1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and / or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/ml.hpp"
#include <queue>
using cv::InputArray;
using cv::OutputArray;
using cv::Mat;
using cv::softcascade::Octave;
using cv::softcascade::FeaturePool;
using cv::softcascade::Dataset;
using cv::softcascade::ChannelFeatureBuilder;
FeaturePool::~FeaturePool(){}
Dataset::~Dataset(){}
namespace {
class BoostedSoftCascadeOctave : public cv::Boost, public Octave
{
public:
BoostedSoftCascadeOctave(cv::Rect boundingBox = cv::Rect(), int npositives = 0, int nnegatives = 0, int logScale = 0,
int shrinkage = 1, cv::Ptr<ChannelFeatureBuilder> builder = ChannelFeatureBuilder::create("HOG6MagLuv"));
virtual ~BoostedSoftCascadeOctave();
virtual cv::AlgorithmInfo* info() const;
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth);
virtual void setRejectThresholds(OutputArray thresholds);
virtual void write( cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const;
virtual void write( CvFileStorage* fs, cv::String name) const;
protected:
virtual float predict( InputArray _sample, InputArray _votes, bool raw_mode, bool return_sum ) const;
virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat());
void processPositives(const Dataset* dataset);
void generateNegatives(const Dataset* dataset);
float predict( const Mat& _sample, const cv::Range range) const;
private:
void traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const;
virtual void initialize_weights(double (&p)[2]);
int logScale;
cv::Rect boundingBox;
int npositives;
int nnegatives;
int shrinkage;
Mat integrals;
Mat responses;
CvBoostParams params;
Mat trainData;
cv::Ptr<ChannelFeatureBuilder> builder;
};
BoostedSoftCascadeOctave::BoostedSoftCascadeOctave(cv::Rect bb, int np, int nn, int ls, int shr,
cv::Ptr<ChannelFeatureBuilder> _builder)
: logScale(ls), boundingBox(bb), npositives(np), nnegatives(nn), shrinkage(shr)
{
int maxSample = npositives + nnegatives;
responses.create(maxSample, 1, CV_32FC1);
CvBoostParams _params;
{
// tree params
_params.max_categories = 10;
_params.max_depth = 2;
_params.cv_folds = 0;
_params.truncate_pruned_tree = false;
_params.use_surrogates = false;
_params.use_1se_rule = false;
_params.regression_accuracy = 0;
// boost params
_params.boost_type = CvBoost::GENTLE;
_params.split_criteria = CvBoost::SQERR;
_params.weight_trim_rate = 0.95;
// simple defaults
_params.min_sample_count = 0;
_params.weak_count = 1;
}
params = _params;
builder = _builder;
int w = boundingBox.width;
int h = boundingBox.height;
integrals.create(npositives + nnegatives, (w / shrinkage + 1) * (h / shrinkage * builder->totalChannels() + 1), CV_32SC1);
}
BoostedSoftCascadeOctave::~BoostedSoftCascadeOctave(){}
bool BoostedSoftCascadeOctave::train( const cv::Mat& _trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
{
bool update = false;
return cv::Boost::train(_trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params,
update);
}
void BoostedSoftCascadeOctave::setRejectThresholds(cv::OutputArray _thresholds)
{
// labels decided by classifier
cv::Mat desisions(responses.cols, responses.rows, responses.type());
float* dptr = desisions.ptr<float>(0);
// mask of samples satisfying the condition
cv::Mat ppmask(responses.cols, responses.rows, CV_8UC1);
uchar* mptr = ppmask.ptr<uchar>(0);
int nsamples = npositives + nnegatives;
cv::Mat stab;
for (int si = 0; si < nsamples; ++si)
{
float decision = dptr[si] = predict(trainData.col(si), stab, false, false);
