1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python
from itertools import product
from functools import reduce
import numpy as np
import cv2 as cv
from tests_common import NewOpenCVTests
def norm_inf(x, y=None):
def norm(vec):
return np.linalg.norm(vec.flatten(), np.inf)
x = x.astype(np.float64)
return norm(x) if y is None else norm(x - y.astype(np.float64))
def norm_l1(x, y=None):
def norm(vec):
return np.linalg.norm(vec.flatten(), 1)
x = x.astype(np.float64)
return norm(x) if y is None else norm(x - y.astype(np.float64))
def norm_l2(x, y=None):
def norm(vec):
return np.linalg.norm(vec.flatten())
x = x.astype(np.float64)
return norm(x) if y is None else norm(x - y.astype(np.float64))
def norm_l2sqr(x, y=None):
def norm(vec):
return np.square(vec).sum()
x = x.astype(np.float64)
return norm(x) if y is None else norm(x - y.astype(np.float64))
def norm_hamming(x, y=None):
def norm(vec):
return sum(bin(i).count('1') for i in vec.flatten())
return norm(x) if y is None else norm(np.bitwise_xor(x, y))
def norm_hamming2(x, y=None):
def norm(vec):
def element_norm(element):
binary_str = bin(element).split('b')[-1]
if len(binary_str) % 2 == 1:
binary_str = '0' + binary_str
gen = filter(lambda p: p != '00',
(binary_str[i:i+2]
for i in range(0, len(binary_str), 2)))
return sum(1 for _ in gen)
return sum(element_norm(element) for element in vec.flatten())
return norm(x) if y is None else norm(np.bitwise_xor(x, y))
norm_type_under_test = {
cv.NORM_INF: norm_inf,
cv.NORM_L1: norm_l1,
cv.NORM_L2: norm_l2,
cv.NORM_L2SQR: norm_l2sqr,
cv.NORM_HAMMING: norm_hamming,
cv.NORM_HAMMING2: norm_hamming2
}
norm_name = {
cv.NORM_INF: 'inf',
cv.NORM_L1: 'L1',
cv.NORM_L2: 'L2',
cv.NORM_L2SQR: 'L2SQR',
cv.NORM_HAMMING: 'Hamming',
cv.NORM_HAMMING2: 'Hamming2'
}
def get_element_types(norm_type):
if norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2):
return (np.uint8,)
else:
return (np.uint8, np.int8, np.uint16, np.int16, np.int32, np.float32,
np.float64)
def generate_vector(shape, dtype):
if np.issubdtype(dtype, np.integer):
return np.random.randint(0, 100, shape).astype(dtype)
else:
return np.random.normal(10., 12.5, shape).astype(dtype)
shapes = (1, 2, 3, 5, 7, 16, (1, 1), (2, 2), (3, 5), (1, 7))
class norm_test(NewOpenCVTests):
def test_norm_for_one_array(self):
np.random.seed(123)
for norm_type, norm in norm_type_under_test.items():
element_types = get_element_types(norm_type)
for shape, element_type in product(shapes, element_types):
array = generate_vector(shape, element_type)
expected = norm(array)
actual = cv.norm(array, norm_type)
self.assertAlmostEqual(
expected, actual, places=2,
msg='Array {0} of {1} and norm {2}'.format(
array, element_type.__name__, norm_name[norm_type]
)
)
def test_norm_for_two_arrays(self):
np.random.seed(456)
for norm_type, norm in norm_type_under_test.items():
element_types = get_element_types(norm_type)
for shape, element_type in product(shapes, element_types):
first = generate_vector(shape, element_type)
second = generate_vector(shape, element_type)
expected = norm(first, second)
actual = cv.norm(first, second, norm_type)
self.assertAlmostEqual(
expected, actual, places=2,
msg='Arrays {0} {1} of type {2} and norm {3}'.format(
first, second, element_type.__name__,
norm_name[norm_type]
)
)
def test_norm_fails_for_wrong_type(self):
for norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2):
with self.assertRaises(Exception,
msg='Type is not checked {0}'.format(
norm_name[norm_type]
)):
cv.norm(np.array([1, 2], dtype=np.int32), norm_type)
def test_norm_fails_for_array_and_scalar(self):
for norm_type in norm_type_under_test:
with self.assertRaises(Exception,
msg='Exception is not thrown for {0}'.format(
norm_name[norm_type]
)):
cv.norm(np.array([1, 2], dtype=np.uint8), 123, norm_type)
def test_norm_fails_for_scalar_and_array(self):
for norm_type in norm_type_under_test:
with self.assertRaises(Exception,
msg='Exception is not thrown for {0}'.format(
norm_name[norm_type]
)):
cv.norm(4, np.array([1, 2], dtype=np.uint8), norm_type)
def test_norm_fails_for_array_and_norm_type_as_scalar(self):
for norm_type in norm_type_under_test:
with self.assertRaises(Exception,
msg='Exception is not thrown for {0}'.format(
norm_name[norm_type]
)):
cv.norm(np.array([3, 4, 5], dtype=np.uint8),
norm_type, normType=norm_type)
if __name__ == '__main__':
NewOpenCVTests.bootstrap()