1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "internal_shared.hpp"
#include "opencv2/gpu/device/limits_gpu.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
namespace cv { namespace gpu { namespace bfmatcher
{
///////////////////////////////////////////////////////////////////////////////////
////////////////////////////////// General funcs //////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Mask strategy
class SingleMask
{
public:
explicit SingleMask(const PtrStep& mask_) : mask(mask_) {}
__device__ bool operator()(int queryIdx, int trainIdx) const
{
return mask.ptr(queryIdx)[trainIdx] != 0;
}
private:
PtrStep mask;
};
class MaskCollection
{
public:
explicit MaskCollection(PtrStep* maskCollection_) : maskCollection(maskCollection_) {}
__device__ void nextMask()
{
curMask = *maskCollection++;
}
__device__ bool operator()(int queryIdx, int trainIdx) const
{
return curMask.data == 0 || curMask.ptr(queryIdx)[trainIdx] != 0;
}
private:
PtrStep* maskCollection;
PtrStep curMask;
};
class WithOutMask
{
public:
__device__ void nextMask()
{
}
__device__ bool operator()(int queryIdx, int trainIdx) const
{
return true;
}
};
///////////////////////////////////////////////////////////////////////////////
// Reduce Sum
template <int BLOCK_DIM_X> struct SumReductor;
template <> struct SumReductor<16>
{
template <typename T> static __device__ void reduce(T* sdiff_row, T& mySum)
{
volatile T* smem = sdiff_row;
smem[threadIdx.x] = mySum;
if (threadIdx.x < 8)
{
smem[threadIdx.x] = mySum += smem[threadIdx.x + 8];
smem[threadIdx.x] = mySum += smem[threadIdx.x + 4];
smem[threadIdx.x] = mySum += smem[threadIdx.x + 2];
smem[threadIdx.x] = mySum += smem[threadIdx.x + 1];
}
}
};
///////////////////////////////////////////////////////////////////////////////
// Distance
template <typename T> class L1Dist
{
public:
typedef int ResultType;
typedef int ValueType;
__device__ L1Dist() : mySum(0) {}
__device__ void reduceIter(int val1, int val2)
{
mySum = __sad(val1, val2, mySum);
}
template <int BLOCK_DIM_X> __device__ void reduceAll(int* sdiff_row)
{
SumReductor<BLOCK_DIM_X>::reduce(sdiff_row, mySum);
}
__device__ operator int() const
{
return mySum;
}
private:
int mySum;
};
template <> class L1Dist<float>
{
public:
typedef float ResultType;
typedef float ValueType;
__device__ L1Dist() : mySum(0.0f) {}
__device__ void reduceIter(float val1, float val2)
{
mySum += fabs(val1 - val2);
}
template <int BLOCK_DIM_X> __device__ void reduceAll(float* sdiff_row)
{
SumReductor<BLOCK_DIM_X>::reduce(sdiff_row, mySum);
}
__device__ operator float() const
{
return mySum;
}
private:
float mySum;
};
class L2Dist
{
public:
typedef float ResultType;
typedef float ValueType;
__device__ L2Dist() : mySum(0.0f) {}
__device__ void reduceIter(float val1, float val2)
{
float reg = val1 - val2;
mySum += reg * reg;
}
template <int BLOCK_DIM_X> __device__ void reduceAll(float* sdiff_row)
{
SumReductor<BLOCK_DIM_X>::reduce(sdiff_row, mySum);
}
__device__ operator float() const
{
return sqrtf(mySum);
}
private:
float mySum;
};
class HammingDist
{
public:
typedef int ResultType;
typedef int ValueType;
__device__ HammingDist() : mySum(0) {}
__device__ void reduceIter(int val1, int val2)
{
mySum += __popc(val1 ^ val2);
}
template <int BLOCK_DIM_X> __device__ void reduceAll(int* sdiff_row)
{
SumReductor<BLOCK_DIM_X>::reduce(sdiff_row, mySum);
}
__device__ operator int() const
{
return mySum;
}
private:
int mySum;
};
///////////////////////////////////////////////////////////////////////////////
// reduceDescDiff
template <int BLOCK_DIM_X, typename Dist, typename T>
__device__ void reduceDescDiff(const T* queryDescs, const T* trainDescs, int desc_len, Dist& dist, typename Dist::ResultType* sdiff_row)
{
for (int i = threadIdx.x; i < desc_len; i += BLOCK_DIM_X)
dist.reduceIter(queryDescs[i], trainDescs[i]);
