stitching_detailed.cpp 26.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
// 
//
//M*/

#include <fstream>
#include <string>
#include "opencv2/opencv_modules.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/detail/autocalib.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/camera.hpp"
#include "opencv2/stitching/detail/exposure_compensate.hpp"
#include "opencv2/stitching/detail/matchers.hpp"
#include "opencv2/stitching/detail/motion_estimators.hpp"
#include "opencv2/stitching/detail/seam_finders.hpp"
#include "opencv2/stitching/detail/util.hpp"
#include "opencv2/stitching/detail/warpers.hpp"
#include "opencv2/stitching/warpers.hpp"

using namespace std;
using namespace cv;
using namespace cv::detail;

void printUsage()
{
    cout <<
        "Rotation model images stitcher.\n\n"
        "stitching_detailed img1 img2 [...imgN] [flags]\n\n"
        "Flags:\n"
        "  --preview\n"
        "      Run stitching in the preview mode. Works faster than usual mode,\n"
        "      but output image will have lower resolution.\n"
        "  --try_gpu (yes|no)\n"
        "      Try to use GPU. The default value is 'no'. All default values\n"
        "      are for CPU mode.\n"
        "\nMotion Estimation Flags:\n"
        "  --work_megapix <float>\n"
        "      Resolution for image registration step. The default is 0.6 Mpx.\n"
        "  --features (surf|orb)\n"
        "      Type of features used for images matching. The default is surf.\n"
        "  --match_conf <float>\n"
        "      Confidence for feature matching step. The default is 0.65 for surf and 0.3 for orb.\n"
        "  --conf_thresh <float>\n"
        "      Threshold for two images are from the same panorama confidence.\n"
        "      The default is 1.0.\n"
        "  --ba (reproj|ray)\n"
        "      Bundle adjustment cost function. The default is ray.\n"
        "  --ba_refine_mask (mask)\n"
        "      Set refinement mask for bundle adjustment. It looks like 'x_xxx',\n"
        "      where 'x' means refine respective parameter and '_' means don't\n"
        "      refine one, and has the following format:\n"
        "      <fx><skew><ppx><aspect><ppy>. The default mask is 'xxxxx'. If bundle\n"
        "      adjustment doesn't support estimation of selected parameter then\n"
        "      the respective flag is ignored.\n"
        "  --wave_correct (no|horiz|vert)\n"
        "      Perform wave effect correction. The default is 'horiz'.\n"
        "  --save_graph <file_name>\n"
        "      Save matches graph represented in DOT language to <file_name> file.\n"
        "      Labels description: Nm is number of matches, Ni is number of inliers,\n"
        "      C is confidence.\n"
        "\nCompositing Flags:\n"
        "  --warp (plane|cylindrical|spherical|fisheye|stereographic|compressedPlaneA2B1|compressedPlaneA1.5B1|compressedPlanePortraitA2B1|compressedPlanePortraitA1.5B1|paniniA2B1|paniniA1.5B1|paniniPortraitA2B1|paniniPortraitA1.5B1|mercator|transverseMercator)\n"
        "      Warp surface type. The default is 'spherical'.\n"
        "  --seam_megapix <float>\n"
        "      Resolution for seam estimation step. The default is 0.1 Mpx.\n"
        "  --seam (no|voronoi|gc_color|gc_colorgrad)\n"
        "      Seam estimation method. The default is 'gc_color'.\n"
        "  --compose_megapix <float>\n"
        "      Resolution for compositing step. Use -1 for original resolution.\n"
        "      The default is -1.\n"
        "  --expos_comp (no|gain|gain_blocks)\n"
        "      Exposure compensation method. The default is 'gain_blocks'.\n"
        "  --blend (no|feather|multiband)\n"
        "      Blending method. The default is 'multiband'.\n"
        "  --blend_strength <float>\n"
        "      Blending strength from [0,100] range. The default is 5.\n"
        "  --output <result_img>\n"
        "      The default is 'result.jpg'.\n";
}