mptr[si] = cv::saturate_cast<uchar>((unsigned int)( (responses.ptr<float>(si)[0] == 1.f) && (decision == 1.f)));
}
int weaks = weak->total;
_thresholds.create(1, weaks, CV_64FC1);
cv::Mat& thresholds = _thresholds.getMatRef();
double* thptr = thresholds.ptr<double>(0);
cv::Mat traces(weaks, nsamples, CV_64FC1, cv::Scalar::all(FLT_MAX));
for (int w = 0; w < weaks; ++w)
{
double* rptr = traces.ptr<double>(w);
for (int si = 0; si < nsamples; ++si)
{
cv::Range curr(0, w + 1);
if (mptr[si])
{
float trace = predict(trainData.col(si), curr);
rptr[si] = trace;
}
}
double mintrace = 0.;
cv::minMaxLoc(traces.row(w), &mintrace);
thptr[w] = mintrace;
}
}
void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset)
{
int h = boundingBox.height;
ChannelFeatureBuilder& _builder = *builder;
int total = 0;
for (int curr = 0; curr < dataset->available( Dataset::POSITIVE); ++curr)
{
cv::Mat sample = dataset->get( Dataset::POSITIVE, curr);
cv::Mat channels = integrals.row(total).reshape(0, h / shrinkage * builder->totalChannels() + 1);
sample = sample(boundingBox);
_builder(sample, channels);
responses.ptr<float>(total)[0] = 1.f;
if (++total >= npositives) break;
}
npositives = total;
nnegatives = cvRound(nnegatives * total / (double)npositives);
}
void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset)
{
using namespace cv::softcascade::internal;
// ToDo: set seed, use offsets
Random::engine eng(DX_DY_SEED);
Random::engine idxEng((Random::seed_type)INDEX_ENGINE_SEED);
int h = boundingBox.height;
int nimages = dataset->available(Dataset::NEGATIVE);
Random::uniform iRand(0, nimages - 1);
int total = 0;
Mat sum;
ChannelFeatureBuilder& _builder = *builder;
for (int i = npositives; i < nnegatives + npositives; ++total)
{
int curr = iRand(idxEng);
Mat frame = dataset->get(Dataset::NEGATIVE, curr);
int maxW = frame.cols - 2 * boundingBox.x - boundingBox.width;
int maxH = frame.rows - 2 * boundingBox.y - boundingBox.height;
Random::uniform wRand(0, maxW -1);
Random::uniform hRand(0, maxH -1);
int dx = wRand(eng);
int dy = hRand(eng);
frame = frame(cv::Rect(dx, dy, boundingBox.width, boundingBox.height));
cv::Mat channels = integrals.row(i).reshape(0, h / shrinkage * builder->totalChannels() + 1);
_builder(frame, channels);
// // if (predict(sum))
{
responses.ptr<float>(i)[0] = 0.f;
++i;
}
}
}
template <typename T> int sgn(T val) {
return (T(0) < val) - (val < T(0));
}
void BoostedSoftCascadeOctave::traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const
{
std::queue<const CvDTreeNode*> nodes;
nodes.push( tree->get_root());
const CvDTreeNode* tempNode;
int leafValIdx = 0;
int internalNodeIdx = 1;
float* leafs = new float[(int)pow(2.f, get_params().max_depth)];
fs << "{";
fs << "treeThreshold" << *th;
fs << "internalNodes" << "[";
while (!nodes.empty())
{
tempNode = nodes.front();
CV_Assert( tempNode->left );
if ( !tempNode->left->left && !tempNode->left->right)
{
leafs[-leafValIdx] = (float)tempNode->left->value;
fs << leafValIdx-- ;
}
else
{
nodes.push( tempNode->left );
fs << internalNodeIdx++;
}
CV_Assert( tempNode->right );
if ( !tempNode->right->left && !tempNode->right->right)
{
leafs[-leafValIdx] = (float)tempNode->right->value;
fs << leafValIdx--;
}
else
{
nodes.push( tempNode->right );
fs << internalNodeIdx++;
}
int fidx = tempNode->split->var_idx;
fs << nfeatures;
used[nfeatures++] = fidx;
fs << tempNode->split->ord.c;
nodes.pop();
}
fs << "]";
fs << "leafValues" << "[";
for (int ni = 0; ni < -leafValIdx; ni++)