dist.reduceAll<BLOCK_DIM_X>(sdiff_row);
}
///////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////// Match //////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// loadDescsVals
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN, typename T, typename U>
__device__ void loadDescsVals(const T* descs, int desc_len, U* queryVals, U* smem)
{
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
if (tid < desc_len)
{
smem[tid] = descs[tid];
}
__syncthreads();
#pragma unroll
for (int i = threadIdx.x; i < MAX_DESCRIPTORS_LEN; i += BLOCK_DIM_X)
{
*queryVals = smem[i];
++queryVals;
}
}
///////////////////////////////////////////////////////////////////////////////
// reduceDescDiffCached
template <int N> struct UnrollDescDiff
{
template <typename Dist, typename T>
static __device__ void calcCheck(const typename Dist::ValueType* queryVals, const T* trainDescs, int desc_len, Dist& dist, int ind)
{
if (ind < desc_len)
{
dist.reduceIter(*queryVals, trainDescs[ind]);
++queryVals;
UnrollDescDiff<N - 1>::calcCheck(queryVals, trainDescs, desc_len, dist, ind + blockDim.x);
}
}
template <typename Dist, typename T>
static __device__ void calcWithoutCheck(const typename Dist::ValueType* queryVals, const T* trainDescs, Dist& dist)
{
dist.reduceIter(*queryVals, *trainDescs);
++queryVals;
trainDescs += blockDim.x;
UnrollDescDiff<N - 1>::calcWithoutCheck(queryVals, trainDescs, dist);
}
};
template <> struct UnrollDescDiff<0>
{
template <typename Dist, typename T>
static __device__ void calcCheck(const typename Dist::ValueType* queryVals, const T* trainDescs, int desc_len,
Dist& dist, int ind)
{
}
template <typename Dist, typename T>
static __device__ void calcWithoutCheck(const typename Dist::ValueType* queryVals, const T* trainDescs, Dist& dist)
{
}
};
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN, bool WITH_OUT_CHECK> struct DescDiffCalculator;
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN>
struct DescDiffCalculator<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, false>
{
template <typename Dist, typename T>
static __device__ void calc(const typename Dist::ValueType* queryVals, const T* trainDescs, int desc_len, Dist& dist)
{
UnrollDescDiff<MAX_DESCRIPTORS_LEN / BLOCK_DIM_X>::calcCheck(queryVals, trainDescs, desc_len, dist, threadIdx.x);
}
};
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN>
struct DescDiffCalculator<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, true>
{
template <typename Dist, typename T>
static __device__ void calc(const typename Dist::ValueType* queryVals, const T* trainDescs, int desc_len, Dist& dist)
{
UnrollDescDiff<MAX_DESCRIPTORS_LEN / BLOCK_DIM_X>::calcWithoutCheck(queryVals, trainDescs + threadIdx.x, dist);
}
};
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN, bool DESC_LEN_EQ_MAX_LEN, typename Dist, typename T>
__device__ void reduceDescDiffCached(const typename Dist::ValueType* queryVals, const T* trainDescs, int desc_len, Dist& dist, typename Dist::ResultType* sdiff_row)
{
DescDiffCalculator<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN>::calc(queryVals, trainDescs, desc_len, dist);
dist.reduceAll<BLOCK_DIM_X>(sdiff_row);
}
///////////////////////////////////////////////////////////////////////////////
// warpReduceMinIdxIdx
template <int BLOCK_DIM_Y> struct MinIdxIdxWarpReductor;
template <> struct MinIdxIdxWarpReductor<16>
{
template <typename T>
static __device__ void reduce(T& myMin, int& myBestTrainIdx, int& myBestImgIdx, volatile T* smin, volatile int* strainIdx, volatile int* simgIdx)
{
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
if (tid < 8)
{
myMin = smin[tid];
myBestTrainIdx = strainIdx[tid];
myBestImgIdx = simgIdx[tid];
float reg = smin[tid + 8];
if (reg < myMin)
{
smin[tid] = myMin = reg;
strainIdx[tid] = myBestTrainIdx = strainIdx[tid + 8];
simgIdx[tid] = myBestImgIdx = simgIdx[tid + 8];
