (extra_out >> 0) & 0xff;
  DST(3, 3) = (extra_out >> 8) & 0xff;
}

static WEBP_INLINE void RD4_SSE2(uint8_t* dst,
                                 const uint8_t* top) {  // Down-right
  const __m128i one = _mm_set1_epi8(1);
  const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
  const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
  const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
  const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
  const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
  const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
  const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
  const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
  WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
  WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
  WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
  WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
}

static WEBP_INLINE void HU4_SSE2(uint8_t* dst, const uint8_t* top) {
  const int I = top[-2];
  const int J = top[-3];
  const int K = top[-4];
  const int L = top[-5];
  DST(0, 0) =             AVG2(I, J);
  DST(2, 0) = DST(0, 1) = AVG2(J, K);
  DST(2, 1) = DST(0, 2) = AVG2(K, L);
  DST(1, 0) =             AVG3(I, J, K);
  DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
  DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
  DST(3, 2) = DST(2, 2) =
  DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
}

static WEBP_INLINE void HD4_SSE2(uint8_t* dst, const uint8_t* top) {
  const int X = top[-1];
  const int I = top[-2];
  const int J = top[-3];
  const int K = top[-4];
  const int L = top[-5];
  const int A = top[0];
  const int B = top[1];
  const int C = top[2];

  DST(0, 0) = DST(2, 1) = AVG2(I, X);
  DST(0, 1) = DST(2, 2) = AVG2(J, I);
  DST(0, 2) = DST(2, 3) = AVG2(K, J);
  DST(0, 3)             = AVG2(L, K);

  DST(3, 0)             = AVG3(A, B, C);
  DST(2, 0)             = AVG3(X, A, B);
  DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
  DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
  DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
  DST(1, 3)             = AVG3(L, K, J);
}

static WEBP_INLINE void TM4_SSE2(uint8_t* dst, const uint8_t* top) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
  const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
  int y;
  for (y = 0; y < 4; ++y, dst += BPS) {
    const int val = top[-2 - y] - top[-1];
    const __m128i base = _mm_set1_epi16(val);
    const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
    WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
  }
}

#undef DST
#undef AVG3
#undef AVG2

//------------------------------------------------------------------------------
// luma 4x4 prediction

// Left samples are top[-5 .. -2], top_left is top[-1], top are
// located at top[0..3], and top right is top[4..7]
static void Intra4Preds_SSE2(uint8_t* dst, const uint8_t* top) {
  DC4_SSE2(I4DC4 + dst, top);
  TM4_SSE2(I4TM4 + dst, top);
  VE4_SSE2(I4VE4 + dst, top);
  HE4_SSE2(I4HE4 + dst, top);
  RD4_SSE2(I4RD4 + dst, top);
  VR4_SSE2(I4VR4 + dst, top);
  LD4_SSE2(I4LD4 + dst, top);
  VL4_SSE2(I4VL4 + dst, top);
  HD4_SSE2(I4HD4 + dst, top);
  HU4_SSE2(I4HU4 + dst, top);
}

//------------------------------------------------------------------------------
// Chroma 8x8 prediction (paragraph 12.2)

static void IntraChromaPreds_SSE2(uint8_t* dst, const uint8_t* left,
                                  const uint8_t* top) {
  // U block
  DC8uvMode_SSE2(C8DC8 + dst, left, top);
  VerticalPred_SSE2(C8VE8 + dst, top, 8);
  HorizontalPred_SSE2(C8HE8 + dst, left, 8);
  TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
  // V block
  dst += 8;
  if (top != NULL) top += 8;
  if (left != NULL) left += 16;
  DC8uvMode_SSE2(C8DC8 + dst, left, top);
  VerticalPred_SSE2(C8VE8 + dst, top, 8);
  HorizontalPred_SSE2(C8HE8 + dst, left, 8);
  TrueMotion_SSE2(C8TM8 + dst, left, top, 8);
}

