1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using namespace cv;
using namespace std;
// auxiliary functions
// 1. nbayes
void nbayes_check_data( CvMLData* _data )
{
if( _data->get_missing() )
CV_Error( CV_StsBadArg, "missing values are not supported" );
const CvMat* var_types = _data->get_var_types();
bool is_classifier = var_types->data.ptr[var_types->cols-1] == CV_VAR_CATEGORICAL;
if( ( fabs( cvNorm( var_types, 0, CV_L1 ) -
(var_types->rows + var_types->cols - 2)*CV_VAR_ORDERED - CV_VAR_CATEGORICAL ) > FLT_EPSILON ) ||
!is_classifier )
CV_Error( CV_StsBadArg, "incorrect types of predictors or responses" );
}
bool nbayes_train( CvNormalBayesClassifier* nbayes, CvMLData* _data )
{
nbayes_check_data( _data );
const CvMat* values = _data->get_values();
const CvMat* responses = _data->get_responses();
const CvMat* train_sidx = _data->get_train_sample_idx();
const CvMat* var_idx = _data->get_var_idx();
return nbayes->train( values, responses, var_idx, train_sidx );
}
float nbayes_calc_error( CvNormalBayesClassifier* nbayes, CvMLData* _data, int type, vector<float> *resp )
{
float err = 0;
nbayes_check_data( _data );
const CvMat* values = _data->get_values();
const CvMat* response = _data->get_responses();
const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx();
int* sidx = sample_idx ? sample_idx->data.i : 0;
int r_step = CV_IS_MAT_CONT(response->type) ?
1 : response->step / CV_ELEM_SIZE(response->type);
int sample_count = sample_idx ? sample_idx->cols : 0;
sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? values->rows : sample_count;
float* pred_resp = 0;
if( resp && (sample_count > 0) )
{
resp->resize( sample_count );
pred_resp = &((*resp)[0]);
}
for( int i = 0; i < sample_count; i++ )
{
CvMat sample;
int si = sidx ? sidx[i] : i;
cvGetRow( values, &sample, si );
float r = (float)nbayes->predict( &sample, 0 );
if( pred_resp )
pred_resp[i] = r;
int d = fabs((double)r - response->data.fl[si*r_step]) <= FLT_EPSILON ? 0 : 1;
err += d;
}
err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX;
return err;
}
// 2. knearest
void knearest_check_data_and_get_predictors( CvMLData* _data, CvMat* _predictors )
{
const CvMat* values = _data->get_values();
const CvMat* var_idx = _data->get_var_idx();
if( var_idx->cols + var_idx->rows != values->cols )
CV_Error( CV_StsBadArg, "var_idx is not supported" );
if( _data->get_missing() )
CV_Error( CV_StsBadArg, "missing values are not supported" );
int resp_idx = _data->get_response_idx();
if( resp_idx == 0)
cvGetCols( values, _predictors, 1, values->cols );
else if( resp_idx == values->cols - 1 )
cvGetCols( values, _predictors, 0, values->cols - 1 );
else
CV_Error( CV_StsBadArg, "responses must be in the first or last column; other cases are not supported" );
}
bool knearest_train( CvKNearest* knearest, CvMLData* _data )
{
const CvMat* responses = _data->get_responses();
const CvMat* train_sidx = _data->get_train_sample_idx();
bool is_regression = _data->get_var_type( _data->get_response_idx() ) == CV_VAR_ORDERED;
CvMat predictors;
knearest_check_data_and_get_predictors( _data, &predictors );
return knearest->train( &predictors, responses, train_sidx, is_regression );
}
float knearest_calc_error( CvKNearest* knearest, CvMLData* _data, int k, int type, vector<float> *resp )
{
float err = 0;
const CvMat* response = _data->get_responses();
const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx();
int* sidx = sample_idx ? sample_idx->data.i : 0;
int r_step = CV_IS_MAT_CONT(response->type) ?