}
reg = smin[tid + 4];
if (reg < myMin)
{
smin[tid] = myMin = reg;
strainIdx[tid] = myBestTrainIdx = strainIdx[tid + 4];
simgIdx[tid] = myBestImgIdx = simgIdx[tid + 4];
}
reg = smin[tid + 2];
if (reg < myMin)
{
smin[tid] = myMin = reg;
strainIdx[tid] = myBestTrainIdx = strainIdx[tid + 2];
simgIdx[tid] = myBestImgIdx = simgIdx[tid + 2];
}
reg = smin[tid + 1];
if (reg < myMin)
{
smin[tid] = myMin = reg;
strainIdx[tid] = myBestTrainIdx = strainIdx[tid + 1];
simgIdx[tid] = myBestImgIdx = simgIdx[tid + 1];
}
}
}
};
///////////////////////////////////////////////////////////////////////////////
// findBestMatch
template <int BLOCK_DIM_Y, typename T>
__device__ void findBestMatch(T& myMin, int& myBestTrainIdx, int& myBestImgIdx, T* smin, int* strainIdx, int* simgIdx)
{
if (threadIdx.x == 0)
{
smin[threadIdx.y] = myMin;
strainIdx[threadIdx.y] = myBestTrainIdx;
simgIdx[threadIdx.y] = myBestImgIdx;
}
__syncthreads();
MinIdxIdxWarpReductor<BLOCK_DIM_Y>::reduce(myMin, myBestTrainIdx, myBestImgIdx, smin, strainIdx, simgIdx);
}
///////////////////////////////////////////////////////////////////////////////
// ReduceDescCalculator
template <int BLOCK_DIM_X, typename T>
class ReduceDescCalculatorSimple
{
public:
__device__ void prepare(const T* queryDescs_, int, void*)
{
queryDescs = queryDescs_;
}
template <typename Dist>
__device__ void calc(const T* trainDescs, int desc_len, Dist& dist, typename Dist::ResultType* sdiff_row) const
{
reduceDescDiff<BLOCK_DIM_X>(queryDescs, trainDescs, desc_len, dist, sdiff_row);
}
private:
const T* queryDescs;
};
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN, bool DESC_LEN_EQ_MAX_LEN, typename T, typename U>
class ReduceDescCalculatorCached
{
public:
__device__ void prepare(const T* queryDescs, int desc_len, U* smem)
{
loadDescsVals<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN>(queryDescs, desc_len, queryVals, smem);
}
template <typename Dist>
__device__ void calc(const T* trainDescs, int desc_len, Dist& dist, typename Dist::ResultType* sdiff_row) const
{
reduceDescDiffCached<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN>(queryVals, trainDescs, desc_len, dist, sdiff_row);
}
private:
U queryVals[MAX_DESCRIPTORS_LEN / BLOCK_DIM_X];
};
///////////////////////////////////////////////////////////////////////////////
// matchDescs loop
template <typename Dist, typename ReduceDescCalculator, typename T, typename Mask>
__device__ void matchDescs(int queryIdx, int imgIdx, const DevMem2D_<T>& trainDescs_,
const Mask& m, const ReduceDescCalculator& reduceDescCalc,
typename Dist::ResultType& myMin, int& myBestTrainIdx, int& myBestImgIdx, typename Dist::ResultType* sdiff_row)
{
for (int trainIdx = threadIdx.y; trainIdx < trainDescs_.rows; trainIdx += blockDim.y)
{
if (m(queryIdx, trainIdx))
{
const T* trainDescs = trainDescs_.ptr(trainIdx);
Dist dist;
reduceDescCalc.calc(trainDescs, trainDescs_.cols, dist, sdiff_row);
if (threadIdx.x == 0)
{
if (dist < myMin)
{
myMin = dist;
myBestTrainIdx = trainIdx;
myBestImgIdx = imgIdx;
}
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Train collection loop strategy
template <typename T>
class SingleTrain
{
public:
explicit SingleTrain(const DevMem2D_<T>& trainDescs_) : trainDescs(trainDescs_)
{
}
template <typename Dist, typename ReduceDescCalculator, typename Mask>
__device__ void loop(int queryIdx, Mask& m, const ReduceDescCalculator& reduceDescCalc,
typename Dist::ResultType& myMin, int& myBestTrainIdx, int& myBestImgIdx, typename Dist::ResultType* sdiff_row) const
{
matchDescs<Dist>(queryIdx, 0, trainDescs, m, reduceDescCalc, myMin, myBestTrainIdx, myBestImgIdx, sdiff_row);
}
__device__ int desc_len() const
{
return trainDescs.cols;
}
private:
DevMem2D_<T> trainDescs;
};
template <typename T>
class TrainCollection
{
public:
TrainCollection(const DevMem2D_<T>* trainCollection_, int nImg_, int desclen_) :