//------------------------------------------------------------------------------
// luma 16x16 prediction (paragraph 12.3)

static void Intra16Preds_SSE2(uint8_t* dst,
                              const uint8_t* left, const uint8_t* top) {
  DC16Mode_SSE2(I16DC16 + dst, left, top);
  VerticalPred_SSE2(I16VE16 + dst, top, 16);
  HorizontalPred_SSE2(I16HE16 + dst, left, 16);
  TrueMotion_SSE2(I16TM16 + dst, left, top, 16);
}

//------------------------------------------------------------------------------
// Metric

static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a,
                                                   const __m128i b,
                                                   __m128i* const sum) {
  // take abs(a-b) in 8b
  const __m128i a_b = _mm_subs_epu8(a, b);
  const __m128i b_a = _mm_subs_epu8(b, a);
  const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
  // zero-extend to 16b
  const __m128i zero = _mm_setzero_si128();
  const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
  const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
  // multiply with self
  const __m128i sum1 = _mm_madd_epi16(C0, C0);
  const __m128i sum2 = _mm_madd_epi16(C1, C1);
  *sum = _mm_add_epi32(sum1, sum2);
}

static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* a, const uint8_t* b,
                                     int num_pairs) {
  __m128i sum = _mm_setzero_si128();
  int32_t tmp[4];
  int i;

  for (i = 0; i < num_pairs; ++i) {
    const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
    const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
    const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
    const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
    __m128i sum1, sum2;
    SubtractAndAccumulate_SSE2(a0, b0, &sum1);
    SubtractAndAccumulate_SSE2(a1, b1, &sum2);
    sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
    a += 2 * BPS;
    b += 2 * BPS;
  }
  _mm_storeu_si128((__m128i*)tmp, sum);
  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
}

static int SSE16x16_SSE2(const uint8_t* a, const uint8_t* b) {
  return SSE_16xN_SSE2(a, b, 8);
}

static int SSE16x8_SSE2(const uint8_t* a, const uint8_t* b) {
  return SSE_16xN_SSE2(a, b, 4);
}

#define LOAD_8x16b(ptr) \
  _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)

static int SSE8x8_SSE2(const uint8_t* a, const uint8_t* b) {
  const __m128i zero = _mm_setzero_si128();
  int num_pairs = 4;
  __m128i sum = zero;
  int32_t tmp[4];
  while (num_pairs-- > 0) {
    const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
    const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
    const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
    const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
    // subtract
    const __m128i c0 = _mm_subs_epi16(a0, b0);
    const __m128i c1 = _mm_subs_epi16(a1, b1);
    // multiply/accumulate with self
    const __m128i d0 = _mm_madd_epi16(c0, c0);
    const __m128i d1 = _mm_madd_epi16(c1, c1);
    // collect
    const __m128i sum01 = _mm_add_epi32(d0, d1);
    sum = _mm_add_epi32(sum, sum01);
    a += 2 * BPS;
    b += 2 * BPS;
  }
  _mm_storeu_si128((__m128i*)tmp, sum);
  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
}
#undef LOAD_8x16b

static int SSE4x4_SSE2(const uint8_t* a, const uint8_t* b) {
  const __m128i zero = _mm_setzero_si128();

  // Load values. Note that we read 8 pixels instead of 4,
  // but the a/b buffers are over-allocated to that effect.
  const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
  const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
  const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
  const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
  const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
  const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
  const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
  const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
  // Combine pair of lines.
  const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
  const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
  const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
  const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
  // Convert to 16b.
  const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
  const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
  const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
  const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
  // subtract, square and accumulate
  const __m128i d0 = _mm_subs_epi16(a01s, b01s);
  const __m128i d1 = _mm_subs_epi16(a23s, b23s);
  const __m128i e0 = _mm_madd_epi16(d0, d0);
  const __m128i e1 = _mm_madd_epi16(d1, d1);
  const __m128i sum = _mm_add_epi32(e0, e1);

  int32_t tmp[4];
  _mm_storeu_si128((__m128i*)tmp, sum);
  return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
}

