• Adil Ibragimov's avatar
    Several type of formal refactoring: · 8a4a1bb0
    Adil Ibragimov authored
    1. someMatrix.data -> someMatrix.prt()
    2. someMatrix.data + someMatrix.step * lineIndex -> someMatrix.ptr( lineIndex )
    3. (SomeType*) someMatrix.data -> someMatrix.ptr<SomeType>()
    4. someMatrix.data -> !someMatrix.empty() ( or !someMatrix.data -> someMatrix.empty() ) in logical expressions
    8a4a1bb0
rand.cpp 30.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/* ////////////////////////////////////////////////////////////////////
//
//  Filling CvMat/IplImage instances with random numbers
//
// */

#include "precomp.hpp"

#if defined WIN32 || defined WINCE
    #include <windows.h>
    #undef small
    #undef min
    #undef max
    #undef abs
#else
    #include <pthread.h>
#endif

#if defined __SSE2__ || (defined _M_IX86_FP && 2 == _M_IX86_FP)
    #include "emmintrin.h"
#endif

namespace cv
{

///////////////////////////// Functions Declaration //////////////////////////////////////

/*
   Multiply-with-carry generator is used here:
   temp = ( A*X(n) + carry )
   X(n+1) = temp mod (2^32)
   carry = temp / (2^32)
*/

#define  RNG_NEXT(x)    ((uint64)(unsigned)(x)*CV_RNG_COEFF + ((x) >> 32))

/***************************************************************************************\
*                           Pseudo-Random Number Generators (PRNGs)                     *
\***************************************************************************************/

template<typename T> static void
randBits_( T* arr, int len, uint64* state, const Vec2i* p, bool small_flag )
{
    uint64 temp = *state;
    int i;

    if( !small_flag )
    {
        for( i = 0; i <= len - 4; i += 4 )
        {
            int t0, t1;

            temp = RNG_NEXT(temp);
            t0 = ((int)temp & p[i][0]) + p[i][1];
            temp = RNG_NEXT(temp);
            t1 = ((int)temp & p[i+1][0]) + p[i+1][1];
            arr[i] = saturate_cast<T>(t0);
            arr[i+1] = saturate_cast<T>(t1);

            temp = RNG_NEXT(temp);
            t0 = ((int)temp & p[i+2][0]) + p[i+2][1];
            temp = RNG_NEXT(temp);
            t1 = ((int)temp & p[i+3][0]) + p[i+3][1];
            arr[i+2] = saturate_cast<T>(t0);
            arr[i+3] = saturate_cast<T>(t1);
        }
    }
    else
    {
        for( i = 0; i <= len - 4; i += 4 )
        {
            int t0, t1, t;
            temp = RNG_NEXT(temp);
            t = (int)temp;
            t0 = (t & p[i][0]) + p[i][1];
            t1 = ((t >> 8) & p[i+1][0]) + p[i+1][1];
            arr[i] = saturate_cast<T>(t0);
            arr[i+1] = saturate_cast<T>(t1);

            t0 = ((t >> 16) & p[i+2][0]) + p[i+2][1];
            t1 = ((t >> 24) & p[i+3][0]) + p[i+3][1];
            arr[i+2] = saturate_cast<T>(t0);
            arr[i+3] = saturate_cast<T>(t1);
        }
    }

    for( ; i < len; i++ )
    {
        int t0;
        temp = RNG_NEXT(temp);

        t0 = ((int)temp & p[i][0]) + p[i][1];
        arr[i] = saturate_cast<T>(t0);
    }