trainCollection(trainCollection_), nImg(nImg_), desclen(desclen_)
{
}
template <typename Dist, typename ReduceDescCalculator, typename Mask>
__device__ void loop(int queryIdx, Mask& m, const ReduceDescCalculator& reduceDescCalc,
typename Dist::ResultType& myMin, int& myBestTrainIdx, int& myBestImgIdx, typename Dist::ResultType* sdiff_row) const
{
for (int imgIdx = 0; imgIdx < nImg; ++imgIdx)
{
DevMem2D_<T> trainDescs = trainCollection[imgIdx];
m.nextMask();
matchDescs<Dist>(queryIdx, imgIdx, trainDescs, m, reduceDescCalc, myMin, myBestTrainIdx, myBestImgIdx, sdiff_row);
}
}
__device__ int desc_len() const
{
return desclen;
}
private:
const DevMem2D_<T>* trainCollection;
int nImg;
int desclen;
};
///////////////////////////////////////////////////////////////////////////////
// Match kernel
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename ReduceDescCalculator, typename Dist, typename T, typename Train, typename Mask>
__global__ void match(const PtrStep_<T> queryDescs_, const Train train, const Mask mask, int* trainIdx, int* imgIdx, float* distance)
{
__shared__ typename Dist::ResultType smem[BLOCK_DIM_X * BLOCK_DIM_Y];
const int queryIdx = blockIdx.x;
int myBestTrainIdx = -1;
int myBestImgIdx = -1;
typename Dist::ResultType myMin = numeric_limits_gpu<typename Dist::ResultType>::max();
{
typename Dist::ResultType* sdiff_row = smem + BLOCK_DIM_X * threadIdx.y;
Mask m = mask;
ReduceDescCalculator reduceDescCalc;
reduceDescCalc.prepare(queryDescs_.ptr(queryIdx), train.desc_len(), (typename Dist::ValueType*)smem);
train.template loop<Dist>(queryIdx, m, reduceDescCalc, myMin, myBestTrainIdx, myBestImgIdx, sdiff_row);
}
__syncthreads();
typename Dist::ResultType* smin = smem;
int* strainIdx = (int*)(smin + BLOCK_DIM_Y);
int* simgIdx = strainIdx + BLOCK_DIM_Y;
findBestMatch<BLOCK_DIM_Y>(myMin, myBestTrainIdx, myBestImgIdx, smin, strainIdx, simgIdx);
if (threadIdx.x == 0 && threadIdx.y == 0)
{
imgIdx[queryIdx] = myBestImgIdx;
trainIdx[queryIdx] = myBestTrainIdx;
distance[queryIdx] = myMin;
}
}
///////////////////////////////////////////////////////////////////////////////
// Match kernel callers
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Train, typename Mask>
void matchSimple_caller(const DevMem2D_<T>& queryDescs, const Train& train,
const Mask& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, cudaStream_t stream)
{
StaticAssert<BLOCK_DIM_Y <= 64>::check(); // blockDimY vals must reduce by warp
dim3 grid(queryDescs.rows, 1, 1);
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
match<BLOCK_DIM_X, BLOCK_DIM_Y, ReduceDescCalculatorSimple<BLOCK_DIM_X, T>, Dist, T>
<<<grid, threads, 0, stream>>>(queryDescs, train, mask, trainIdx.data, imgIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int MAX_DESCRIPTORS_LEN, bool DESC_LEN_EQ_MAX_LEN, typename Dist, typename T, typename Train, typename Mask>
void matchCached_caller(const DevMem2D_<T>& queryDescs, const Train& train,
const Mask& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, cudaStream_t stream)
{
StaticAssert<BLOCK_DIM_Y <= 64>::check(); // blockDimY vals must reduce by warp
StaticAssert<BLOCK_DIM_X * BLOCK_DIM_Y >= MAX_DESCRIPTORS_LEN>::check(); // block size must be greter than descriptors length
StaticAssert<MAX_DESCRIPTORS_LEN % BLOCK_DIM_X == 0>::check(); // max descriptors length must divide to blockDimX
dim3 grid(queryDescs.rows, 1, 1);
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
match<BLOCK_DIM_X, BLOCK_DIM_Y, ReduceDescCalculatorCached<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN, T, typename Dist::ValueType>, Dist, T>
<<<grid, threads, 0, stream>>>(queryDescs, train, mask, trainIdx.data, imgIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// Match caller
template <typename Dist, typename T, typename Train, typename Mask>