1 : response->step / CV_ELEM_SIZE(response->type);
bool is_regression = _data->get_var_type( _data->get_response_idx() ) == CV_VAR_ORDERED;
CvMat predictors;
knearest_check_data_and_get_predictors( _data, &predictors );
int sample_count = sample_idx ? sample_idx->cols : 0;
sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? predictors.rows : sample_count;
float* pred_resp = 0;
if( resp && (sample_count > 0) )
{
resp->resize( sample_count );
pred_resp = &((*resp)[0]);
}
if ( !is_regression )
{
for( int i = 0; i < sample_count; i++ )
{
CvMat sample;
int si = sidx ? sidx[i] : i;
cvGetRow( &predictors, &sample, si );
float r = knearest->find_nearest( &sample, k );
if( pred_resp )
pred_resp[i] = r;
int d = fabs((double)r - response->data.fl[si*r_step]) <= FLT_EPSILON ? 0 : 1;
err += d;
}
err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX;
}
else
{
for( int i = 0; i < sample_count; i++ )
{
CvMat sample;
int si = sidx ? sidx[i] : i;
cvGetRow( &predictors, &sample, si );
float r = knearest->find_nearest( &sample, k );
if( pred_resp )
pred_resp[i] = r;
float d = r - response->data.fl[si*r_step];
err += d*d;
}
err = sample_count ? err / (float)sample_count : -FLT_MAX;
}
return err;
}
// 3. svm
int str_to_svm_type(string& str)
{
if( !str.compare("C_SVC") )
return CvSVM::C_SVC;
if( !str.compare("NU_SVC") )
return CvSVM::NU_SVC;
if( !str.compare("ONE_CLASS") )
return CvSVM::ONE_CLASS;
if( !str.compare("EPS_SVR") )
return CvSVM::EPS_SVR;
if( !str.compare("NU_SVR") )
return CvSVM::NU_SVR;
CV_Error( CV_StsBadArg, "incorrect svm type string" );
return -1;
}
int str_to_svm_kernel_type( string& str )
{
if( !str.compare("LINEAR") )
return CvSVM::LINEAR;
if( !str.compare("POLY") )
return CvSVM::POLY;
if( !str.compare("RBF") )
return CvSVM::RBF;
if( !str.compare("SIGMOID") )
return CvSVM::SIGMOID;
CV_Error( CV_StsBadArg, "incorrect svm type string" );
return -1;
}
void svm_check_data( CvMLData* _data )
{
if( _data->get_missing() )
CV_Error( CV_StsBadArg, "missing values are not supported" );
const CvMat* var_types = _data->get_var_types();
for( int i = 0; i < var_types->cols-1; i++ )
if (var_types->data.ptr[i] == CV_VAR_CATEGORICAL)
{
char msg[50];
sprintf( msg, "incorrect type of %d-predictor", i );
CV_Error( CV_StsBadArg, msg );
}
}
bool svm_train( CvSVM* svm, CvMLData* _data, CvSVMParams _params )
{
svm_check_data(_data);
const CvMat* _train_data = _data->get_values();
const CvMat* _responses = _data->get_responses();
const CvMat* _var_idx = _data->get_var_idx();
const CvMat* _sample_idx = _data->get_train_sample_idx();
return svm->train( _train_data, _responses, _var_idx, _sample_idx, _params );
}
bool svm_train_auto( CvSVM* svm, CvMLData* _data, CvSVMParams _params,
int k_fold, CvParamGrid C_grid, CvParamGrid gamma_grid,
CvParamGrid p_grid, CvParamGrid nu_grid, CvParamGrid coef_grid,
CvParamGrid degree_grid )
{
svm_check_data(_data);
const CvMat* _train_data = _data->get_values();
const CvMat* _responses = _data->get_responses();
const CvMat* _var_idx = _data->get_var_idx();
const CvMat* _sample_idx = _data->get_train_sample_idx();
return svm->train_auto( _train_data, _responses, _var_idx,
_sample_idx, _params, k_fold, C_grid, gamma_grid, p_grid, nu_grid, coef_grid, degree_grid );
}
float svm_calc_error( CvSVM* svm, CvMLData* _data, int type, vector<float> *resp )
{
svm_check_data(_data);
float err = 0;
const CvMat* values = _data->get_values();
const CvMat* response = _data->get_responses();
const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx();
const CvMat* var_types = _data->get_var_types();
int* sidx = sample_idx ? sample_idx->data.i : 0;
int r_step = CV_IS_MAT_CONT(response->type) ?