// Default command line args
vector<string> img_names;
bool preview = false;
bool try_gpu = false;
double work_megapix = 0.6;
double seam_megapix = 0.1;
double compose_megapix = -1;
float conf_thresh = 1.f;
string features = "surf";
string ba_cost_func = "ray";
string ba_refine_mask = "xxxxx";
bool do_wave_correct = true;
WaveCorrectKind wave_correct = detail::WAVE_CORRECT_HORIZ;
bool save_graph = false;
std::string save_graph_to;
string warp_type = "spherical";
int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
float match_conf = 0.3f;
string seam_find_type = "gc_color";
int blend_type = Blender::MULTI_BAND;
float blend_strength = 5;
string result_name = "result.jpg";

int parseCmdArgs(int argc, char** argv)
{
    if (argc == 1)
    {
        printUsage();
        return -1;
    }
    for (int i = 1; i < argc; ++i)
    {
        if (string(argv[i]) == "--help" || string(argv[i]) == "/?")
        {
            printUsage();
            return -1;
        }
        else if (string(argv[i]) == "--preview")
        {
            preview = true;
        }
        else if (string(argv[i]) == "--try_gpu")
        {
            if (string(argv[i + 1]) == "no")
                try_gpu = false;
            else if (string(argv[i + 1]) == "yes")
                try_gpu = true;
            else
            {
                cout << "Bad --try_gpu flag value\n";
                return -1;
            }
            i++;
        }
        else if (string(argv[i]) == "--work_megapix")
        {
            work_megapix = atof(argv[i + 1]);
            i++;
        }
        else if (string(argv[i]) == "--seam_megapix")
        {
            seam_megapix = atof(argv[i + 1]);
            i++;
        }
        else if (string(argv[i]) == "--compose_megapix")
        {
            compose_megapix = atof(argv[i + 1]);
            i++;
        }
        else if (string(argv[i]) == "--result")
        {
            result_name = argv[i + 1];
            i++;
        }
        else if (string(argv[i]) == "--features")
        {
            features = argv[i + 1];
            if (features == "orb")
                match_conf = 0.3f;
            i++;
        }
        else if (string(argv[i]) == "--match_conf")
        {
            match_conf = static_cast<float>(atof(argv[i + 1]));
            i++;
        }
        else if (string(argv[i]) == "--conf_thresh")
        {
            conf_thresh = static_cast<float>(atof(argv[i + 1]));
            i++;
        }
        else if (string(argv[i]) == "--ba")
        {
            ba_cost_func = argv[i + 1];
            i++;
        }
        else if (string(argv[i]) == "--ba_refine_mask")
        {
            ba_refine_mask = argv[i + 1];
            if (ba_refine_mask.size() != 5)
            {
                cout << "Incorrect refinement mask length.\n";
                return -1;
            }
            i++;
        }
        else if (string(argv[i]) == "--wave_correct")
        {
            if (string(argv[i + 1]) == "no")
                do_wave_correct = false;
            else if (string(argv[i + 1]) == "horiz")
            {
                do_wave_correct = true;
                wave_correct = detail::WAVE_CORRECT_HORIZ;
            }
            else if (string(argv[i + 1]) == "vert")
            {
                do_wave_correct = true;
                wave_correct = detail::WAVE_CORRECT_VERT;
            }
            else
            {
                cout << "Bad --wave_correct flag value\n";
                return -1;
            }
            i++;
        }
        else if (string(argv[i]) == "--save_graph")
        {
            save_graph = true;
            save_graph_to = argv[i + 1];
            i++;
        }
        else if (string(argv[i]) == "--warp")
        {
            warp_type = string(argv[i + 1]);
            i++;
        }
        else if (string(argv[i]) == "--expos_comp")
        {
            if (string(argv[i + 1]) == "no")
                expos_comp_type = ExposureCompensator::NO;
            else if (string(argv[i + 1]) == "gain")
                expos_comp_type = ExposureCompensator::GAIN;
            else if (string(argv[i + 1]) == "gain_blocks")
                expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
            else
            {
                cout << "Bad exposure compensation method\n";
                return -1;
            }
            i++;
        }
        else if (string(argv[i]) == "--seam")
        {
            if (string(argv[i + 1]) == "no" ||
                string(argv[i + 1]) == "voronoi" ||
                string(argv[i + 1]) == "gc_color" ||
                string(argv[i + 1]) == "gc_colorgrad")
                seam_find_type = argv[i + 1];
            else
            {
                cout << "Bad seam finding method\n";
                return -1;
            }
            i++;
        }
        else if (string(argv[i]) == "--blend")
        {
            if (string(argv[i + 1]) == "no")
                blend_type = Blender::NO;
            else if (string(argv[i + 1]) == "feather")
                blend_type = Blender::FEATHER;
            else if (string(argv[i + 1]) == "multiband")
                blend_type = Blender::MULTI_BAND;
            else
            {
                cout << "Bad blending method\n";
                return -1;
            }
            i++;
        }
        else if (string(argv[i]) == "--blend_strength")
        {
            blend_strength = static_cast<float>(atof(argv[i + 1]));
            i++;
        }
        else if (string(argv[i]) == "--output")
        {
            result_name = argv[i + 1];
            i++;
        }
        else
            img_names.push_back(argv[i]);
    }
    if (preview)
    {
        compose_megapix = 0.6;
    }
    return 0;
}


