1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_inf_engine.hpp"
namespace cv { namespace dnn {
class ProposalLayerImpl CV_FINAL : public ProposalLayer
{
public:
ProposalLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
featStride = params.get<uint32_t>("feat_stride", 16);
baseSize = params.get<uint32_t>("base_size", 16);
// uint32_t minSize = params.get<uint32_t>("min_size", 16);
keepTopBeforeNMS = params.get<uint32_t>("pre_nms_topn", 6000);
keepTopAfterNMS = params.get<uint32_t>("post_nms_topn", 300);
nmsThreshold = params.get<float>("nms_thresh", 0.7);
ratios = params.get("ratio");
scales = params.get("scale");
{
LayerParams lp;
lp.set("step", featStride);
lp.set("flip", false);
lp.set("clip", false);
lp.set("normalized_bbox", false);
lp.set("offset", 0.5 * baseSize / featStride);
// Unused values.
float variance[] = {0.1f, 0.1f, 0.2f, 0.2f};
lp.set("variance", DictValue::arrayReal<float*>(&variance[0], 4));
// Compute widths and heights explicitly.
std::vector<float> widths, heights;
widths.reserve(ratios.size() * scales.size());
heights.reserve(ratios.size() * scales.size());
for (int i = 0; i < ratios.size(); ++i)
{
float ratio = ratios.get<float>(i);
for (int j = 0; j < scales.size(); ++j)
{
float scale = scales.get<float>(j);
float width = std::floor(baseSize / sqrt(ratio) + 0.5f);
float height = std::floor(width * ratio + 0.5f);
widths.push_back(scale * width);
heights.push_back(scale * height);
}
}
lp.set("width", DictValue::arrayReal<float*>(&widths[0], widths.size()));
lp.set("height", DictValue::arrayReal<float*>(&heights[0], heights.size()));
priorBoxLayer = PriorBoxLayer::create(lp);
}
{
int order[] = {0, 2, 3, 1};
LayerParams lp;
lp.set("order", DictValue::arrayInt<int*>(&order[0], 4));
deltasPermute = PermuteLayer::create(lp);
scoresPermute = PermuteLayer::create(lp);
}
{
LayerParams lp;
lp.set("code_type", "CENTER_SIZE");
lp.set("num_classes", 1);
lp.set("share_location", true);
lp.set("background_label_id", 1); // We won't pass background scores so set it out of range [0, num_classes)
lp.set("variance_encoded_in_target", true);
lp.set("keep_top_k", keepTopAfterNMS);
lp.set("top_k", keepTopBeforeNMS);
lp.set("nms_threshold", nmsThreshold);
lp.set("normalized_bbox", false);
lp.set("clip", true);
detectionOutputLayer = DetectionOutputLayer::create(lp);
}
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV ||
(backendId == DNN_BACKEND_INFERENCE_ENGINE && preferableTarget != DNN_TARGET_MYRIAD);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
// We need to allocate the following blobs:
// - output priors from PriorBoxLayer
// - permuted priors
// - permuted scores
CV_Assert(inputs.size() == 3);
const MatShape& scores = inputs[0];
const MatShape& bboxDeltas = inputs[1];
std::vector<MatShape> layerInputs, layerOutputs, layerInternals;
// Prior boxes layer.
layerInputs.assign(1, scores);
priorBoxLayer->getMemoryShapes(layerInputs, 1, layerOutputs, layerInternals);
CV_Assert(layerOutputs.size() == 1);
CV_Assert(layerInternals.empty());
internals.push_back(layerOutputs[0]);
// Scores permute layer.
CV_Assert(scores.size() == 4);
MatShape objectScores = scores;
CV_Assert((scores[1] & 1) == 0); // Number of channels is even.
objectScores[1] /= 2;
layerInputs.assign(1, objectScores);
scoresPermute->getMemoryShapes(layerInputs, 1, layerOutputs, layerInternals);
CV_Assert(layerOutputs.size() == 1);
CV_Assert(layerInternals.empty());
internals.push_back(layerOutputs[0]);
// BBox predictions permute layer.
layerInputs.assign(1, bboxDeltas);
deltasPermute->getMemoryShapes(layerInputs, 1, layerOutputs, layerInternals);
CV_Assert(layerOutputs.size() == 1);
CV_Assert(layerInternals.empty());
internals.push_back(layerOutputs[0]);
outputs.resize(2);
outputs[0] = shape(keepTopAfterNMS, 5);
outputs[1] = shape(keepTopAfterNMS, 1);
return false;
}
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE
{
std::vector<Mat> inputs;
inputs_arr.getMatVector(inputs);
std::vector<Mat> layerInputs;
std::vector<Mat> layerOutputs;
// Scores permute layer.
