1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// WARNING: this sample is under construction! Use it on your own risk.
#if defined _MSC_VER && _MSC_VER >= 1400
#pragma warning(disable : 4100)
#endif
#include <iostream>
#include <iomanip>
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/gpu/gpu.hpp"
using namespace std;
using namespace cv;
using namespace cv::gpu;
void help()
{
cout << "Usage: ./cascadeclassifier <cascade_file> <image_or_video_or_cameraid>\n"
"Using OpenCV version " << CV_VERSION << endl << endl;
}
template<class T>
void convertAndResize(const T& src, T& gray, T& resized, double scale)
{
if (src.channels() == 3)
{
cvtColor( src, gray, CV_BGR2GRAY );
}
else
{
gray = src;
}
Size sz(cvRound(gray.cols * scale), cvRound(gray.rows * scale));
if (scale != 1)
{
resize(gray, resized, sz);
}
else
{
resized = gray;
}
}
void matPrint(Mat &img, int lineOffsY, Scalar fontColor, const string &ss)
{
int fontFace = FONT_HERSHEY_DUPLEX;
double fontScale = 0.8;
int fontThickness = 2;
Size fontSize = cv::getTextSize("T[]", fontFace, fontScale, fontThickness, 0);
Point org;
org.x = 1;
org.y = 3 * fontSize.height * (lineOffsY + 1) / 2;
putText(img, ss, org, fontFace, fontScale, CV_RGB(0,0,0), 5*fontThickness/2, 16);
putText(img, ss, org, fontFace, fontScale, fontColor, fontThickness, 16);
}
void displayState(Mat &canvas, bool bHelp, bool bGpu, bool bLargestFace, bool bFilter, double fps)
{
Scalar fontColorRed = CV_RGB(255,0,0);
Scalar fontColorNV = CV_RGB(118,185,0);
ostringstream ss;
ss << "FPS = " << setprecision(1) << fixed << fps;
matPrint(canvas, 0, fontColorRed, ss.str());
ss.str("");
ss << "[" << canvas.cols << "x" << canvas.rows << "], " <<
(bGpu ? "GPU, " : "CPU, ") <<
(bLargestFace ? "OneFace, " : "MultiFace, ") <<
(bFilter ? "Filter:ON" : "Filter:OFF");
matPrint(canvas, 1, fontColorRed, ss.str());
// by Anatoly. MacOS fix. ostringstream(const string&) is a private
// matPrint(canvas, 2, fontColorNV, ostringstream("Space - switch GPU / CPU"));
if (bHelp)
{
matPrint(canvas, 2, fontColorNV, "Space - switch GPU / CPU");
matPrint(canvas, 3, fontColorNV, "M - switch OneFace / MultiFace");
matPrint(canvas, 4, fontColorNV, "F - toggle rectangles Filter");
matPrint(canvas, 5, fontColorNV, "H - toggle hotkeys help");
matPrint(canvas, 6, fontColorNV, "1/Q - increase/decrease scale");
}
else
{
matPrint(canvas, 2, fontColorNV, "H - toggle hotkeys help");
}
}
int main(int argc, const char *argv[])
{
if (argc != 3)
{
return help(), -1;
}
if (getCudaEnabledDeviceCount() == 0)
{
return cerr << "No GPU found or the library is compiled without GPU support" << endl, -1;
}
VideoCapture capture;
string cascadeName = argv[1];
string inputName = argv[2];
CascadeClassifier_GPU cascade_gpu;
if (!cascade_gpu.load(cascadeName))
{
return cerr << "ERROR: Could not load cascade classifier \"" << cascadeName << "\"" << endl, help(), -1;
}
CascadeClassifier cascade_cpu;
if (!cascade_cpu.load(cascadeName))
{
return cerr << "ERROR: Could not load cascade classifier \"" << cascadeName << "\"" << endl, help(), -1;
}
Mat image = imread(inputName);
if (image.empty())
{
if (!capture.open(inputName))
{
int camid = -1;
istringstream iss(inputName);
iss >> camid;
if (!capture.open(camid))
{
cout << "Can't open source" << endl;
return help(), -1;
}
}
}
namedWindow("result", 1);
Mat frame, frame_cpu, gray_cpu, resized_cpu, faces_downloaded, frameDisp;
vector<Rect> facesBuf_cpu;
GpuMat frame_gpu, gray_gpu, resized_gpu, facesBuf_gpu;
/* parameters */
bool useGPU = true;
double scaleFactor = 1.0;
bool findLargestObject = false;
bool filterRects = true;
bool helpScreen = false;
int detections_num;
for (;;)
{
if (capture.isOpened())
{
capture >> frame;
if (frame.empty())
{
break;
}
}
(image.empty() ? frame : image).copyTo(frame_cpu);
frame_gpu.upload(image.empty() ? frame : image);
convertAndResize(frame_gpu, gray_gpu, resized_gpu, scaleFactor);
convertAndResize(frame_cpu, gray_cpu, resized_cpu, scaleFactor);
TickMeter tm;
tm.start();
if (useGPU)
{
cascade_gpu.visualizeInPlace = true;
cascade_gpu.findLargestObject = findLargestObject;
detections_num = cascade_gpu.detectMultiScale(resized_gpu, facesBuf_gpu, 1.2,
(filterRects || findLargestObject) ? 4 : 0);
facesBuf_gpu.colRange(0, detections_num).download(faces_downloaded);
}
else
{
Size minSize = cascade_gpu.getClassifierSize();
cascade_cpu.detectMultiScale(resized_cpu, facesBuf_cpu, 1.2,
(filterRects || findLargestObject) ? 4 : 0,
(findLargestObject ? CV_HAAR_FIND_BIGGEST_OBJECT : 0)
| CV_HAAR_SCALE_IMAGE,
minSize);
detections_num = (int)facesBuf_cpu.size();
}
if (!useGPU && detections_num)
{
for (int i = 0; i < detections_num; ++i)
{
rectangle(resized_cpu, facesBuf_cpu[i], Scalar(255));
}
}
if (useGPU)
{
resized_gpu.download(resized_cpu);
}
tm.stop();
double detectionTime = tm.getTimeMilli();
double fps = 1000 / detectionTime;
//print detections to console
cout << setfill(' ') << setprecision(2);
cout << setw(6) << fixed << fps << " FPS, " << detections_num << " det";
if ((filterRects || findLargestObject) && detections_num > 0)
{
Rect *faceRects = useGPU ? faces_downloaded.ptr<Rect>() : &facesBuf_cpu[0];
for (int i = 0; i < min(detections_num, 2); ++i)
{
cout << ", [" << setw(4) << faceRects[i].x
<< ", " << setw(4) << faceRects[i].y
<< ", " << setw(4) << faceRects[i].width
<< ", " << setw(4) << faceRects[i].height << "]";
}
}
cout << endl;
cvtColor(resized_cpu, frameDisp, CV_GRAY2BGR);
displayState(frameDisp, helpScreen, useGPU, findLargestObject, filterRects, fps);
imshow("result", frameDisp);
int key = waitKey(5);
if (key == 27)
{
break;
}
switch ((char)key)
{
case ' ':
useGPU = !useGPU;
break;
case 'm':
case 'M':
findLargestObject = !findLargestObject;
break;
case 'f':
case 'F':
filterRects = !filterRects;
break;
case '1':
scaleFactor *= 1.05;
break;
case 'q':
case 'Q':
scaleFactor /= 1.05;
break;
case 'h':
case 'H':
helpScreen = !helpScreen;
break;
}
}
return 0;
}