int main(int argc, char* argv[])
{
    int64 app_start_time = getTickCount();
    cv::setBreakOnError(true);

    int retval = parseCmdArgs(argc, argv);
    if (retval)
        return retval;

    // Check if have enough images
    int num_images = static_cast<int>(img_names.size());
    if (num_images < 2)
    {
        LOGLN("Need more images");
        return -1;
    }

    double work_scale = 1, seam_scale = 1, compose_scale = 1;
    bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false;

    LOGLN("Finding features...");
    int64 t = getTickCount();

    Ptr<FeaturesFinder> finder;
    if (features == "surf")
    {
#ifdef HAVE_OPENCV_GPU
        if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
            finder = new SurfFeaturesFinderGpu();
        else
#endif
            finder = new SurfFeaturesFinder();
    }
    else if (features == "orb")
    {
        finder = new OrbFeaturesFinder();
    }
    else
    {
        cout << "Unknown 2D features type: '" << features << "'.\n";
        return -1;
    }

    Mat full_img, img;
    vector<ImageFeatures> features(num_images);
    vector<Mat> images(num_images);
    vector<Size> full_img_sizes(num_images);
    double seam_work_aspect = 1;

    for (int i = 0; i < num_images; ++i)
    {
        full_img = imread(img_names[i]);
        full_img_sizes[i] = full_img.size();

        if (full_img.empty())
        {
            LOGLN("Can't open image " << img_names[i]);
            return -1;
        }
        if (work_megapix < 0)
        {
            img = full_img;
            work_scale = 1;
            is_work_scale_set = true;
        }
        else
        {
            if (!is_work_scale_set)
            {
                work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
                is_work_scale_set = true;
            }
            resize(full_img, img, Size(), work_scale, work_scale);
        }
        if (!is_seam_scale_set)
        {
            seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
            seam_work_aspect = seam_scale / work_scale;
            is_seam_scale_set = true;
        }

        (*finder)(img, features[i]);
        features[i].img_idx = i;
        LOGLN("Features in image #" << i+1 << ": " << features[i].keypoints.size());

        resize(full_img, img, Size(), seam_scale, seam_scale);
        images[i] = img.clone();
    }

    finder->collectGarbage();
    full_img.release();
    img.release();

    LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");

    LOG("Pairwise matching");
    t = getTickCount();
    vector<MatchesInfo> pairwise_matches;
    BestOf2NearestMatcher matcher(try_gpu, match_conf);
    matcher(features, pairwise_matches);
    matcher.collectGarbage();
    LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");