//------------------------------------------------------------------------------

static void Mean16x4_SSE2(const uint8_t* ref, uint32_t dc[4]) {
  const __m128i mask = _mm_set1_epi16(0x00ff);
  const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
  const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
  const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
  const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
  const __m128i b0 = _mm_srli_epi16(a0, 8);     // hi byte
  const __m128i b1 = _mm_srli_epi16(a1, 8);
  const __m128i b2 = _mm_srli_epi16(a2, 8);
  const __m128i b3 = _mm_srli_epi16(a3, 8);
  const __m128i c0 = _mm_and_si128(a0, mask);   // lo byte
  const __m128i c1 = _mm_and_si128(a1, mask);
  const __m128i c2 = _mm_and_si128(a2, mask);
  const __m128i c3 = _mm_and_si128(a3, mask);
  const __m128i d0 = _mm_add_epi32(b0, c0);
  const __m128i d1 = _mm_add_epi32(b1, c1);
  const __m128i d2 = _mm_add_epi32(b2, c2);
  const __m128i d3 = _mm_add_epi32(b3, c3);
  const __m128i e0 = _mm_add_epi32(d0, d1);
  const __m128i e1 = _mm_add_epi32(d2, d3);
  const __m128i f0 = _mm_add_epi32(e0, e1);
  uint16_t tmp[8];
  _mm_storeu_si128((__m128i*)tmp, f0);
  dc[0] = tmp[0] + tmp[1];
  dc[1] = tmp[2] + tmp[3];
  dc[2] = tmp[4] + tmp[5];
  dc[3] = tmp[6] + tmp[7];
}

//------------------------------------------------------------------------------
// Texture distortion
//
// We try to match the spectral content (weighted) between source and
// reconstructed samples.

// Hadamard transform
// Returns the weighted sum of the absolute value of transformed coefficients.
// w[] contains a row-major 4 by 4 symmetric matrix.
static int TTransform_SSE2(const uint8_t* inA, const uint8_t* inB,
                           const uint16_t* const w) {
  int32_t sum[4];
  __m128i tmp_0, tmp_1, tmp_2, tmp_3;
  const __m128i zero = _mm_setzero_si128();

  // Load and combine inputs.
  {
    const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
    const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
    const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
    const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
    const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
    const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
    const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
    const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);

    // Combine inA and inB (we'll do two transforms in parallel).
    const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
    const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
    const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
    const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
    tmp_0 = _mm_unpacklo_epi8(inAB_0, zero);
    tmp_1 = _mm_unpacklo_epi8(inAB_1, zero);
    tmp_2 = _mm_unpacklo_epi8(inAB_2, zero);
    tmp_3 = _mm_unpacklo_epi8(inAB_3, zero);
    // a00 a01 a02 a03   b00 b01 b02 b03
    // a10 a11 a12 a13   b10 b11 b12 b13
    // a20 a21 a22 a23   b20 b21 b22 b23
    // a30 a31 a32 a33   b30 b31 b32 b33
  }

  // Vertical pass first to avoid a transpose (vertical and horizontal passes
  // are commutative because w/kWeightY is symmetric) and subsequent transpose.
  {
    // Calculate a and b (two 4x4 at once).
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    const __m128i b0 = _mm_add_epi16(a0, a1);
    const __m128i b1 = _mm_add_epi16(a3, a2);
    const __m128i b2 = _mm_sub_epi16(a3, a2);
    const __m128i b3 = _mm_sub_epi16(a0, a1);
    // a00 a01 a02 a03   b00 b01 b02 b03
    // a10 a11 a12 a13   b10 b11 b12 b13
    // a20 a21 a22 a23   b20 b21 b22 b23
    // a30 a31 a32 a33   b30 b31 b32 b33

    // Transpose the two 4x4.
    VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
  }

  // Horizontal pass and difference of weighted sums.
  {
    // Load all inputs.
    const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
    const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);