    *state = temp;
}

struct DivStruct
{
    unsigned d;
    unsigned M;
    int sh1, sh2;
    int delta;
};

template<typename T> static void
randi_( T* arr, int len, uint64* state, const DivStruct* p )
{
    uint64 temp = *state;
    int i = 0;
    unsigned t0, t1, v0, v1;

    for( i = 0; i <= len - 4; i += 4 )
    {
        temp = RNG_NEXT(temp);
        t0 = (unsigned)temp;
        temp = RNG_NEXT(temp);
        t1 = (unsigned)temp;
        v0 = (unsigned)(((uint64)t0 * p[i].M) >> 32);
        v1 = (unsigned)(((uint64)t1 * p[i+1].M) >> 32);
        v0 = (v0 + ((t0 - v0) >> p[i].sh1)) >> p[i].sh2;
        v1 = (v1 + ((t1 - v1) >> p[i+1].sh1)) >> p[i+1].sh2;
        v0 = t0 - v0*p[i].d + p[i].delta;
        v1 = t1 - v1*p[i+1].d + p[i+1].delta;
        arr[i] = saturate_cast<T>((int)v0);
        arr[i+1] = saturate_cast<T>((int)v1);

        temp = RNG_NEXT(temp);
        t0 = (unsigned)temp;
        temp = RNG_NEXT(temp);
        t1 = (unsigned)temp;
        v0 = (unsigned)(((uint64)t0 * p[i+2].M) >> 32);
        v1 = (unsigned)(((uint64)t1 * p[i+3].M) >> 32);
        v0 = (v0 + ((t0 - v0) >> p[i+2].sh1)) >> p[i+2].sh2;
        v1 = (v1 + ((t1 - v1) >> p[i+3].sh1)) >> p[i+3].sh2;
        v0 = t0 - v0*p[i+2].d + p[i+2].delta;
        v1 = t1 - v1*p[i+3].d + p[i+3].delta;
        arr[i+2] = saturate_cast<T>((int)v0);
        arr[i+3] = saturate_cast<T>((int)v1);
    }

    for( ; i < len; i++ )
    {
        temp = RNG_NEXT(temp);
        t0 = (unsigned)temp;
        v0 = (unsigned)(((uint64)t0 * p[i].M) >> 32);
        v0 = (v0 + ((t0 - v0) >> p[i].sh1)) >> p[i].sh2;
        v0 = t0 - v0*p[i].d + p[i].delta;
        arr[i] = saturate_cast<T>((int)v0);
    }

    *state = temp;
}


#define DEF_RANDI_FUNC(suffix, type) \
static void randBits_##suffix(type* arr, int len, uint64* state, \
                              const Vec2i* p, bool small_flag) \
{ randBits_(arr, len, state, p, small_flag); } \
\
static void randi_##suffix(type* arr, int len, uint64* state, \
                           const DivStruct* p, bool ) \
{ randi_(arr, len, state, p); }

DEF_RANDI_FUNC(8u, uchar)
DEF_RANDI_FUNC(8s, schar)
DEF_RANDI_FUNC(16u, ushort)
DEF_RANDI_FUNC(16s, short)
DEF_RANDI_FUNC(32s, int)

static void randf_32f( float* arr, int len, uint64* state, const Vec2f* p, bool )
{
    uint64 temp = *state;
    int i = 0;

    for( ; i <= len - 4; i += 4 )
    {
        float f[4];
        f[0] = (float)(int)(temp = RNG_NEXT(temp));
        f[1] = (float)(int)(temp = RNG_NEXT(temp));
        f[2] = (float)(int)(temp = RNG_NEXT(temp));
        f[3] = (float)(int)(temp = RNG_NEXT(temp));

        // handwritten SSE is required not for performance but for numerical stability!
        // both 32-bit gcc and MSVC compilers trend to generate double precision SSE
        // while 64-bit compilers generate single precision SIMD instructions
        // so manual vectorisation forces all compilers to the single precision
#if defined __SSE2__ || (defined _M_IX86_FP && 2 == _M_IX86_FP)
        __m128 q0 = _mm_loadu_ps((const float*)(p + i));
        __m128 q1 = _mm_loadu_ps((const float*)(p + i + 2));