    // Check if we should save matches graph
    if (save_graph)
    {
        LOGLN("Saving matches graph...");
        ofstream f(save_graph_to.c_str());
        f << matchesGraphAsString(img_names, pairwise_matches, conf_thresh);
    }

    // Leave only images we are sure are from the same panorama
    vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
    vector<Mat> img_subset;
    vector<string> img_names_subset;
    vector<Size> full_img_sizes_subset;
    for (size_t i = 0; i < indices.size(); ++i)
    {
        img_names_subset.push_back(img_names[indices[i]]);
        img_subset.push_back(images[indices[i]]);
        full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
    }

    images = img_subset;
    img_names = img_names_subset;
    full_img_sizes = full_img_sizes_subset;

    // Check if we still have enough images
    num_images = static_cast<int>(img_names.size());
    if (num_images < 2)
    {
        LOGLN("Need more images");
        return -1;
    }

    HomographyBasedEstimator estimator;
    vector<CameraParams> cameras;
    estimator(features, pairwise_matches, cameras);

    for (size_t i = 0; i < cameras.size(); ++i)
    {
        Mat R;
        cameras[i].R.convertTo(R, CV_32F);
        cameras[i].R = R;
        LOGLN("Initial intrinsics #" << indices[i]+1 << ":\n" << cameras[i].K());
    }

    Ptr<detail::BundleAdjusterBase> adjuster;
    if (ba_cost_func == "reproj") adjuster = new detail::BundleAdjusterReproj();
    else if (ba_cost_func == "ray") adjuster = new detail::BundleAdjusterRay();
    else 
    { 
        cout << "Unknown bundle adjustment cost function: '" << ba_cost_func << "'.\n"; 
        return -1; 
    }
    adjuster->setConfThresh(conf_thresh);
    Mat_<uchar> refine_mask = Mat::zeros(3, 3, CV_8U);
    if (ba_refine_mask[0] == 'x') refine_mask(0,0) = 1;
    if (ba_refine_mask[1] == 'x') refine_mask(0,1) = 1;
    if (ba_refine_mask[2] == 'x') refine_mask(0,2) = 1;
    if (ba_refine_mask[3] == 'x') refine_mask(1,1) = 1;
    if (ba_refine_mask[4] == 'x') refine_mask(1,2) = 1;
    adjuster->setRefinementMask(refine_mask);
    (*adjuster)(features, pairwise_matches, cameras);

    // Find median focal length

    vector<double> focals;
    for (size_t i = 0; i < cameras.size(); ++i)
    {
        LOGLN("Camera #" << indices[i]+1 << ":\n" << cameras[i].K());
        focals.push_back(cameras[i].focal);
    }

    sort(focals.begin(), focals.end());
    float warped_image_scale;
    if (focals.size() % 2 == 1)
        warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
    else
        warped_image_scale = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;

    if (do_wave_correct)
    {
        vector<Mat> rmats;
        for (size_t i = 0; i < cameras.size(); ++i)
            rmats.push_back(cameras[i].R);
        waveCorrect(rmats, wave_correct);
        for (size_t i = 0; i < cameras.size(); ++i)
            cameras[i].R = rmats[i];
    }

    LOGLN("Warping images (auxiliary)... ");
    t = getTickCount();

    vector<Point> corners(num_images);
    vector<Mat> masks_warped(num_images);
    vector<Mat> images_warped(num_images);
    vector<Size> sizes(num_images);
    vector<Mat> masks(num_images);

    // Preapre images masks
    for (int i = 0; i < num_images; ++i)
    {
        masks[i].create(images[i].size(), CV_8U);
        masks[i].setTo(Scalar::all(255));
    }