1 : response->step / CV_ELEM_SIZE(response->type);
bool is_classifier = var_types->data.ptr[var_types->cols-1] == CV_VAR_CATEGORICAL;
int sample_count = sample_idx ? sample_idx->cols : 0;
sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? values->rows : sample_count;
float* pred_resp = 0;
if( resp && (sample_count > 0) )
{
resp->resize( sample_count );
pred_resp = &((*resp)[0]);
}
if ( is_classifier )
{
for( int i = 0; i < sample_count; i++ )
{
CvMat sample;
int si = sidx ? sidx[i] : i;
cvGetRow( values, &sample, si );
float r = svm->predict( &sample );
if( pred_resp )
pred_resp[i] = r;
int d = fabs((double)r - response->data.fl[si*r_step]) <= FLT_EPSILON ? 0 : 1;
err += d;
}
err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX;
}
else
{
for( int i = 0; i < sample_count; i++ )
{
CvMat sample;
int si = sidx ? sidx[i] : i;
cvGetRow( values, &sample, si );
float r = svm->predict( &sample );
if( pred_resp )
pred_resp[i] = r;
float d = r - response->data.fl[si*r_step];
err += d*d;
}
err = sample_count ? err / (float)sample_count : -FLT_MAX;
}
return err;
}
// 4. em
// 5. ann
int str_to_ann_train_method( string& str )
{
if( !str.compare("BACKPROP") )
return CvANN_MLP_TrainParams::BACKPROP;
if( !str.compare("RPROP") )
return CvANN_MLP_TrainParams::RPROP;
CV_Error( CV_StsBadArg, "incorrect ann train method string" );
return -1;
}
void ann_check_data_and_get_predictors( CvMLData* _data, CvMat* _inputs )
{
const CvMat* values = _data->get_values();
const CvMat* var_idx = _data->get_var_idx();
if( var_idx->cols + var_idx->rows != values->cols )
CV_Error( CV_StsBadArg, "var_idx is not supported" );
if( _data->get_missing() )
CV_Error( CV_StsBadArg, "missing values are not supported" );
int resp_idx = _data->get_response_idx();
if( resp_idx == 0)
cvGetCols( values, _inputs, 1, values->cols );
else if( resp_idx == values->cols - 1 )
cvGetCols( values, _inputs, 0, values->cols - 1 );
else
CV_Error( CV_StsBadArg, "outputs must be in the first or last column; other cases are not supported" );
}
void ann_get_new_responses( CvMLData* _data, Mat& new_responses, map<int, int>& cls_map )
{
const CvMat* train_sidx = _data->get_train_sample_idx();
int* train_sidx_ptr = train_sidx->data.i;
const CvMat* responses = _data->get_responses();
float* responses_ptr = responses->data.fl;
int r_step = CV_IS_MAT_CONT(responses->type) ?
1 : responses->step / CV_ELEM_SIZE(responses->type);
int cls_count = 0;
// construct cls_map
cls_map.clear();
for( int si = 0; si < train_sidx->cols; si++ )
{
int sidx = train_sidx_ptr[si];
int r = cvRound(responses_ptr[sidx*r_step]);
CV_DbgAssert( fabs(responses_ptr[sidx*r_step]-r) < FLT_EPSILON );
int cls_map_size = (int)cls_map.size();
cls_map[r];
if ( (int)cls_map.size() > cls_map_size )
cls_map[r] = cls_count++;
}
new_responses.create( responses->rows, cls_count, CV_32F );
new_responses.setTo( 0 );
for( int si = 0; si < train_sidx->cols; si++ )
{
int sidx = train_sidx_ptr[si];
int r = cvRound(responses_ptr[sidx*r_step]);
int cidx = cls_map[r];
new_responses.ptr<float>(sidx)[cidx] = 1;
}
}
int ann_train( CvANN_MLP* ann, CvMLData* _data, Mat& new_responses, CvANN_MLP_TrainParams _params, int flags = 0 )
{
const CvMat* train_sidx = _data->get_train_sample_idx();
CvMat predictors;
ann_check_data_and_get_predictors( _data, &predictors );
CvMat _new_responses = CvMat( new_responses );
return ann->train( &predictors, &_new_responses, 0, train_sidx, _params, flags );
}
float ann_calc_error( CvANN_MLP* ann, CvMLData* _data, map<int, int>& cls_map, int type , vector<float> *resp_labels )
{
float err = 0;
const CvMat* responses = _data->get_responses();
const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx();
int* sidx = sample_idx ? sample_idx->data.i : 0;
int r_step = CV_IS_MAT_CONT(responses->type) ?