        __m128 q01l = _mm_unpacklo_ps(q0, q1);
        __m128 q01h = _mm_unpackhi_ps(q0, q1);

        __m128 p0 = _mm_unpacklo_ps(q01l, q01h);
        __m128 p1 = _mm_unpackhi_ps(q01l, q01h);

        _mm_storeu_ps(arr + i, _mm_add_ps(_mm_mul_ps(_mm_loadu_ps(f), p0), p1));
#else
        arr[i+0] = f[0]*p[i+0][0] + p[i+0][1];
        arr[i+1] = f[1]*p[i+1][0] + p[i+1][1];
        arr[i+2] = f[2]*p[i+2][0] + p[i+2][1];
        arr[i+3] = f[3]*p[i+3][0] + p[i+3][1];
#endif
    }

    for( ; i < len; i++ )
    {
        temp = RNG_NEXT(temp);
#if defined __SSE2__ || (defined _M_IX86_FP && 2 == _M_IX86_FP)
        _mm_store_ss(arr + i, _mm_add_ss(
                _mm_mul_ss(_mm_set_ss((float)(int)temp), _mm_set_ss(p[i][0])),
                _mm_set_ss(p[i][1]))
                );
#else
        arr[i] = (int)temp*p[i][0] + p[i][1];
#endif
    }

    *state = temp;
}


static void
randf_64f( double* arr, int len, uint64* state, const Vec2d* p, bool )
{
    uint64 temp = *state;
    int64 v = 0;
    int i;

    for( i = 0; i <= len - 4; i += 4 )
    {
        double f0, f1;

        temp = RNG_NEXT(temp);
        v = (temp >> 32)|(temp << 32);
        f0 = v*p[i][0] + p[i][1];
        temp = RNG_NEXT(temp);
        v = (temp >> 32)|(temp << 32);
        f1 = v*p[i+1][0] + p[i+1][1];
        arr[i] = f0; arr[i+1] = f1;

        temp = RNG_NEXT(temp);
        v = (temp >> 32)|(temp << 32);
        f0 = v*p[i+2][0] + p[i+2][1];
        temp = RNG_NEXT(temp);
        v = (temp >> 32)|(temp << 32);
        f1 = v*p[i+3][0] + p[i+3][1];
        arr[i+2] = f0; arr[i+3] = f1;
    }

    for( ; i < len; i++ )
    {
        temp = RNG_NEXT(temp);
        v = (temp >> 32)|(temp << 32);
        arr[i] = v*p[i][0] + p[i][1];
    }

    *state = temp;
}

typedef void (*RandFunc)(uchar* arr, int len, uint64* state, const void* p, bool small_flag);


static RandFunc randTab[][8] =
{
    {
        (RandFunc)randi_8u, (RandFunc)randi_8s, (RandFunc)randi_16u, (RandFunc)randi_16s,
        (RandFunc)randi_32s, (RandFunc)randf_32f, (RandFunc)randf_64f, 0
    },
    {
        (RandFunc)randBits_8u, (RandFunc)randBits_8s, (RandFunc)randBits_16u, (RandFunc)randBits_16s,
        (RandFunc)randBits_32s, 0, 0, 0
    }
};

/*
   The code below implements the algorithm described in
   "The Ziggurat Method for Generating Random Variables"
   by Marsaglia and Tsang, Journal of Statistical Software.
*/
static void
randn_0_1_32f( float* arr, int len, uint64* state )
{
    const float r = 3.442620f; // The start of the right tail
    const float rng_flt = 2.3283064365386962890625e-10f; // 2^-32
    static unsigned kn[128];
    static float wn[128], fn[128];
    uint64 temp = *state;
    static bool initialized=false;
    int i;

    if( !initialized )
    {
        const double m1 = 2147483648.0;
        double dn = 3.442619855899, tn = dn, vn = 9.91256303526217e-3;

        // Set up the tables
        double q = vn/std::exp(-.5*dn*dn);
        kn[0] = (unsigned)((dn/q)*m1);
        kn[1] = 0;

        wn[0] = (float)(q/m1);
        wn[127] = (float)(dn/m1);

        fn[0] = 1.f;
        fn[127] = (float)std::exp(-.5*dn*dn);

        for(i=126;i>=1;i--)
        {
            dn = std::sqrt(-2.*std::log(vn/dn+std::exp(-.5*dn*dn)));
            kn[i+1] = (unsigned)((dn/tn)*m1);
            tn = dn;
            fn[i] = (float)std::exp(-.5*dn*dn);
            wn[i] = (float)(dn/m1);
        }
        initialized = true;
    }

