1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/core/gpumat.hpp"
#include <iostream>
#if defined(HAVE_CUDA)
# include <cuda_runtime.h>
# include <npp.h>
# define CUDART_MINIMUM_REQUIRED_VERSION 4020
# define NPP_MINIMUM_REQUIRED_VERSION 4200
# if (CUDART_VERSION < CUDART_MINIMUM_REQUIRED_VERSION)
# error "Insufficient Cuda Runtime library version, please update it."
# endif
# if (NPP_VERSION_MAJOR * 1000 + NPP_VERSION_MINOR * 100 + NPP_VERSION_BUILD < NPP_MINIMUM_REQUIRED_VERSION)
# error "Insufficient NPP version, please update it."
# endif
#endif
#ifdef DYNAMIC_CUDA_SUPPORT
# include <dlfcn.h>
# include <sys/types.h>
# include <sys/stat.h>
# include <dirent.h>
#endif
#ifdef ANDROID
# ifdef LOG_TAG
# undef LOG_TAG
# endif
# ifdef LOGE
# undef LOGE
# endif
# ifdef LOGD
# undef LOGD
# endif
# ifdef LOGI
# undef LOGI
# endif
# include <android/log.h>
# define LOG_TAG "OpenCV::CUDA"
# define LOGE(...) ((void)__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__))
# define LOGD(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__))
# define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__))
#endif
using namespace std;
using namespace cv;
using namespace cv::gpu;
#define throw_nogpu CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support")
#include "opencv2/dynamicuda/dynamicuda.hpp"
#ifdef DYNAMIC_CUDA_SUPPORT
typedef GpuFuncTable* (*GpuFactoryType)();
typedef DeviceInfoFuncTable* (*DeviceInfoFactoryType)();
static GpuFactoryType gpuFactory = NULL;
static DeviceInfoFactoryType deviceInfoFactory = NULL;
# if defined(__linux__) || defined(__APPLE__) || defined (ANDROID)
const std::string DYNAMIC_CUDA_LIB_NAME = "libopencv_dynamicuda.so";
# ifdef ANDROID
static const std::string getCudaSupportLibName()
{
Dl_info dl_info;
if(0 != dladdr((void *)getCudaSupportLibName, &dl_info))
{
LOGD("Library name: %s", dl_info.dli_fname);
LOGD("Library base address: %p", dl_info.dli_fbase);
const char* libName=dl_info.dli_fname;
while( ((*libName)=='/') || ((*libName)=='.') )
libName++;
char lineBuf[2048];
FILE* file = fopen("/proc/self/smaps", "rt");
if(file)
{
while (fgets(lineBuf, sizeof lineBuf, file) != NULL)
{
//verify that line ends with library name
int lineLength = strlen(lineBuf);
int libNameLength = strlen(libName);
//trim end
for(int i = lineLength - 1; i >= 0 && isspace(lineBuf[i]); --i)
{
lineBuf[i] = 0;
--lineLength;
}
if (0 != strncmp(lineBuf + lineLength - libNameLength, libName, libNameLength))
{
//the line does not contain the library name
continue;
}
//extract path from smaps line
char* pathBegin = strchr(lineBuf, '/');
if (0 == pathBegin)
{
LOGE("Strange error: could not find path beginning in lin \"%s\"", lineBuf);
continue;
}
char* pathEnd = strrchr(pathBegin, '/');
pathEnd[1] = 0;
LOGD("Libraries folder found: %s", pathBegin);
fclose(file);
return std::string(pathBegin) + DYNAMIC_CUDA_LIB_NAME;
}
fclose(file);
LOGE("Could not find library path");
}
else
{
LOGE("Could not read /proc/self/smaps");
}
}
else
{
LOGE("Could not get library name and base address");
}
return string();
}
# else
static const std::string getCudaSupportLibName()
{
return DYNAMIC_CUDA_LIB_NAME;
}
# endif
static bool loadCudaSupportLib()
{
void* handle;
const std::string name = getCudaSupportLibName();
dlerror();
handle = dlopen(name.c_str(), RTLD_LAZY);
if (!handle)
{
LOGE("Cannot dlopen %s: %s", name.c_str(), dlerror());
return false;
}
deviceInfoFactory = (DeviceInfoFactoryType)dlsym(handle, "deviceInfoFactory");
if (!deviceInfoFactory)
{
LOGE("Cannot dlsym deviceInfoFactory: %s", dlerror());
dlclose(handle);
return false;
}
gpuFactory = (GpuFactoryType)dlsym(handle, "gpuFactory");
if (!gpuFactory)
{
LOGE("Cannot dlsym gpuFactory: %s", dlerror());
dlclose(handle);
return false;
}
return true;