fs << leafs[ni];
fs << "]";
fs << "}";
delete [] leafs;
}
void BoostedSoftCascadeOctave::write( cv::FileStorage &fso, const FeaturePool* pool, InputArray _thresholds) const
{
CV_Assert(!_thresholds.empty());
cv::Mat used( 1, weak->total * ( (int)pow(2.f, params.max_depth) - 1), CV_32SC1);
int* usedPtr = used.ptr<int>(0);
int nfeatures = 0;
cv::Mat thresholds = _thresholds.getMat();
fso << "{"
<< "scale" << logScale
<< "weaks" << weak->total
<< "trees" << "[";
// should be replaced with the H.L. one
CvSeqReader reader;
cvStartReadSeq( weak, &reader);
for(int i = 0; i < weak->total; i++ )
{
CvBoostTree* tree;
CV_READ_SEQ_ELEM( tree, reader );
traverse(tree, fso, nfeatures, usedPtr, thresholds.ptr<double>(0) + i);
}
fso << "]";
// features
fso << "features" << "[";
for (int i = 0; i < nfeatures; ++i)
pool->write(fso, usedPtr[i]);
fso << "]"
<< "}";
}
void BoostedSoftCascadeOctave::initialize_weights(double (&p)[2])
{
double n = data->sample_count;
p[0] = n / (2. * (double)(nnegatives));
p[1] = n / (2. * (double)(npositives));
}
bool BoostedSoftCascadeOctave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth)
{
CV_Assert(treeDepth == 2);
CV_Assert(weaks > 0);
params.max_depth = treeDepth;
params.weak_count = weaks;
// 1. fill integrals and classes
processPositives(dataset);
generateNegatives(dataset);
// 2. only simple case (all features used)
int nfeatures = pool->size();
cv::Mat varIdx(1, nfeatures, CV_32SC1);
int* ptr = varIdx.ptr<int>(0);
for (int x = 0; x < nfeatures; ++x)
ptr[x] = x;
// 3. only simple case (all samples used)
int nsamples = npositives + nnegatives;
cv::Mat sampleIdx(1, nsamples, CV_32SC1);
ptr = sampleIdx.ptr<int>(0);
for (int x = 0; x < nsamples; ++x)
ptr[x] = x;
// 4. ICF has an ordered response.
cv::Mat varType(1, nfeatures + 1, CV_8UC1);
uchar* uptr = varType.ptr<uchar>(0);
for (int x = 0; x < nfeatures; ++x)
uptr[x] = CV_VAR_ORDERED;
uptr[nfeatures] = CV_VAR_CATEGORICAL;
trainData.create(nfeatures, nsamples, CV_32FC1);
for (int fi = 0; fi < nfeatures; ++fi)
{
float* dptr = trainData.ptr<float>(fi);
for (int si = 0; si < nsamples; ++si)
{
dptr[si] = pool->apply(fi, si, integrals);
}
}
cv::Mat missingMask;
bool ok = train(trainData, responses, varIdx, sampleIdx, varType, missingMask);
if (!ok)
CV_Error(CV_StsInternal, "ERROR: tree can not be trained");
return ok;
}
float BoostedSoftCascadeOctave::predict( cv::InputArray _sample, cv::InputArray _votes, bool raw_mode, bool return_sum ) const
{
cv::Mat sample = _sample.getMat();
CvMat csample = sample;
if (_votes.empty())
return CvBoost::predict(&csample, 0, 0, CV_WHOLE_SEQ, raw_mode, return_sum);
else
{
cv::Mat votes = _votes.getMat();
CvMat cvotes = votes;
return CvBoost::predict(&csample, 0, &cvotes, CV_WHOLE_SEQ, raw_mode, return_sum);
}
}
float BoostedSoftCascadeOctave::predict( const Mat& _sample, const cv::Range range) const
{
CvMat sample = _sample;
return CvBoost::predict(&sample, 0, 0, range, false, true);
}
void BoostedSoftCascadeOctave::write( CvFileStorage* fs, cv::String _name) const
{
CvBoost::write(fs, _name.c_str());
}
}
CV_INIT_ALGORITHM(BoostedSoftCascadeOctave, "Octave.BoostedSoftCascadeOctave", )
Octave::~Octave(){}
cv::Ptr<Octave> Octave::create(cv::Rect boundingBox, int npositives, int nnegatives,
int logScale, int shrinkage, cv::Ptr<ChannelFeatureBuilder> builder)
{
cv::Ptr<Octave> octave(
new BoostedSoftCascadeOctave(boundingBox, npositives, nnegatives, logScale, shrinkage, builder));
return octave;
}