    for( i = 0; i < len; i++ )
    {
        float x, y;
        for(;;)
        {
            int hz = (int)temp;
            temp = RNG_NEXT(temp);
            int iz = hz & 127;
            x = hz*wn[iz];
            if( (unsigned)std::abs(hz) < kn[iz] )
                break;
            if( iz == 0) // iz==0, handles the base strip
            {
                do
                {
                    x = (unsigned)temp*rng_flt;
                    temp = RNG_NEXT(temp);
                    y = (unsigned)temp*rng_flt;
                    temp = RNG_NEXT(temp);
                    x = (float)(-std::log(x+FLT_MIN)*0.2904764);
                    y = (float)-std::log(y+FLT_MIN);
                }	// .2904764 is 1/r
                while( y + y < x*x );
                x = hz > 0 ? r + x : -r - x;
                break;
            }
            // iz > 0, handle the wedges of other strips
            y = (unsigned)temp*rng_flt;
            temp = RNG_NEXT(temp);
            if( fn[iz] + y*(fn[iz - 1] - fn[iz]) < std::exp(-.5*x*x) )
                break;
        }
        arr[i] = x;
    }
    *state = temp;
}


double RNG::gaussian(double sigma)
{
    float temp;
    randn_0_1_32f( &temp, 1, &state );
    return temp*sigma;
}


template<typename T, typename PT> static void
randnScale_( const float* src, T* dst, int len, int cn, const PT* mean, const PT* stddev, bool stdmtx )
{
    int i, j, k;
    if( !stdmtx )
    {
        if( cn == 1 )
        {
            PT b = mean[0], a = stddev[0];
            for( i = 0; i < len; i++ )
                dst[i] = saturate_cast<T>(src[i]*a + b);
        }
        else
        {
            for( i = 0; i < len; i++, src += cn, dst += cn )
                for( k = 0; k < cn; k++ )
                    dst[k] = saturate_cast<T>(src[k]*stddev[k] + mean[k]);
        }
    }
    else
    {
        for( i = 0; i < len; i++, src += cn, dst += cn )
        {
            for( j = 0; j < cn; j++ )
            {
                PT s = mean[j];
                for( k = 0; k < cn; k++ )
                    s += src[k]*stddev[j*cn + k];
                dst[j] = saturate_cast<T>(s);
            }
        }
    }
}

static void randnScale_8u( const float* src, uchar* dst, int len, int cn,
                            const float* mean, const float* stddev, bool stdmtx )
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }

static void randnScale_8s( const float* src, schar* dst, int len, int cn,
                            const float* mean, const float* stddev, bool stdmtx )
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }

static void randnScale_16u( const float* src, ushort* dst, int len, int cn,
                             const float* mean, const float* stddev, bool stdmtx )
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }

static void randnScale_16s( const float* src, short* dst, int len, int cn,
                             const float* mean, const float* stddev, bool stdmtx )
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }

static void randnScale_32s( const float* src, int* dst, int len, int cn,
                             const float* mean, const float* stddev, bool stdmtx )
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }

static void randnScale_32f( const float* src, float* dst, int len, int cn,
                             const float* mean, const float* stddev, bool stdmtx )
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }

static void randnScale_64f( const float* src, double* dst, int len, int cn,
                             const double* mean, const double* stddev, bool stdmtx )
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }

typedef void (*RandnScaleFunc)(const float* src, uchar* dst, int len, int cn,
                               const uchar*, const uchar*, bool);

static RandnScaleFunc randnScaleTab[] =
{
    (RandnScaleFunc)randnScale_8u, (RandnScaleFunc)randnScale_8s, (RandnScaleFunc)randnScale_16u,
    (RandnScaleFunc)randnScale_16s, (RandnScaleFunc)randnScale_32s, (RandnScaleFunc)randnScale_32f,
    (RandnScaleFunc)randnScale_64f, 0
};

void RNG::fill( InputOutputArray _mat, int disttype,
                InputArray _param1arg, InputArray _param2arg, bool saturateRange )
{
    Mat mat = _mat.getMat(), _param1 = _param1arg.getMat(), _param2 = _param2arg.getMat();
    int depth = mat.depth(), cn = mat.channels();
    AutoBuffer<double> _parambuf;
    int j, k, fast_int_mode = 0, smallFlag = 1;
    RandFunc func = 0;
    RandnScaleFunc scaleFunc = 0;