}
# else
# error "Dynamic CUDA support is not implemented for this platform!"
# endif
#endif
static GpuFuncTable* gpuFuncTable()
{
#ifdef DYNAMIC_CUDA_SUPPORT
static EmptyFuncTable stub;
static GpuFuncTable* libFuncTable = loadCudaSupportLib() ? gpuFactory(): (GpuFuncTable*)&stub;
static GpuFuncTable *funcTable = libFuncTable ? libFuncTable : (GpuFuncTable*)&stub;
#else
# ifdef USE_CUDA
static CudaFuncTable impl;
static GpuFuncTable* funcTable = &impl;
#else
static EmptyFuncTable stub;
static GpuFuncTable* funcTable = &stub;
#endif
#endif
return funcTable;
}
static DeviceInfoFuncTable* deviceInfoFuncTable()
{
#ifdef DYNAMIC_CUDA_SUPPORT
static EmptyDeviceInfoFuncTable stub;
static DeviceInfoFuncTable* libFuncTable = loadCudaSupportLib() ? deviceInfoFactory(): (DeviceInfoFuncTable*)&stub;
static DeviceInfoFuncTable* funcTable = libFuncTable ? libFuncTable : (DeviceInfoFuncTable*)&stub;
#else
# ifdef USE_CUDA
static CudaDeviceInfoFuncTable impl;
static DeviceInfoFuncTable* funcTable = &impl;
#else
static EmptyDeviceInfoFuncTable stub;
static DeviceInfoFuncTable* funcTable = &stub;
#endif
#endif
return funcTable;
}
//////////////////////////////// Initialization & Info ////////////////////////
int cv::gpu::getCudaEnabledDeviceCount() { return deviceInfoFuncTable()->getCudaEnabledDeviceCount(); }
void cv::gpu::setDevice(int device) { deviceInfoFuncTable()->setDevice(device); }
int cv::gpu::getDevice() { return deviceInfoFuncTable()->getDevice(); }
void cv::gpu::resetDevice() { deviceInfoFuncTable()->resetDevice(); }
bool cv::gpu::deviceSupports(FeatureSet feature_set) { return deviceInfoFuncTable()->deviceSupports(feature_set); }
bool cv::gpu::TargetArchs::builtWith(FeatureSet feature_set) { return deviceInfoFuncTable()->builtWith(feature_set); }
bool cv::gpu::TargetArchs::has(int major, int minor) { return deviceInfoFuncTable()->has(major, minor); }
bool cv::gpu::TargetArchs::hasPtx(int major, int minor) { return deviceInfoFuncTable()->hasPtx(major, minor); }
bool cv::gpu::TargetArchs::hasBin(int major, int minor) { return deviceInfoFuncTable()->hasBin(major, minor); }
bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrLessPtx(major, minor); }
bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrGreater(major, minor); }
bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrGreaterPtx(major, minor); }
bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor) { return deviceInfoFuncTable()->hasEqualOrGreaterBin(major, minor); }
size_t cv::gpu::DeviceInfo::sharedMemPerBlock() const { return deviceInfoFuncTable()->sharedMemPerBlock(device_id_); }
void cv::gpu::DeviceInfo::queryMemory(size_t& total_memory, size_t& free_memory) const { deviceInfoFuncTable()->queryMemory(device_id_, total_memory, free_memory); }
size_t cv::gpu::DeviceInfo::freeMemory() const { return deviceInfoFuncTable()->freeMemory(device_id_); }
size_t cv::gpu::DeviceInfo::totalMemory() const { return deviceInfoFuncTable()->totalMemory(device_id_); }
bool cv::gpu::DeviceInfo::supports(FeatureSet feature_set) const { return deviceInfoFuncTable()->supports(device_id_, feature_set); }
bool cv::gpu::DeviceInfo::isCompatible() const { return deviceInfoFuncTable()->isCompatible(device_id_); }
void cv::gpu::DeviceInfo::query()
{
name_ = deviceInfoFuncTable()->name(device_id_);
multi_processor_count_ = deviceInfoFuncTable()->multiProcessorCount(device_id_);
majorVersion_ = deviceInfoFuncTable()->majorVersion(device_id_);
minorVersion_ = deviceInfoFuncTable()->minorVersion(device_id_);
}
void cv::gpu::printCudaDeviceInfo(int device) { deviceInfoFuncTable()->printCudaDeviceInfo(device); }