1 : responses->step / CV_ELEM_SIZE(responses->type);
CvMat predictors;
ann_check_data_and_get_predictors( _data, &predictors );
int sample_count = sample_idx ? sample_idx->cols : 0;
sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? predictors.rows : sample_count;
float* pred_resp = 0;
vector<float> innresp;
if( sample_count > 0 )
{
if( resp_labels )
{
resp_labels->resize( sample_count );
pred_resp = &((*resp_labels)[0]);
}
else
{
innresp.resize( sample_count );
pred_resp = &(innresp[0]);
}
}
int cls_count = (int)cls_map.size();
Mat output( 1, cls_count, CV_32FC1 );
CvMat _output = CvMat(output);
map<int, int>::iterator b_it = cls_map.begin();
for( int i = 0; i < sample_count; i++ )
{
CvMat sample;
int si = sidx ? sidx[i] : i;
cvGetRow( &predictors, &sample, si );
ann->predict( &sample, &_output );
CvPoint best_cls = {0,0};
cvMinMaxLoc( &_output, 0, 0, 0, &best_cls, 0 );
int r = cvRound(responses->data.fl[si*r_step]);
CV_DbgAssert( fabs(responses->data.fl[si*r_step]-r) < FLT_EPSILON );
r = cls_map[r];
int d = best_cls.x == r ? 0 : 1;
err += d;
pred_resp[i] = (float)best_cls.x;
}
err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX;
return err;
}
// 6. dtree
// 7. boost
int str_to_boost_type( string& str )
{
if ( !str.compare("DISCRETE") )
return CvBoost::DISCRETE;
if ( !str.compare("REAL") )
return CvBoost::REAL;
if ( !str.compare("LOGIT") )
return CvBoost::LOGIT;
if ( !str.compare("GENTLE") )
return CvBoost::GENTLE;
CV_Error( CV_StsBadArg, "incorrect boost type string" );
return -1;
}
// 8. rtrees
// 9. ertrees
// ---------------------------------- MLBaseTest ---------------------------------------------------
CV_MLBaseTest::CV_MLBaseTest(const char* _modelName)
{
int64 seeds[] = { CV_BIG_INT(0x00009fff4f9c8d52),
CV_BIG_INT(0x0000a17166072c7c),
CV_BIG_INT(0x0201b32115cd1f9a),
CV_BIG_INT(0x0513cb37abcd1234),
CV_BIG_INT(0x0001a2b3c4d5f678)
};
int seedCount = sizeof(seeds)/sizeof(seeds[0]);
RNG& rng = theRNG();
initSeed = rng.state;
rng.state = seeds[rng(seedCount)];
modelName = _modelName;
nbayes = 0;
knearest = 0;
svm = 0;
em = 0;
ann = 0;
dtree = 0;
boost = 0;
rtrees = 0;
ertrees = 0;
if( !modelName.compare(CV_NBAYES) )
nbayes = new CvNormalBayesClassifier;
else if( !modelName.compare(CV_KNEAREST) )
knearest = new CvKNearest;
else if( !modelName.compare(CV_SVM) )
svm = new CvSVM;
else if( !modelName.compare(CV_EM) )
em = new CvEM;
else if( !modelName.compare(CV_ANN) )
ann = new CvANN_MLP;
else if( !modelName.compare(CV_DTREE) )
dtree = new CvDTree;
else if( !modelName.compare(CV_BOOST) )
boost = new CvBoost;
else if( !modelName.compare(CV_RTREES) )
rtrees = new CvRTrees;
else if( !modelName.compare(CV_ERTREES) )
ertrees = new CvERTrees;
}
CV_MLBaseTest::~CV_MLBaseTest()
{
if( validationFS.isOpened() )
validationFS.release();
if( nbayes )
delete nbayes;
if( knearest )
delete knearest;
if( svm )
delete svm;
if( em )
delete em;
if( ann )
delete ann;
if( dtree )
delete dtree;
if( boost )
delete boost;
if( rtrees )
delete rtrees;
if( ertrees )
delete ertrees;
theRNG().state = initSeed;
}
int CV_MLBaseTest::read_params( CvFileStorage* _fs )
{
if( !_fs )
test_case_count = -1;
else
{