    CV_Assert(_param1.channels() == 1 && (_param1.rows == 1 || _param1.cols == 1) &&
              (_param1.rows + _param1.cols - 1 == cn || _param1.rows + _param1.cols - 1 == 1 ||
               (_param1.size() == Size(1, 4) && _param1.type() == CV_64F && cn <= 4)));
    CV_Assert( _param2.channels() == 1 &&
               (((_param2.rows == 1 || _param2.cols == 1) &&
                (_param2.rows + _param2.cols - 1 == cn || _param2.rows + _param2.cols - 1 == 1 ||
                (_param1.size() == Size(1, 4) && _param1.type() == CV_64F && cn <= 4))) ||
                (_param2.rows == cn && _param2.cols == cn && disttype == NORMAL)));

    Vec2i* ip = 0;
    Vec2d* dp = 0;
    Vec2f* fp = 0;
    DivStruct* ds = 0;
    uchar* mean = 0;
    uchar* stddev = 0;
    bool stdmtx = false;
    int n1 = (int)_param1.total();
    int n2 = (int)_param2.total();

    if( disttype == UNIFORM )
    {
        _parambuf.allocate(cn*8 + n1 + n2);
        double* parambuf = _parambuf;
        double* p1 = _param1.ptr<double>();
        double* p2 = _param2.ptr<double>();

        if( !_param1.isContinuous() || _param1.type() != CV_64F || n1 != cn )
        {
            Mat tmp(_param1.size(), CV_64F, parambuf);
            _param1.convertTo(tmp, CV_64F);
            p1 = parambuf;
            if( n1 < cn )
                for( j = n1; j < cn; j++ )
                    p1[j] = p1[j-n1];
        }

        if( !_param2.isContinuous() || _param2.type() != CV_64F || n2 != cn )
        {
            Mat tmp(_param2.size(), CV_64F, parambuf + cn);
            _param2.convertTo(tmp, CV_64F);
            p2 = parambuf + cn;
            if( n2 < cn )
                for( j = n2; j < cn; j++ )
                    p2[j] = p2[j-n2];
        }

        if( depth <= CV_32S )
        {
            ip = (Vec2i*)(parambuf + cn*2);
            for( j = 0, fast_int_mode = 1; j < cn; j++ )
            {
                double a = std::min(p1[j], p2[j]);
                double b = std::max(p1[j], p2[j]);
                if( saturateRange )
                {
                    a = std::max(a, depth == CV_8U || depth == CV_16U ? 0. :
                            depth == CV_8S ? -128. : depth == CV_16S ? -32768. : (double)INT_MIN);
                    b = std::min(b, depth == CV_8U ? 256. : depth == CV_16U ? 65536. :
                            depth == CV_8S ? 128. : depth == CV_16S ? 32768. : (double)INT_MAX);
                }
                ip[j][1] = cvCeil(a);
                int idiff = ip[j][0] = cvFloor(b) - ip[j][1] - 1;
                double diff = b - a;

                fast_int_mode &= diff <= 4294967296. && (idiff & (idiff+1)) == 0;
                if( fast_int_mode )
                    smallFlag &= idiff <= 255;
                else
                {
                    if( diff > INT_MAX )
                        ip[j][0] = INT_MAX;
                    if( a < INT_MIN/2 )
                        ip[j][1] = INT_MIN/2;
                }
            }

            if( !fast_int_mode )
            {
                ds = (DivStruct*)(ip + cn);
                for( j = 0; j < cn; j++ )
                {
                    ds[j].delta = ip[j][1];
                    unsigned d = ds[j].d = (unsigned)(ip[j][0]+1);
                    int l = 0;
                    while(((uint64)1 << l) < d)
                        l++;
                    ds[j].M = (unsigned)(((uint64)1 << 32)*(((uint64)1 << l) - d)/d) + 1;
                    ds[j].sh1 = std::min(l, 1);
                    ds[j].sh2 = std::max(l - 1, 0);
                }
            }

            func = randTab[fast_int_mode][depth];
        }
        else
        {
            double scale = depth == CV_64F ?
                5.4210108624275221700372640043497e-20 : // 2**-64
                2.3283064365386962890625e-10;           // 2**-32
            double maxdiff = saturateRange ? (double)FLT_MAX : DBL_MAX;