    // Calculate a and b (two 4x4 at once).
    const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    const __m128i b0 = _mm_add_epi16(a0, a1);
    const __m128i b1 = _mm_add_epi16(a3, a2);
    const __m128i b2 = _mm_sub_epi16(a3, a2);
    const __m128i b3 = _mm_sub_epi16(a0, a1);

    // Separate the transforms of inA and inB.
    __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
    __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
    __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
    __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);

    {
      const __m128i d0 = _mm_sub_epi16(zero, A_b0);
      const __m128i d1 = _mm_sub_epi16(zero, A_b2);
      const __m128i d2 = _mm_sub_epi16(zero, B_b0);
      const __m128i d3 = _mm_sub_epi16(zero, B_b2);
      A_b0 = _mm_max_epi16(A_b0, d0);   // abs(v), 16b
      A_b2 = _mm_max_epi16(A_b2, d1);
      B_b0 = _mm_max_epi16(B_b0, d2);
      B_b2 = _mm_max_epi16(B_b2, d3);
    }

    // weighted sums
    A_b0 = _mm_madd_epi16(A_b0, w_0);
    A_b2 = _mm_madd_epi16(A_b2, w_8);
    B_b0 = _mm_madd_epi16(B_b0, w_0);
    B_b2 = _mm_madd_epi16(B_b2, w_8);
    A_b0 = _mm_add_epi32(A_b0, A_b2);
    B_b0 = _mm_add_epi32(B_b0, B_b2);

    // difference of weighted sums
    A_b0 = _mm_sub_epi32(A_b0, B_b0);
    _mm_storeu_si128((__m128i*)&sum[0], A_b0);
  }
  return sum[0] + sum[1] + sum[2] + sum[3];
}

static int Disto4x4_SSE2(const uint8_t* const a, const uint8_t* const b,
                         const uint16_t* const w) {
  const int diff_sum = TTransform_SSE2(a, b, w);
  return abs(diff_sum) >> 5;
}

static int Disto16x16_SSE2(const uint8_t* const a, const uint8_t* const b,
                           const uint16_t* const w) {
  int D = 0;
  int x, y;
  for (y = 0; y < 16 * BPS; y += 4 * BPS) {
    for (x = 0; x < 16; x += 4) {
      D += Disto4x4_SSE2(a + x + y, b + x + y, w);
    }
  }
  return D;
}

//------------------------------------------------------------------------------
// Quantization
//

static WEBP_INLINE int DoQuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
                                            const uint16_t* const sharpen,
                                            const VP8Matrix* const mtx) {
  const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
  const __m128i zero = _mm_setzero_si128();
  __m128i coeff0, coeff8;
  __m128i out0, out8;
  __m128i packed_out;

  // Load all inputs.
  __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
  __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
  const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
  const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
  const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
  const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);

  // extract sign(in)  (0x0000 if positive, 0xffff if negative)
  const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
  const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);

  // coeff = abs(in) = (in ^ sign) - sign
  coeff0 = _mm_xor_si128(in0, sign0);
  coeff8 = _mm_xor_si128(in8, sign8);
  coeff0 = _mm_sub_epi16(coeff0, sign0);
  coeff8 = _mm_sub_epi16(coeff8, sign8);

  // coeff = abs(in) + sharpen
  if (sharpen != NULL) {
    const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
    const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
    coeff0 = _mm_add_epi16(coeff0, sharpen0);
    coeff8 = _mm_add_epi16(coeff8, sharpen8);
  }