void matchDispatcher(const DevMem2D_<T>& queryDescs, const Train& train,
const Mask& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
bool cc_12, cudaStream_t stream)
{
if (queryDescs.cols < 64)
matchCached_caller<16, 16, 64, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance, stream);
else if (queryDescs.cols == 64)
matchCached_caller<16, 16, 64, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance, stream);
else if (queryDescs.cols < 128)
matchCached_caller<16, 16, 128, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance, stream);
else if (queryDescs.cols == 128)
matchCached_caller<16, 16, 128, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance, stream);
else if (queryDescs.cols < 256)
matchCached_caller<16, 16, 256, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance, stream);
else if (queryDescs.cols == 256 && cc_12)
matchCached_caller<16, 16, 256, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance, stream);
else
matchSimple_caller<16, 16, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance, stream);
}
template <typename T>
void matchSingleL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
bool cc_12, cudaStream_t stream)
{
SingleTrain<T> train((DevMem2D_<T>)trainDescs);
if (mask.data)
{
SingleMask m(mask);
matchDispatcher< L1Dist<T> >((DevMem2D_<T>)queryDescs, train, m, trainIdx, imgIdx, distance, cc_12, stream);
}
else
{
matchDispatcher< L1Dist<T> >((DevMem2D_<T>)queryDescs, train, WithOutMask(), trainIdx, imgIdx, distance, cc_12, stream);
}
}
template void matchSingleL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template <typename T>
void matchSingleL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
bool cc_12, cudaStream_t stream)
{
SingleTrain<T> train((DevMem2D_<T>)trainDescs);
if (mask.data)
{
SingleMask m(mask);
matchDispatcher<L2Dist>((DevMem2D_<T>)queryDescs, train, m, trainIdx, imgIdx, distance, cc_12, stream);
}
else
{
matchDispatcher<L2Dist>((DevMem2D_<T>)queryDescs, train, WithOutMask(), trainIdx, imgIdx, distance, cc_12, stream);
}
}
template void matchSingleL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template <typename T>
void matchSingleHamming_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
bool cc_12, cudaStream_t stream)
{
SingleTrain<T> train((DevMem2D_<T>)trainDescs);
if (mask.data)
{
SingleMask m(mask);
matchDispatcher<HammingDist>((DevMem2D_<T>)queryDescs, train, m, trainIdx, imgIdx, distance, cc_12, stream);
}
else
{
matchDispatcher<HammingDist>((DevMem2D_<T>)queryDescs, train, WithOutMask(), trainIdx, imgIdx, distance, cc_12, stream);
}
}
template void matchSingleHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchSingleHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template <typename T>
void matchCollectionL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx,
const DevMem2Df& distance, bool cc_12, cudaStream_t stream)
{
TrainCollection<T> train((DevMem2D_<T>*)trainCollection.ptr(), trainCollection.cols, queryDescs.cols);
if (maskCollection.data)
{
MaskCollection mask(maskCollection.data);
matchDispatcher< L1Dist<T> >((DevMem2D_<T>)queryDescs, train, mask, trainIdx, imgIdx, distance, cc_12, stream);
}
else
{
matchDispatcher< L1Dist<T> >((DevMem2D_<T>)queryDescs, train, WithOutMask(), trainIdx, imgIdx, distance, cc_12, stream);
}
}
template void matchCollectionL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template <typename T>
void matchCollectionL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx,
const DevMem2Df& distance, bool cc_12, cudaStream_t stream)
{
TrainCollection<T> train((DevMem2D_<T>*)trainCollection.ptr(), trainCollection.cols, queryDescs.cols);
if (maskCollection.data)
{
MaskCollection mask(maskCollection.data);
matchDispatcher<L2Dist>((DevMem2D_<T>)queryDescs, train, mask, trainIdx, imgIdx, distance, cc_12, stream);
}
else
{