CvFileNode* fn = cvGetRootFileNode( _fs, 0 );
fn = (CvFileNode*)cvGetSeqElem( fn->data.seq, 0 );
fn = cvGetFileNodeByName( _fs, fn, "run_params" );
CvSeq* dataSetNamesSeq = cvGetFileNodeByName( _fs, fn, modelName.c_str() )->data.seq;
test_case_count = dataSetNamesSeq ? dataSetNamesSeq->total : -1;
if( test_case_count > 0 )
{
dataSetNames.resize( test_case_count );
vector<string>::iterator it = dataSetNames.begin();
for( int i = 0; i < test_case_count; i++, it++ )
*it = ((CvFileNode*)cvGetSeqElem( dataSetNamesSeq, i ))->data.str.ptr;
}
}
return cvtest::TS::OK;;
}
void CV_MLBaseTest::run( int start_from )
{
string filename = ts->get_data_path();
filename += get_validation_filename();
validationFS.open( filename, FileStorage::READ );
read_params( *validationFS );
int code = cvtest::TS::OK;
start_from = 0;
for (int i = 0; i < test_case_count; i++)
{
int temp_code = run_test_case( i );
if (temp_code == cvtest::TS::OK)
temp_code = validate_test_results( i );
if (temp_code != cvtest::TS::OK)
code = temp_code;
}
if ( test_case_count <= 0)
{
ts->printf( cvtest::TS::LOG, "validation file is not determined or not correct" );
code = cvtest::TS::FAIL_INVALID_TEST_DATA;
}
ts->set_failed_test_info( code );
}
int CV_MLBaseTest::prepare_test_case( int test_case_idx )
{
int trainSampleCount, respIdx;
string varTypes;
clear();
string dataPath = ts->get_data_path();
if ( dataPath.empty() )
{
ts->printf( cvtest::TS::LOG, "data path is empty" );
return cvtest::TS::FAIL_INVALID_TEST_DATA;
}
string dataName = dataSetNames[test_case_idx],
filename = dataPath + dataName + ".data";
if ( data.read_csv( filename.c_str() ) != 0)
{
char msg[100];
sprintf( msg, "file %s can not be read", filename.c_str() );
ts->printf( cvtest::TS::LOG, msg );
return cvtest::TS::FAIL_INVALID_TEST_DATA;
}
FileNode dataParamsNode = validationFS.getFirstTopLevelNode()["validation"][modelName][dataName]["data_params"];
CV_DbgAssert( !dataParamsNode.empty() );
CV_DbgAssert( !dataParamsNode["LS"].empty() );
dataParamsNode["LS"] >> trainSampleCount;
CvTrainTestSplit spl( trainSampleCount );
data.set_train_test_split( &spl );
CV_DbgAssert( !dataParamsNode["resp_idx"].empty() );
dataParamsNode["resp_idx"] >> respIdx;
data.set_response_idx( respIdx );
CV_DbgAssert( !dataParamsNode["types"].empty() );
dataParamsNode["types"] >> varTypes;
data.set_var_types( varTypes.c_str() );
return cvtest::TS::OK;
}
string& CV_MLBaseTest::get_validation_filename()
{
return validationFN;
}
int CV_MLBaseTest::train( int testCaseIdx )
{
bool is_trained = false;
FileNode modelParamsNode =
validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["model_params"];
if( !modelName.compare(CV_NBAYES) )
is_trained = nbayes_train( nbayes, &data );
else if( !modelName.compare(CV_KNEAREST) )
{
assert( 0 );
//is_trained = knearest->train( &data );
}
else if( !modelName.compare(CV_SVM) )
{
string svm_type_str, kernel_type_str;
modelParamsNode["svm_type"] >> svm_type_str;
modelParamsNode["kernel_type"] >> kernel_type_str;
CvSVMParams params;
params.svm_type = str_to_svm_type( svm_type_str );
params.kernel_type = str_to_svm_kernel_type( kernel_type_str );
modelParamsNode["degree"] >> params.degree;