            // for each channel i compute such dparam[0][i] & dparam[1][i],
            // so that a signed 32/64-bit integer X is transformed to
            // the range [param1.val[i], param2.val[i]) using
            // dparam[1][i]*X + dparam[0][i]
            if( depth == CV_32F )
            {
                fp = (Vec2f*)(parambuf + cn*2);
                for( j = 0; j < cn; j++ )
                {
                    fp[j][0] = (float)(std::min(maxdiff, p2[j] - p1[j])*scale);
                    fp[j][1] = (float)((p2[j] + p1[j])*0.5);
                }
            }
            else
            {
                dp = (Vec2d*)(parambuf + cn*2);
                for( j = 0; j < cn; j++ )
                {
                    dp[j][0] = std::min(DBL_MAX, p2[j] - p1[j])*scale;
                    dp[j][1] = ((p2[j] + p1[j])*0.5);
                }
            }

            func = randTab[0][depth];
        }
        CV_Assert( func != 0 );
    }
    else if( disttype == CV_RAND_NORMAL )
    {
        _parambuf.allocate(MAX(n1, cn) + MAX(n2, cn));
        double* parambuf = _parambuf;

        int ptype = depth == CV_64F ? CV_64F : CV_32F;
        int esz = (int)CV_ELEM_SIZE(ptype);

        if( _param1.isContinuous() && _param1.type() == ptype )
            mean = _param1.ptr();
        else
        {
            Mat tmp(_param1.size(), ptype, parambuf);
            _param1.convertTo(tmp, ptype);
            mean = (uchar*)parambuf;
        }

        if( n1 < cn )
            for( j = n1*esz; j < cn*esz; j++ )
                mean[j] = mean[j - n1*esz];

        if( _param2.isContinuous() && _param2.type() == ptype )
            stddev = _param2.ptr();
        else
        {
            Mat tmp(_param2.size(), ptype, parambuf + cn);
            _param2.convertTo(tmp, ptype);
            stddev = (uchar*)(parambuf + cn);
        }

        if( n1 < cn )
            for( j = n1*esz; j < cn*esz; j++ )
                stddev[j] = stddev[j - n1*esz];

        stdmtx = _param2.rows == cn && _param2.cols == cn;
        scaleFunc = randnScaleTab[depth];
        CV_Assert( scaleFunc != 0 );
    }
    else
        CV_Error( CV_StsBadArg, "Unknown distribution type" );

    const Mat* arrays[] = {&mat, 0};
    uchar* ptr;
    NAryMatIterator it(arrays, &ptr);
    int total = (int)it.size, blockSize = std::min((BLOCK_SIZE + cn - 1)/cn, total);
    size_t esz = mat.elemSize();
    AutoBuffer<double> buf;
    uchar* param = 0;
    float* nbuf = 0;

    if( disttype == UNIFORM )
    {
        buf.allocate(blockSize*cn*4);
        param = (uchar*)(double*)buf;

        if( ip )
        {
            if( ds )
            {
                DivStruct* p = (DivStruct*)param;
                for( j = 0; j < blockSize*cn; j += cn )
                    for( k = 0; k < cn; k++ )
                        p[j + k] = ds[k];
            }
            else
            {
                Vec2i* p = (Vec2i*)param;
                for( j = 0; j < blockSize*cn; j += cn )
                    for( k = 0; k < cn; k++ )
                        p[j + k] = ip[k];
            }
        }
        else if( fp )
        {
            Vec2f* p = (Vec2f*)param;
            for( j = 0; j < blockSize*cn; j += cn )
                for( k = 0; k < cn; k++ )
                    p[j + k] = fp[k];
        }
        else
        {
            Vec2d* p = (Vec2d*)param;
            for( j = 0; j < blockSize*cn; j += cn )
                for( k = 0; k < cn; k++ )
                    p[j + k] = dp[k];
        }
    }
    else
    {
        buf.allocate((blockSize*cn+1)/2);
        nbuf = (float*)(double*)buf;
    }