void cv::gpu::printShortCudaDeviceInfo(int device) { deviceInfoFuncTable()->printShortCudaDeviceInfo(device); }
namespace cv { namespace gpu
{
CV_EXPORTS void copyWithMask(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, const cv::gpu::GpuMat&, cudaStream_t);
CV_EXPORTS void convertTo(const cv::gpu::GpuMat&, cv::gpu::GpuMat&);
CV_EXPORTS void convertTo(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, double, double, cudaStream_t = 0);
CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, cudaStream_t);
CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&, cudaStream_t);
CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar);
CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&);
}}
//////////////////////////////// GpuMat ///////////////////////////////
cv::gpu::GpuMat::GpuMat(const GpuMat& m)
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend)
{
if (refcount)
CV_XADD(refcount, 1);
}
cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(rows_), cols(cols_),
step(step_), data((uchar*)data_), refcount(0),
datastart((uchar*)data_), dataend((uchar*)data_)
{
size_t minstep = cols * elemSize();
if (step == Mat::AUTO_STEP)
{
step = minstep;
flags |= Mat::CONTINUOUS_FLAG;
}
else
{
if (rows == 1)
step = minstep;
CV_DbgAssert(step >= minstep);
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
}
dataend += step * (rows - 1) + minstep;
}
cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) :
flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(size_.height), cols(size_.width),
step(step_), data((uchar*)data_), refcount(0),
datastart((uchar*)data_), dataend((uchar*)data_)
{
size_t minstep = cols * elemSize();
if (step == Mat::AUTO_STEP)
{
step = minstep;
flags |= Mat::CONTINUOUS_FLAG;
}
else
{
if (rows == 1)
step = minstep;
CV_DbgAssert(step >= minstep);
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
}
dataend += step * (rows - 1) + minstep;
}
cv::gpu::GpuMat::GpuMat(const GpuMat& m, Range _rowRange, Range _colRange)
{
flags = m.flags;
step = m.step; refcount = m.refcount;
data = m.data; datastart = m.datastart; dataend = m.dataend;
if (_rowRange == Range::all())
rows = m.rows;
else
{
CV_Assert(0 <= _rowRange.start && _rowRange.start <= _rowRange.end && _rowRange.end <= m.rows);
rows = _rowRange.size();
data += step*_rowRange.start;
}
if (_colRange == Range::all())
cols = m.cols;
else
{
CV_Assert(0 <= _colRange.start && _colRange.start <= _colRange.end && _colRange.end <= m.cols);
cols = _colRange.size();
data += _colRange.start*elemSize();
flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
}
if (rows == 1)
flags |= Mat::CONTINUOUS_FLAG;
if (refcount)
CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0)
rows = cols = 0;
}
cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) :
flags(m.flags), rows(roi.height), cols(roi.width),
step(m.step), data(m.data + roi.y*step), refcount(m.refcount),
datastart(m.datastart), dataend(m.dataend)
{
flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
data += roi.x * elemSize();
CV_Assert(0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows);
if (refcount)
CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0)
rows = cols = 0;
}
cv::gpu::GpuMat::GpuMat(const Mat& m) :
flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
{
upload(m);
}
GpuMat& cv::gpu::GpuMat::operator = (const GpuMat& m)
{
if (this != &m)
{
GpuMat temp(m);
swap(temp);
}
return *this;
}
void cv::gpu::GpuMat::swap(GpuMat& b)
{
std::swap(flags, b.flags);
std::swap(rows, b.rows);
std::swap(cols, b.cols);
std::swap(step, b.step);
std::swap(data, b.data);