    // Warp images and their masks

    Ptr<WarperCreator> warper_creator;
#ifdef HAVE_OPENCV_GPU
    if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
    {
        if (warp_type == "plane") warper_creator = new cv::PlaneWarperGpu();
        else if (warp_type == "cylindrical") warper_creator = new cv::CylindricalWarperGpu();
        else if (warp_type == "spherical") warper_creator = new cv::SphericalWarperGpu();
    }
    else
#endif
    {
        if (warp_type == "plane") warper_creator = new cv::PlaneWarper();
        else if (warp_type == "cylindrical") warper_creator = new cv::CylindricalWarper();
        else if (warp_type == "spherical") warper_creator = new cv::SphericalWarper();
		else if (warp_type == "fisheye") warper_creator = new cv::FisheyeWarper();
		else if (warp_type == "stereographic") warper_creator = new cv::StereographicWarper();
		else if (warp_type == "compressedPlaneA2B1") warper_creator = new cv::CompressedRectilinearWarper(2, 1);
		else if (warp_type == "compressedPlaneA1.5B1") warper_creator = new cv::CompressedRectilinearWarper(1.5, 1);
		else if (warp_type == "compressedPlanePortraitA2B1") warper_creator = new cv::CompressedRectilinearPortraitWarper(2, 1);
		else if (warp_type == "compressedPlanePortraitA1.5B1") warper_creator = new cv::CompressedRectilinearPortraitWarper(1.5, 1);
		else if (warp_type == "paniniA2B1") warper_creator = new cv::PaniniWarper(2, 1);
		else if (warp_type == "paniniA1.5B1") warper_creator = new cv::PaniniWarper(1.5, 1);
		else if (warp_type == "paniniPortraitA2B1") warper_creator = new cv::PaniniPortraitWarper(2, 1);
		else if (warp_type == "paniniPortraitA1.5B1") warper_creator = new cv::PaniniPortraitWarper(1.5, 1);
		else if (warp_type == "mercator") warper_creator = new cv::MercatorWarper();
		else if (warp_type == "transverseMercator") warper_creator = new cv::TransverseMercatorWarper();
    }

    if (warper_creator.empty())
    {
        cout << "Can't create the following warper '" << warp_type << "'\n";
        return 1;
    }
    
    Ptr<RotationWarper> warper = warper_creator->create(static_cast<float>(warped_image_scale * seam_work_aspect));

    for (int i = 0; i < num_images; ++i)
    {
        Mat_<float> K;
        cameras[i].K().convertTo(K, CV_32F);
        float swa = (float)seam_work_aspect;
        K(0,0) *= swa; K(0,2) *= swa;
        K(1,1) *= swa; K(1,2) *= swa;

        corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
        sizes[i] = images_warped[i].size();

        warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
    }

    vector<Mat> images_warped_f(num_images);
    for (int i = 0; i < num_images; ++i)
        images_warped[i].convertTo(images_warped_f[i], CV_32F);

    LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");

    Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(expos_comp_type);
    compensator->feed(corners, images_warped, masks_warped);

    Ptr<SeamFinder> seam_finder;
    if (seam_find_type == "no")
        seam_finder = new detail::NoSeamFinder();
    else if (seam_find_type == "voronoi")
        seam_finder = new detail::VoronoiSeamFinder();
    else if (seam_find_type == "gc_color")
    {
#ifdef HAVE_OPENCV_GPU
        if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
            seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR);
        else
#endif
            seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR);
    }
    else if (seam_find_type == "gc_colorgrad")
    {
#ifdef HAVE_OPENCV_GPU
        if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
            seam_finder = new detail::GraphCutSeamFinderGpu(GraphCutSeamFinderBase::COST_COLOR_GRAD);
        else
#endif
            seam_finder = new detail::GraphCutSeamFinder(GraphCutSeamFinderBase::COST_COLOR_GRAD);
    }
    if (seam_finder.empty())
    {
        cout << "Can't create the following seam finder '" << seam_find_type << "'\n";
        return 1;
    }

    seam_finder->find(images_warped_f, corners, masks_warped);