    for( size_t i = 0; i < it.nplanes; i++, ++it )
    {
        for( j = 0; j < total; j += blockSize )
        {
            int len = std::min(total - j, blockSize);

            if( disttype == CV_RAND_UNI )
                func( ptr, len*cn, &state, param, smallFlag != 0 );
            else
            {
                randn_0_1_32f(nbuf, len*cn, &state);
                scaleFunc(nbuf, ptr, len, cn, mean, stddev, stdmtx);
            }
            ptr += len*esz;
        }
    }
}

}

cv::RNG& cv::theRNG()
{
    return coreTlsData.get()->rng;
}

void cv::randu(InputOutputArray dst, InputArray low, InputArray high)
{
    theRNG().fill(dst, RNG::UNIFORM, low, high);
}

void cv::randn(InputOutputArray dst, InputArray mean, InputArray stddev)
{
    theRNG().fill(dst, RNG::NORMAL, mean, stddev);
}

namespace cv
{

template<typename T> static void
randShuffle_( Mat& _arr, RNG& rng, double iterFactor )
{
    int sz = _arr.rows*_arr.cols, iters = cvRound(iterFactor*sz);
    if( _arr.isContinuous() )
    {
        T* arr = _arr.ptr<T>();
        for( int i = 0; i < iters; i++ )
        {
            int j = (unsigned)rng % sz, k = (unsigned)rng % sz;
            std::swap( arr[j], arr[k] );
        }
    }
    else
    {
        uchar* data = _arr.ptr();
        size_t step = _arr.step;
        int cols = _arr.cols;
        for( int i = 0; i < iters; i++ )
        {
            int j1 = (unsigned)rng % sz, k1 = (unsigned)rng % sz;
            int j0 = j1/cols, k0 = k1/cols;
            j1 -= j0*cols; k1 -= k0*cols;
            std::swap( ((T*)(data + step*j0))[j1], ((T*)(data + step*k0))[k1] );
        }
    }
}

typedef void (*RandShuffleFunc)( Mat& dst, RNG& rng, double iterFactor );

}

void cv::randShuffle( InputOutputArray _dst, double iterFactor, RNG* _rng )
{
    RandShuffleFunc tab[] =
    {
        0,
        randShuffle_<uchar>, // 1
        randShuffle_<ushort>, // 2
        randShuffle_<Vec<uchar,3> >, // 3
        randShuffle_<int>, // 4
        0,
        randShuffle_<Vec<ushort,3> >, // 6
        0,
        randShuffle_<Vec<int,2> >, // 8
        0, 0, 0,
        randShuffle_<Vec<int,3> >, // 12
        0, 0, 0,
        randShuffle_<Vec<int,4> >, // 16
        0, 0, 0, 0, 0, 0, 0,
        randShuffle_<Vec<int,6> >, // 24
        0, 0, 0, 0, 0, 0, 0,
        randShuffle_<Vec<int,8> > // 32
    };

    Mat dst = _dst.getMat();
    RNG& rng = _rng ? *_rng : theRNG();
    CV_Assert( dst.elemSize() <= 32 );
    RandShuffleFunc func = tab[dst.elemSize()];
    CV_Assert( func != 0 );
    func( dst, rng, iterFactor );
}

CV_IMPL void
cvRandArr( CvRNG* _rng, CvArr* arr, int disttype, CvScalar param1, CvScalar param2 )
{
    cv::Mat mat = cv::cvarrToMat(arr);
    // !!! this will only work for current 64-bit MWC RNG !!!
    cv::RNG& rng = _rng ? (cv::RNG&)*_rng : cv::theRNG();
    rng.fill(mat, disttype == CV_RAND_NORMAL ?
        cv::RNG::NORMAL : cv::RNG::UNIFORM, cv::Scalar(param1), cv::Scalar(param2) );
}