std::swap(datastart, b.datastart);
std::swap(dataend, b.dataend);
std::swap(refcount, b.refcount);
}
void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const
{
size_t esz = elemSize();
ptrdiff_t delta1 = data - datastart;
ptrdiff_t delta2 = dataend - datastart;
CV_DbgAssert(step > 0);
if (delta1 == 0)
ofs.x = ofs.y = 0;
else
{
ofs.y = static_cast<int>(delta1 / step);
ofs.x = static_cast<int>((delta1 - step * ofs.y) / esz);
CV_DbgAssert(data == datastart + ofs.y * step + ofs.x * esz);
}
size_t minstep = (ofs.x + cols) * esz;
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / step + 1), ofs.y + rows);
wholeSize.width = std::max(static_cast<int>((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols);
}
GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright)
{
Size wholeSize;
Point ofs;
locateROI(wholeSize, ofs);
size_t esz = elemSize();
int row1 = std::max(ofs.y - dtop, 0);
int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
int col1 = std::max(ofs.x - dleft, 0);
int col2 = std::min(ofs.x + cols + dright, wholeSize.width);
data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz;
rows = row2 - row1;
cols = col2 - col1;
if (esz * cols == step || rows == 1)
flags |= Mat::CONTINUOUS_FLAG;
else
flags &= ~Mat::CONTINUOUS_FLAG;
return *this;
}
GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const
{
GpuMat hdr = *this;
int cn = channels();
if (new_cn == 0)
new_cn = cn;
int total_width = cols * cn;
if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0)
new_rows = rows * total_width / new_cn;
if (new_rows != 0 && new_rows != rows)
{
int total_size = total_width * rows;
if (!isContinuous())
CV_Error(CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed");
if ((unsigned)new_rows > (unsigned)total_size)
CV_Error(CV_StsOutOfRange, "Bad new number of rows");
total_width = total_size / new_rows;
if (total_width * new_rows != total_size)
CV_Error(CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows");
hdr.rows = new_rows;
hdr.step = total_width * elemSize1();
}
int new_width = total_width / new_cn;
if (new_width * new_cn != total_width)
CV_Error(CV_BadNumChannels, "The total width is not divisible by the new number of channels");
hdr.cols = new_width;
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT);
return hdr;
}
cv::Mat::Mat(const GpuMat& m) : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
{
m.download(*this);
}
void cv::gpu::createContinuous(int rows, int cols, int type, GpuMat& m)
{
int area = rows * cols;
if (m.empty() || m.type() != type || !m.isContinuous() || m.size().area() < area)
m.create(1, area, type);
m.cols = cols;
m.rows = rows;
m.step = m.elemSize() * cols;
m.flags |= Mat::CONTINUOUS_FLAG;
}
void cv::gpu::ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m)
{
if (m.empty() || m.type() != type || m.data != m.datastart)
m.create(rows, cols, type);
else
{
const size_t esz = m.elemSize();
const ptrdiff_t delta2 = m.dataend - m.datastart;
const size_t minstep = m.cols * esz;
Size wholeSize;
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / m.step + 1), m.rows);
wholeSize.width = std::max(static_cast<int>((delta2 - m.step * (wholeSize.height - 1)) / esz), m.cols);
if (wholeSize.height < rows || wholeSize.width < cols)
m.create(rows, cols, type);
else
{
m.cols = cols;
m.rows = rows;
}
}
}
GpuMat cv::gpu::allocMatFromBuf(int rows, int cols, int type, GpuMat &mat)
{
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
return mat(Rect(0, 0, cols, rows));
return mat = GpuMat(rows, cols, type);
}
void cv::gpu::GpuMat::upload(const Mat& m)
{
CV_DbgAssert(!m.empty());
create(m.size(), m.type());
