1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "opencv2/core/hal/intrin.hpp"
namespace cv { namespace hal {
extern const uchar popCountTable[256];
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
// forward declarations
int normHamming(const uchar* a, int n);
int normHamming(const uchar* a, const uchar* b, int n);
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
#if CV_AVX2
static inline int _mm256_extract_epi32_(__m256i reg, const int i)
{
CV_DECL_ALIGNED(32) int reg_data[8];
CV_DbgAssert(0 <= i && i < 8);
_mm256_store_si256((__m256i*)reg_data, reg);
return reg_data[i];
}
#endif
int normHamming(const uchar* a, int n)
{
CV_AVX_GUARD;
int i = 0;
int result = 0;
#if CV_AVX2
{
__m256i _r0 = _mm256_setzero_si256();
__m256i _0 = _mm256_setzero_si256();
__m256i _popcnt_table = _mm256_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4);
__m256i _popcnt_mask = _mm256_set1_epi8(0x0F);
for(; i <= n - 32; i+= 32)
{
__m256i _a0 = _mm256_loadu_si256((const __m256i*)(a + i));
__m256i _popc0 = _mm256_shuffle_epi8(_popcnt_table, _mm256_and_si256(_a0, _popcnt_mask));
__m256i _popc1 = _mm256_shuffle_epi8(_popcnt_table,
_mm256_and_si256(_mm256_srli_epi16(_a0, 4), _popcnt_mask));
_r0 = _mm256_add_epi32(_r0, _mm256_sad_epu8(_0, _mm256_add_epi8(_popc0, _popc1)));
}
_r0 = _mm256_add_epi32(_r0, _mm256_shuffle_epi32(_r0, 2));
result = _mm256_extract_epi32_(_mm256_add_epi32(_r0, _mm256_permute2x128_si256(_r0, _r0, 1)), 0);
}
#endif // CV_AVX2
#if CV_POPCNT
{
# if defined CV_POPCNT_U64
for(; i <= n - 8; i += 8)
{
result += (int)CV_POPCNT_U64(*(uint64*)(a + i));
}
# endif
for(; i <= n - 4; i += 4)
{
result += CV_POPCNT_U32(*(uint*)(a + i));
}
}
#endif // CV_POPCNT
#if CV_SIMD128
{
v_uint32x4 t = v_setzero_u32();
for(; i <= n - v_uint8x16::nlanes; i += v_uint8x16::nlanes)
{
t += v_popcount(v_load(a + i));
}
result += v_reduce_sum(t);
}
#endif // CV_SIMD128
#if CV_ENABLE_UNROLLED
for(; i <= n - 4; i += 4)
{
result += popCountTable[a[i]] + popCountTable[a[i+1]] +
popCountTable[a[i+2]] + popCountTable[a[i+3]];
}
#endif
for(; i < n; i++)
{
result += popCountTable[a[i]];
}
return result;
}
int normHamming(const uchar* a, const uchar* b, int n)
{
CV_AVX_GUARD;
int i = 0;
int result = 0;
#if CV_AVX2
{
__m256i _r0 = _mm256_setzero_si256();
__m256i _0 = _mm256_setzero_si256();
__m256i _popcnt_table = _mm256_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4);
__m256i _popcnt_mask = _mm256_set1_epi8(0x0F);
for(; i <= n - 32; i+= 32)
{
__m256i _a0 = _mm256_loadu_si256((const __m256i*)(a + i));
__m256i _b0 = _mm256_loadu_si256((const __m256i*)(b + i));
__m256i _xor = _mm256_xor_si256(_a0, _b0);
__m256i _popc0 = _mm256_shuffle_epi8(_popcnt_table, _mm256_and_si256(_xor, _popcnt_mask));
__m256i _popc1 = _mm256_shuffle_epi8(_popcnt_table,
_mm256_and_si256(_mm256_srli_epi16(_xor, 4), _popcnt_mask));
_r0 = _mm256_add_epi32(_r0, _mm256_sad_epu8(_0, _mm256_add_epi8(_popc0, _popc1)));
}
_r0 = _mm256_add_epi32(_r0, _mm256_shuffle_epi32(_r0, 2));
result = _mm256_extract_epi32_(_mm256_add_epi32(_r0, _mm256_permute2x128_si256(_r0, _r0, 1)), 0);
}
#endif // CV_AVX2
#if CV_POPCNT
{
# if defined CV_POPCNT_U64
for(; i <= n - 8; i += 8)
{
result += (int)CV_POPCNT_U64(*(uint64*)(a + i) ^ *(uint64*)(b + i));
}
# endif
for(; i <= n - 4; i += 4)
{
result += CV_POPCNT_U32(*(uint*)(a + i) ^ *(uint*)(b + i));
}
}
#endif // CV_POPCNT
#if CV_SIMD128
{
v_uint32x4 t = v_setzero_u32();
for(; i <= n - v_uint8x16::nlanes; i += v_uint8x16::nlanes)
{
t += v_popcount(v_load(a + i) ^ v_load(b + i));
}
result += v_reduce_sum(t);
}
#endif // CV_SIMD128
#if CV_ENABLE_UNROLLED
for(; i <= n - 4; i += 4)
{
result += popCountTable[a[i] ^ b[i]] + popCountTable[a[i+1] ^ b[i+1]] +
popCountTable[a[i+2] ^ b[i+2]] + popCountTable[a[i+3] ^ b[i+3]];
}
#endif
for(; i < n; i++)
{
result += popCountTable[a[i] ^ b[i]];
}
return result;
}
#endif // CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
CV_CPU_OPTIMIZATION_NAMESPACE_END
}} //cv::hal