modelParamsNode["gamma"] >> params.gamma;
modelParamsNode["coef0"] >> params.coef0;
modelParamsNode["C"] >> params.C;
modelParamsNode["nu"] >> params.nu;
modelParamsNode["p"] >> params.p;
is_trained = svm_train( svm, &data, params );
}
else if( !modelName.compare(CV_EM) )
{
assert( 0 );
}
else if( !modelName.compare(CV_ANN) )
{
string train_method_str;
double param1, param2;
modelParamsNode["train_method"] >> train_method_str;
modelParamsNode["param1"] >> param1;
modelParamsNode["param2"] >> param2;
Mat new_responses;
ann_get_new_responses( &data, new_responses, cls_map );
int layer_sz[] = { data.get_values()->cols - 1, 100, 100, (int)cls_map.size() };
CvMat layer_sizes =
cvMat( 1, (int)(sizeof(layer_sz)/sizeof(layer_sz[0])), CV_32S, layer_sz );
ann->create( &layer_sizes );
is_trained = ann_train( ann, &data, new_responses, CvANN_MLP_TrainParams(cvTermCriteria(CV_TERMCRIT_ITER,300,0.01),
str_to_ann_train_method(train_method_str), param1, param2) ) >= 0;
}
else if( !modelName.compare(CV_DTREE) )
{
int MAX_DEPTH, MIN_SAMPLE_COUNT, MAX_CATEGORIES, CV_FOLDS;
float REG_ACCURACY = 0;
bool USE_SURROGATE, IS_PRUNED;
modelParamsNode["max_depth"] >> MAX_DEPTH;
modelParamsNode["min_sample_count"] >> MIN_SAMPLE_COUNT;
modelParamsNode["use_surrogate"] >> USE_SURROGATE;
modelParamsNode["max_categories"] >> MAX_CATEGORIES;
modelParamsNode["cv_folds"] >> CV_FOLDS;
modelParamsNode["is_pruned"] >> IS_PRUNED;
is_trained = dtree->train( &data,
CvDTreeParams(MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY, USE_SURROGATE,
MAX_CATEGORIES, CV_FOLDS, false, IS_PRUNED, 0 )) != 0;
}
else if( !modelName.compare(CV_BOOST) )
{
int BOOST_TYPE, WEAK_COUNT, MAX_DEPTH;
float WEIGHT_TRIM_RATE;
bool USE_SURROGATE;
string typeStr;
modelParamsNode["type"] >> typeStr;
BOOST_TYPE = str_to_boost_type( typeStr );
modelParamsNode["weak_count"] >> WEAK_COUNT;
modelParamsNode["weight_trim_rate"] >> WEIGHT_TRIM_RATE;
modelParamsNode["max_depth"] >> MAX_DEPTH;
modelParamsNode["use_surrogate"] >> USE_SURROGATE;
is_trained = boost->train( &data,
CvBoostParams(BOOST_TYPE, WEAK_COUNT, WEIGHT_TRIM_RATE, MAX_DEPTH, USE_SURROGATE, 0) ) != 0;
}
else if( !modelName.compare(CV_RTREES) )
{
int MAX_DEPTH, MIN_SAMPLE_COUNT, MAX_CATEGORIES, CV_FOLDS, NACTIVE_VARS, MAX_TREES_NUM;
float REG_ACCURACY = 0, OOB_EPS = 0.0;
bool USE_SURROGATE, IS_PRUNED;
modelParamsNode["max_depth"] >> MAX_DEPTH;
modelParamsNode["min_sample_count"] >> MIN_SAMPLE_COUNT;
modelParamsNode["use_surrogate"] >> USE_SURROGATE;
modelParamsNode["max_categories"] >> MAX_CATEGORIES;
modelParamsNode["cv_folds"] >> CV_FOLDS;
modelParamsNode["is_pruned"] >> IS_PRUNED;
modelParamsNode["nactive_vars"] >> NACTIVE_VARS;
modelParamsNode["max_trees_num"] >> MAX_TREES_NUM;
is_trained = rtrees->train( &data, CvRTParams( MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY,
USE_SURROGATE, MAX_CATEGORIES, 0, true, // (calc_var_importance == true) <=> RF processes variable importance
NACTIVE_VARS, MAX_TREES_NUM, OOB_EPS, CV_TERMCRIT_ITER)) != 0;
}
else if( !modelName.compare(CV_ERTREES) )
{
int MAX_DEPTH, MIN_SAMPLE_COUNT, MAX_CATEGORIES, CV_FOLDS, NACTIVE_VARS, MAX_TREES_NUM;
float REG_ACCURACY = 0, OOB_EPS = 0.0;