gpuFuncTable()->copy(m, *this);
}
void cv::gpu::GpuMat::download(Mat& m) const
{
CV_DbgAssert(!empty());
m.create(size(), type());
gpuFuncTable()->copy(*this, m);
}
void cv::gpu::GpuMat::copyTo(GpuMat& m) const
{
CV_DbgAssert(!empty());
m.create(size(), type());
gpuFuncTable()->copy(*this, m);
}
void cv::gpu::GpuMat::copyTo(GpuMat& mat, const GpuMat& mask) const
{
if (mask.empty())
{
copyTo(mat);
}
else
{
uchar* data0 = mat.data;
mat.create(size(), type());
// do not leave dst uninitialized
if (mat.data != data0)
mat.setTo(Scalar::all(0));
gpuFuncTable()->copyWithMask(*this, mat, mask);
}
}
void cv::gpu::GpuMat::convertTo(GpuMat& dst, int rtype, double alpha, double beta) const
{
bool noScale = fabs(alpha - 1) < numeric_limits<double>::epsilon() && fabs(beta) < numeric_limits<double>::epsilon();
if (rtype < 0)
rtype = type();
else
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
int sdepth = depth();
int ddepth = CV_MAT_DEPTH(rtype);
if (sdepth == ddepth && noScale)
{
copyTo(dst);
return;
}
GpuMat temp;
const GpuMat* psrc = this;
if (sdepth != ddepth && psrc == &dst)
{
temp = *this;
psrc = &temp;
}
dst.create(size(), rtype);
if (noScale)
cv::gpu::convertTo(*psrc, dst);
else
cv::gpu::convertTo(*psrc, dst, alpha, beta);
}
GpuMat& cv::gpu::GpuMat::setTo(Scalar s, const GpuMat& mask)
{
CV_Assert(mask.empty() || mask.type() == CV_8UC1);
CV_DbgAssert(!empty());
gpu::setTo(*this, s, mask);
return *this;
}
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
{
_type &= TYPE_MASK;
if (rows == _rows && cols == _cols && type() == _type && data)
return;
if (data)
release();
CV_DbgAssert(_rows >= 0 && _cols >= 0);
if (_rows > 0 && _cols > 0)
{
flags = Mat::MAGIC_VAL + _type;
rows = _rows;
cols = _cols;
size_t esz = elemSize();
void* devPtr;
gpuFuncTable()->mallocPitch(&devPtr, &step, esz * cols, rows);
// Single row must be continuous
if (rows == 1)
step = esz * cols;
if (esz * cols == step)
flags |= Mat::CONTINUOUS_FLAG;
int64 _nettosize = static_cast<int64>(step) * rows;
size_t nettosize = static_cast<size_t>(_nettosize);
datastart = data = static_cast<uchar*>(devPtr);
dataend = data + nettosize;
refcount = static_cast<int*>(fastMalloc(sizeof(*refcount)));
*refcount = 1;
}
}
void cv::gpu::GpuMat::release()
{
if (refcount && CV_XADD(refcount, -1) == 1)
{
fastFree(refcount);
gpuFuncTable()->free(datastart);
}
data = datastart = dataend = 0;
step = rows = cols = 0;
refcount = 0;
}
namespace cv { namespace gpu
{
void convertTo(const GpuMat& src, GpuMat& dst)
{
gpuFuncTable()->convert(src, dst);
}
void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream)
{
gpuFuncTable()->convert(src, dst, alpha, beta, stream);
}
void setTo(GpuMat& src, Scalar s, cudaStream_t stream)
{
gpuFuncTable()->setTo(src, s, cv::gpu::GpuMat(), stream);
}
void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
{
gpuFuncTable()->setTo(src, s, mask, stream);
}
void setTo(GpuMat& src, Scalar s)
{
setTo(src, s, 0);
}
void setTo(GpuMat& src, Scalar s, const GpuMat& mask)
{
setTo(src, s, mask, 0);
}
}}
////////////////////////////////////////////////////////////////////////
// Error handling
void cv::gpu::error(const char *error_string, const char *file, const int line, const char *func)
{
int code = CV_GpuApiCallError;
if (uncaught_exception())
{
const char* errorStr = cvErrorStr(code);
const char* function = func ? func : "unknown function";
cerr << "OpenCV Error: " << errorStr << "(" << error_string << ") in " << function << ", file " << file << ", line " << line;
cerr.flush();
}
else
cv::error( cv::Exception(code, error_string, func, file, line) );
}