    // Release unused memory
    images.clear();
    images_warped.clear();
    images_warped_f.clear();
    masks.clear();

    LOGLN("Compositing...");
    t = getTickCount();

    Mat img_warped, img_warped_s;
    Mat dilated_mask, seam_mask, mask, mask_warped;
    Ptr<Blender> blender;
    double compose_seam_aspect = 1;
    double compose_work_aspect = 1;

    for (int img_idx = 0; img_idx < num_images; ++img_idx)
    {
        LOGLN("Compositing image #" << indices[img_idx]+1);

        // Read image and resize it if necessary
        full_img = imread(img_names[img_idx]);
        if (!is_compose_scale_set)
        {
            if (compose_megapix > 0)
                compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
            is_compose_scale_set = true;

            // Compute relative scales
            compose_seam_aspect = compose_scale / seam_scale;
            compose_work_aspect = compose_scale / work_scale;

            // Update warped image scale
            warped_image_scale *= static_cast<float>(compose_work_aspect);
            warper = warper_creator->create(warped_image_scale);

            // Update corners and sizes
            for (int i = 0; i < num_images; ++i)
            {
                // Update intrinsics
                cameras[i].focal *= compose_work_aspect;
                cameras[i].ppx *= compose_work_aspect;
                cameras[i].ppy *= compose_work_aspect;

                // Update corner and size
                Size sz = full_img_sizes[i];
                if (std::abs(compose_scale - 1) > 1e-1)
                {
                    sz.width = cvRound(full_img_sizes[i].width * compose_scale);
                    sz.height = cvRound(full_img_sizes[i].height * compose_scale);
                }

                Mat K;
                cameras[i].K().convertTo(K, CV_32F);
                Rect roi = warper->warpRoi(sz, K, cameras[i].R);
                corners[i] = roi.tl();
                sizes[i] = roi.size();
            }
        }
        if (abs(compose_scale - 1) > 1e-1)
            resize(full_img, img, Size(), compose_scale, compose_scale);
        else
            img = full_img;
        full_img.release();
        Size img_size = img.size();

        Mat K;
        cameras[img_idx].K().convertTo(K, CV_32F);

        // Warp the current image
        warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);

        // Warp the current image mask
        mask.create(img_size, CV_8U);
        mask.setTo(Scalar::all(255));
        warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);

        // Compensate exposure
        compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);

        img_warped.convertTo(img_warped_s, CV_16S);
        img_warped.release();
        img.release();
        mask.release();

        dilate(masks_warped[img_idx], dilated_mask, Mat());
        resize(dilated_mask, seam_mask, mask_warped.size());
        mask_warped = seam_mask & mask_warped;

        if (blender.empty())
        {
            blender = Blender::createDefault(blend_type, try_gpu);
            Size dst_sz = resultRoi(corners, sizes).size();
            float blend_width = sqrt(static_cast<float>(dst_sz.area())) * blend_strength / 100.f;
            if (blend_width < 1.f)
                blender = Blender::createDefault(Blender::NO, try_gpu);
            else if (blend_type == Blender::MULTI_BAND)
            {
                MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(static_cast<Blender*>(blender));
                mb->setNumBands(static_cast<int>(ceil(log(blend_width)/log(2.)) - 1.));
                LOGLN("Multi-band blender, number of bands: " << mb->numBands());
            }
            else if (blend_type == Blender::FEATHER)
            {
                FeatherBlender* fb = dynamic_cast<FeatherBlender*>(static_cast<Blender*>(blender));
                fb->setSharpness(1.f/blend_width);
                LOGLN("Feather blender, sharpness: " << fb->sharpness());
            }
            blender->prepare(corners, sizes);
        }

        // Blend the current image
        blender->feed(img_warped_s, mask_warped, corners[img_idx]);
    }

    Mat result, result_mask;
    blender->blend(result, result_mask);

    LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");

    imwrite(result_name, result);

    LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec");
    return 0;
}