  // out = (coeff * iQ + B) >> QFIX
  {
    // doing calculations with 32b precision (QFIX=17)
    // out = (coeff * iQ)
    const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
    const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
    const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
    const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
    __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
    __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
    __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
    __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
    // out = (coeff * iQ + B)
    const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
    const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
    const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
    const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
    out_00 = _mm_add_epi32(out_00, bias_00);
    out_04 = _mm_add_epi32(out_04, bias_04);
    out_08 = _mm_add_epi32(out_08, bias_08);
    out_12 = _mm_add_epi32(out_12, bias_12);
    // out = QUANTDIV(coeff, iQ, B, QFIX)
    out_00 = _mm_srai_epi32(out_00, QFIX);
    out_04 = _mm_srai_epi32(out_04, QFIX);
    out_08 = _mm_srai_epi32(out_08, QFIX);
    out_12 = _mm_srai_epi32(out_12, QFIX);

    // pack result as 16b
    out0 = _mm_packs_epi32(out_00, out_04);
    out8 = _mm_packs_epi32(out_08, out_12);

    // if (coeff > 2047) coeff = 2047
    out0 = _mm_min_epi16(out0, max_coeff_2047);
    out8 = _mm_min_epi16(out8, max_coeff_2047);
  }

  // get sign back (if (sign[j]) out_n = -out_n)
  out0 = _mm_xor_si128(out0, sign0);
  out8 = _mm_xor_si128(out8, sign8);
  out0 = _mm_sub_epi16(out0, sign0);
  out8 = _mm_sub_epi16(out8, sign8);

  // in = out * Q
  in0 = _mm_mullo_epi16(out0, q0);
  in8 = _mm_mullo_epi16(out8, q8);

  _mm_storeu_si128((__m128i*)&in[0], in0);
  _mm_storeu_si128((__m128i*)&in[8], in8);

  // zigzag the output before storing it.
  //
  // The zigzag pattern can almost be reproduced with a small sequence of
  // shuffles. After it, we only need to swap the 7th (ending up in third
  // position instead of twelfth) and 8th values.
  {
    __m128i outZ0, outZ8;
    outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
    outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
    outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
    outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
    outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
    outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
    _mm_storeu_si128((__m128i*)&out[0], outZ0);
    _mm_storeu_si128((__m128i*)&out[8], outZ8);
    packed_out = _mm_packs_epi16(outZ0, outZ8);
  }
  {
    const int16_t outZ_12 = out[12];
    const int16_t outZ_3 = out[3];
    out[3] = outZ_12;
    out[12] = outZ_3;
  }

  // detect if all 'out' values are zeroes or not
  return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
}

static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16],
                              const VP8Matrix* const mtx) {
  return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx);
}

static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16],
                                 const VP8Matrix* const mtx) {
  return DoQuantizeBlock_SSE2(in, out, NULL, mtx);
}

static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32],
                                const VP8Matrix* const mtx) {
  int nz;
  const uint16_t* const sharpen = &mtx->sharpen_[0];
  nz  = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
  nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
  return nz;
}

//------------------------------------------------------------------------------
// Entry point

extern void VP8EncDspInitSSE2(void);

WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
  VP8CollectHistogram = CollectHistogram_SSE2;
  VP8EncPredLuma16 = Intra16Preds_SSE2;
  VP8EncPredChroma8 = IntraChromaPreds_SSE2;
  VP8EncPredLuma4 = Intra4Preds_SSE2;
  VP8EncQuantizeBlock = QuantizeBlock_SSE2;
  VP8EncQuantize2Blocks = Quantize2Blocks_SSE2;
  VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2;
  VP8ITransform = ITransform_SSE2;
  VP8FTransform = FTransform_SSE2;
  VP8FTransform2 = FTransform2_SSE2;
  VP8FTransformWHT = FTransformWHT_SSE2;
  VP8SSE16x16 = SSE16x16_SSE2;
  VP8SSE16x8 = SSE16x8_SSE2;
  VP8SSE8x8 = SSE8x8_SSE2;
  VP8SSE4x4 = SSE4x4_SSE2;
  VP8TDisto4x4 = Disto4x4_SSE2;
  VP8TDisto16x16 = Disto16x16_SSE2;
  VP8Mean16x4 = Mean16x4_SSE2;
}

#else  // !WEBP_USE_SSE2

WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)

#endif  // WEBP_USE_SSE2