Mat scores = getObjectScores(inputs[0]);
layerInputs.assign(1, scores);
layerOutputs.assign(1, Mat(shape(scores.size[0], scores.size[2],
scores.size[3], scores.size[1]), CV_32FC1));
scoresPermute->finalize(layerInputs, layerOutputs);
// BBox predictions permute layer.
const Mat& bboxDeltas = inputs[1];
CV_Assert(bboxDeltas.dims == 4);
layerInputs.assign(1, bboxDeltas);
layerOutputs.assign(1, Mat(shape(bboxDeltas.size[0], bboxDeltas.size[2],
bboxDeltas.size[3], bboxDeltas.size[1]), CV_32FC1));
deltasPermute->finalize(layerInputs, layerOutputs);
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
std::vector<UMat> internals;
if (inputs_.depth() == CV_16S)
return false;
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
internals_.getUMatVector(internals);
CV_Assert(inputs.size() == 3);
CV_Assert(internals.size() == 3);
const UMat& scores = inputs[0];
const UMat& bboxDeltas = inputs[1];
const UMat& imInfo = inputs[2];
UMat& priorBoxes = internals[0];
UMat& permuttedScores = internals[1];
UMat& permuttedDeltas = internals[2];
CV_Assert(imInfo.total() >= 2);
// We've chosen the smallest data type because we need just a shape from it.
Mat szMat;
imInfo.copyTo(szMat);
int rows = (int)szMat.at<float>(0);
int cols = (int)szMat.at<float>(1);
umat_fakeImageBlob.create(shape(1, 1, rows, cols), CV_8UC1);
umat_fakeImageBlob.setTo(0);
// Generate prior boxes.
std::vector<UMat> layerInputs(2), layerOutputs(1, priorBoxes);
layerInputs[0] = scores;
layerInputs[1] = umat_fakeImageBlob;
priorBoxLayer->forward(layerInputs, layerOutputs, internals);
// Permute scores.
layerInputs.assign(1, getObjectScores(scores));
layerOutputs.assign(1, permuttedScores);
scoresPermute->forward(layerInputs, layerOutputs, internals);
// Permute deltas.
layerInputs.assign(1, bboxDeltas);
layerOutputs.assign(1, permuttedDeltas);
deltasPermute->forward(layerInputs, layerOutputs, internals);
// Sort predictions by scores and apply NMS. DetectionOutputLayer allocates
// output internally because of different number of objects after NMS.
layerInputs.resize(4);
layerInputs[0] = permuttedDeltas;
layerInputs[1] = permuttedScores;
layerInputs[2] = priorBoxes;
layerInputs[3] = umat_fakeImageBlob;
layerOutputs[0] = UMat();
detectionOutputLayer->forward(layerInputs, layerOutputs, internals);
// DetectionOutputLayer produces 1x1xNx7 output where N might be less or
// equal to keepTopAfterNMS. We fill the rest by zeros.
const int numDets = layerOutputs[0].total() / 7;
CV_Assert(numDets <= keepTopAfterNMS);
MatShape s = shape(numDets, 7);
layerOutputs[0] = layerOutputs[0].reshape(1, s.size(), &s[0]);
// The boxes.
UMat dst = outputs[0].rowRange(0, numDets);
layerOutputs[0].colRange(3, 7).copyTo(dst.colRange(1, 5));
dst.col(0).setTo(0); // First column are batch ids. Keep it zeros too.
// The scores.
dst = outputs[1].rowRange(0, numDets);
layerOutputs[0].col(2).copyTo(dst);
if (numDets < keepTopAfterNMS)
for (int i = 0; i < 2; ++i)
outputs[i].rowRange(numDets, keepTopAfterNMS).setTo(0);
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs, internals;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
internals_arr.getMatVector(internals);
CV_Assert(inputs.size() == 3);
CV_Assert(internals.size() == 3);
const Mat& scores = inputs[0];
const Mat& bboxDeltas = inputs[1];
const Mat& imInfo = inputs[2];
Mat& priorBoxes = internals[0];
Mat& permuttedScores = internals[1];
Mat& permuttedDeltas = internals[2];
CV_Assert(imInfo.total() >= 2);
// We've chosen the smallest data type because we need just a shape from it.
fakeImageBlob.create(shape(1, 1, imInfo.at<float>(0), imInfo.at<float>(1)), CV_8UC1);
// Generate prior boxes.