bool USE_SURROGATE, IS_PRUNED;
modelParamsNode["max_depth"] >> MAX_DEPTH;
modelParamsNode["min_sample_count"] >> MIN_SAMPLE_COUNT;
modelParamsNode["use_surrogate"] >> USE_SURROGATE;
modelParamsNode["max_categories"] >> MAX_CATEGORIES;
modelParamsNode["cv_folds"] >> CV_FOLDS;
modelParamsNode["is_pruned"] >> IS_PRUNED;
modelParamsNode["nactive_vars"] >> NACTIVE_VARS;
modelParamsNode["max_trees_num"] >> MAX_TREES_NUM;
is_trained = ertrees->train( &data, CvRTParams( MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY,
USE_SURROGATE, MAX_CATEGORIES, 0, false, // (calc_var_importance == true) <=> RF processes variable importance
NACTIVE_VARS, MAX_TREES_NUM, OOB_EPS, CV_TERMCRIT_ITER)) != 0;
}
if( !is_trained )
{
ts->printf( cvtest::TS::LOG, "in test case %d model training was failed", testCaseIdx );
return cvtest::TS::FAIL_INVALID_OUTPUT;
}
return cvtest::TS::OK;
}
float CV_MLBaseTest::get_error( int testCaseIdx, int type, vector<float> *resp )
{
float err = 0;
if( !modelName.compare(CV_NBAYES) )
err = nbayes_calc_error( nbayes, &data, type, resp );
else if( !modelName.compare(CV_KNEAREST) )
{
assert( 0 );
testCaseIdx = 0;
/*int k = 2;
validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["model_params"]["k"] >> k;
err = knearest->calc_error( &data, k, type, resp );*/
}
else if( !modelName.compare(CV_SVM) )
err = svm_calc_error( svm, &data, type, resp );
else if( !modelName.compare(CV_EM) )
assert( 0 );
else if( !modelName.compare(CV_ANN) )
err = ann_calc_error( ann, &data, cls_map, type, resp );
else if( !modelName.compare(CV_DTREE) )
err = dtree->calc_error( &data, type, resp );
else if( !modelName.compare(CV_BOOST) )
err = boost->calc_error( &data, type, resp );
else if( !modelName.compare(CV_RTREES) )
err = rtrees->calc_error( &data, type, resp );
else if( !modelName.compare(CV_ERTREES) )
err = ertrees->calc_error( &data, type, resp );
return err;
}
void CV_MLBaseTest::save( const char* filename )
{
if( !modelName.compare(CV_NBAYES) )
nbayes->save( filename );
else if( !modelName.compare(CV_KNEAREST) )
knearest->save( filename );
else if( !modelName.compare(CV_SVM) )
svm->save( filename );
else if( !modelName.compare(CV_EM) )
em->save( filename );
else if( !modelName.compare(CV_ANN) )
ann->save( filename );
else if( !modelName.compare(CV_DTREE) )
dtree->save( filename );
else if( !modelName.compare(CV_BOOST) )
boost->save( filename );
else if( !modelName.compare(CV_RTREES) )
rtrees->save( filename );
else if( !modelName.compare(CV_ERTREES) )
ertrees->save( filename );
}
void CV_MLBaseTest::load( const char* filename )
{
if( !modelName.compare(CV_NBAYES) )
nbayes->load( filename );
else if( !modelName.compare(CV_KNEAREST) )
knearest->load( filename );
else if( !modelName.compare(CV_SVM) )
svm->load( filename );
else if( !modelName.compare(CV_EM) )
em->load( filename );
else if( !modelName.compare(CV_ANN) )
ann->load( filename );
else if( !modelName.compare(CV_DTREE) )
dtree->load( filename );
else if( !modelName.compare(CV_BOOST) )
boost->load( filename );
else if( !modelName.compare(CV_RTREES) )
rtrees->load( filename );
else if( !modelName.compare(CV_ERTREES) )
ertrees->load( filename );
}
/* End of file. */