CV_IMPL void cvRandShuffle( CvArr* arr, CvRNG* _rng, double iter_factor )
{
    cv::Mat dst = cv::cvarrToMat(arr);
    cv::RNG& rng = _rng ? (cv::RNG&)*_rng : cv::theRNG();
    cv::randShuffle( dst, iter_factor, &rng );
}

// Mersenne Twister random number generator.
// Inspired by http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c

/*
   A C-program for MT19937, with initialization improved 2002/1/26.
   Coded by Takuji Nishimura and Makoto Matsumoto.

   Before using, initialize the state by using init_genrand(seed)
   or init_by_array(init_key, key_length).

   Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
   All rights reserved.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

     1. Redistributions of source code must retain the above copyright
        notice, this list of conditions and the following disclaimer.

     2. Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in the
        documentation and/or other materials provided with the distribution.

     3. The names of its contributors may not be used to endorse or promote
        products derived from this software without specific prior written
        permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


   Any feedback is very welcome.
   http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
   email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/

cv::RNG_MT19937::RNG_MT19937(unsigned s) { seed(s); }

cv::RNG_MT19937::RNG_MT19937() { seed(5489U); }

void cv::RNG_MT19937::seed(unsigned s)
{
    state[0]= s;
    for (mti = 1; mti < N; mti++)
    {
        /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
        state[mti] = (1812433253U * (state[mti - 1] ^ (state[mti - 1] >> 30)) + mti);
    }
}

unsigned cv::RNG_MT19937::next()
{
    /* mag01[x] = x * MATRIX_A  for x=0,1 */
    static unsigned mag01[2] = { 0x0U, /*MATRIX_A*/ 0x9908b0dfU};

    const unsigned UPPER_MASK = 0x80000000U;
    const unsigned LOWER_MASK = 0x7fffffffU;

    /* generate N words at one time */
    if (mti >= N)
    {
        int kk = 0;

        for (; kk < N - M; ++kk)
        {
            unsigned y = (state[kk] & UPPER_MASK) | (state[kk + 1] & LOWER_MASK);
            state[kk] = state[kk + M] ^ (y >> 1) ^ mag01[y & 0x1U];
        }

        for (; kk < N - 1; ++kk)
        {
            unsigned y = (state[kk] & UPPER_MASK) | (state[kk + 1] & LOWER_MASK);
            state[kk] = state[kk + (M - N)] ^ (y >> 1) ^ mag01[y & 0x1U];
        }

        unsigned y = (state[N - 1] & UPPER_MASK) | (state[0] & LOWER_MASK);
        state[N - 1] = state[M - 1] ^ (y >> 1) ^ mag01[y & 0x1U];

        mti = 0;
    }

    unsigned y = state[mti++];

    /* Tempering */
    y ^= (y >> 11);
    y ^= (y <<  7) & 0x9d2c5680U;
    y ^= (y << 15) & 0xefc60000U;
    y ^= (y >> 18);

    return y;
}

cv::RNG_MT19937::operator unsigned() { return next(); }

cv::RNG_MT19937::operator int() { return (int)next();}

cv::RNG_MT19937::operator float() { return next() * (1.f / 4294967296.f); }

cv::RNG_MT19937::operator double()
{
    unsigned a = next() >> 5;
    unsigned b = next() >> 6;
    return (a * 67108864.0 + b) * (1.0 / 9007199254740992.0);
}

int cv::RNG_MT19937::uniform(int a, int b) { return (int)(next() % (b - a) + a); }

float cv::RNG_MT19937::uniform(float a, float b) { return ((float)*this)*(b - a) + a; }

double cv::RNG_MT19937::uniform(double a, double b) { return ((double)*this)*(b - a) + a; }

unsigned cv::RNG_MT19937::operator ()(unsigned b) { return next() % b; }

unsigned cv::RNG_MT19937::operator ()() { return next(); }

/* End of file. */