std::vector<Mat> layerInputs(2), layerOutputs(1, priorBoxes);
layerInputs[0] = scores;
layerInputs[1] = fakeImageBlob;
priorBoxLayer->forward(layerInputs, layerOutputs, internals);
// Permute scores.
layerInputs.assign(1, getObjectScores(scores));
layerOutputs.assign(1, permuttedScores);
scoresPermute->forward(layerInputs, layerOutputs, internals);
// Permute deltas.
layerInputs.assign(1, bboxDeltas);
layerOutputs.assign(1, permuttedDeltas);
deltasPermute->forward(layerInputs, layerOutputs, internals);
// Sort predictions by scores and apply NMS. DetectionOutputLayer allocates
// output internally because of different number of objects after NMS.
layerInputs.resize(4);
layerInputs[0] = permuttedDeltas;
layerInputs[1] = permuttedScores;
layerInputs[2] = priorBoxes;
layerInputs[3] = fakeImageBlob;
layerOutputs[0] = Mat();
detectionOutputLayer->forward(layerInputs, layerOutputs, internals);
// DetectionOutputLayer produces 1x1xNx7 output where N might be less or
// equal to keepTopAfterNMS. We fill the rest by zeros.
const int numDets = layerOutputs[0].total() / 7;
CV_Assert(numDets <= keepTopAfterNMS);
// The boxes.
layerOutputs[0] = layerOutputs[0].reshape(1, numDets);
Mat dst = outputs[0].rowRange(0, numDets);
layerOutputs[0].colRange(3, 7).copyTo(dst.colRange(1, 5));
dst.col(0).setTo(0); // First column are batch ids. Keep it zeros too.
// The scores.
dst = outputs[1].rowRange(0, numDets);
layerOutputs[0].col(2).copyTo(dst);
if (numDets < keepTopAfterNMS)
for (int i = 0; i < 2; ++i)
outputs[i].rowRange(numDets, keepTopAfterNMS).setTo(0);
}
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
InferenceEngine::LayerParams lp;
lp.name = name;
lp.type = "Proposal";
lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp));
ieLayer->params["base_size"] = format("%d", baseSize);
ieLayer->params["feat_stride"] = format("%d", featStride);
ieLayer->params["min_size"] = "16";
ieLayer->params["nms_thresh"] = format("%f", nmsThreshold);
ieLayer->params["post_nms_topn"] = format("%d", keepTopAfterNMS);
ieLayer->params["pre_nms_topn"] = format("%d", keepTopBeforeNMS);
if (ratios.size())
{
ieLayer->params["ratio"] = format("%f", ratios.get<float>(0));
for (int i = 1; i < ratios.size(); ++i)
ieLayer->params["ratio"] += format(",%f", ratios.get<float>(i));
}
if (scales.size())
{
ieLayer->params["scale"] = format("%f", scales.get<float>(0));
for (int i = 1; i < scales.size(); ++i)
ieLayer->params["scale"] += format(",%f", scales.get<float>(i));
}
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
#endif // HAVE_INF_ENGINE
return Ptr<BackendNode>();
}
private:
// A first half of channels are background scores. We need only a second one.
static Mat getObjectScores(const Mat& m)
{
CV_Assert(m.dims == 4);
CV_Assert(m.size[0] == 1);
int channels = m.size[1];
CV_Assert((channels & 1) == 0);
return slice(m, Range::all(), Range(channels / 2, channels));
}
#ifdef HAVE_OPENCL
static UMat getObjectScores(const UMat& m)
{
CV_Assert(m.dims == 4);
CV_Assert(m.size[0] == 1);
int channels = m.size[1];
CV_Assert((channels & 1) == 0);
Range r = Range(channels / 2, channels);
Range ranges[4] = { Range::all(), r, Range::all(), Range::all() };
return m(&ranges[0]);
}
#endif
Ptr<PriorBoxLayer> priorBoxLayer;
Ptr<DetectionOutputLayer> detectionOutputLayer;
Ptr<PermuteLayer> deltasPermute;
Ptr<PermuteLayer> scoresPermute;
uint32_t keepTopBeforeNMS, keepTopAfterNMS, featStride, baseSize;
Mat fakeImageBlob;
float nmsThreshold;
DictValue ratios, scales;
#ifdef HAVE_OPENCL
UMat umat_fakeImageBlob;
#endif
};
Ptr<ProposalLayer> ProposalLayer::create(const LayerParams& params)
{
return Ptr<ProposalLayer>(new ProposalLayerImpl(params));
}
} // namespace dnn
} // namespace cv