matchDispatcher<L2Dist>((DevMem2D_<T>)queryDescs, train, WithOutMask(), trainIdx, imgIdx, distance, cc_12, stream);
}
}
template void matchCollectionL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template <typename T>
void matchCollectionHamming_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx,
const DevMem2Df& distance, bool cc_12, cudaStream_t stream)
{
TrainCollection<T> train((DevMem2D_<T>*)trainCollection.ptr(), trainCollection.cols, queryDescs.cols);
if (maskCollection.data)
{
MaskCollection mask(maskCollection.data);
matchDispatcher<HammingDist>((DevMem2D_<T>)queryDescs, train, mask, trainIdx, imgIdx, distance, cc_12, stream);
}
else
{
matchDispatcher<HammingDist>((DevMem2D_<T>)queryDescs, train, WithOutMask(), trainIdx, imgIdx, distance, cc_12, stream);
}
}
template void matchCollectionHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
template void matchCollectionHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, bool cc_12, cudaStream_t stream);
///////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////// Knn Match ////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Calc distance kernel
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
__global__ void calcDistance(PtrStep_<T> queryDescs_, DevMem2D_<T> trainDescs_, Mask mask, PtrStepf distance)
{
__shared__ typename Dist::ResultType sdiff[BLOCK_DIM_X * BLOCK_DIM_Y];
typename Dist::ResultType* sdiff_row = sdiff + BLOCK_DIM_X * threadIdx.y;
const int queryIdx = blockIdx.x;
const T* queryDescs = queryDescs_.ptr(queryIdx);
const int trainIdx = blockIdx.y * BLOCK_DIM_Y + threadIdx.y;
if (trainIdx < trainDescs_.rows)
{
const T* trainDescs = trainDescs_.ptr(trainIdx);
typename Dist::ResultType myDist = numeric_limits_gpu<typename Dist::ResultType>::max();
if (mask(queryIdx, trainIdx))
{
Dist dist;
reduceDescDiff<BLOCK_DIM_X>(queryDescs, trainDescs, trainDescs_.cols, dist, sdiff_row);
if (threadIdx.x == 0)
myDist = dist;
}
if (threadIdx.x == 0)
distance.ptr(queryIdx)[trainIdx] = myDist;
}
}
///////////////////////////////////////////////////////////////////////////////
// Calc distance kernel caller
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
void calcDistance_caller(const DevMem2D_<T>& queryDescs, const DevMem2D_<T>& trainDescs,
const Mask& mask, const DevMem2Df& distance, cudaStream_t stream)
{
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
dim3 grid(queryDescs.rows, divUp(trainDescs.rows, BLOCK_DIM_Y), 1);
calcDistance<BLOCK_DIM_X, BLOCK_DIM_Y, Dist, T><<<grid, threads, 0, stream>>>(
queryDescs, trainDescs, mask, distance);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// warpReduceMinIdx
template <int BLOCK_SIZE, typename T>
__device__ void warpReduceMinIdx(volatile T* sdist, volatile int* strainIdx, T& myMin, int tid)
{
if (tid < 32)
{
if (BLOCK_SIZE >= 64)
{
T reg = sdist[tid + 32];
if (reg < myMin)
{
sdist[tid] = myMin = reg;
strainIdx[tid] = strainIdx[tid + 32];
}
}
if (BLOCK_SIZE >= 32)
{
T reg = sdist[tid + 16];
if (reg < myMin)
{
sdist[tid] = myMin = reg;
strainIdx[tid] = strainIdx[tid + 16];
}
}
if (BLOCK_SIZE >= 16)
{
T reg = sdist[tid + 8];
if (reg < myMin)
{
sdist[tid] = myMin = reg;
strainIdx[tid] = strainIdx[tid + 8];
}
}
if (BLOCK_SIZE >= 8)
{
T reg = sdist[tid + 4];
if (reg < myMin)
{
sdist[tid] = myMin = reg;
strainIdx[tid] = strainIdx[tid + 4];
}
}
if (BLOCK_SIZE >= 4)
{
T reg = sdist[tid + 2];
if (reg < myMin)
{
sdist[tid] = myMin = reg;
strainIdx[tid] = strainIdx[tid + 2];
}
}
if (BLOCK_SIZE >= 2)
{
T reg = sdist[tid + 1];
if (reg < myMin)
{
sdist[tid] = myMin = reg;
strainIdx[tid] = strainIdx[tid + 1];
}
}
}
}
template <int BLOCK_SIZE, typename T>
__device__ void reduceMinIdx(const T* dist, int n, T* sdist, int* strainIdx)
{
const int tid = threadIdx.x;
T myMin = numeric_limits_gpu<T>::max();
int myMinIdx = -1;
for (int i = tid; i < n; i += BLOCK_SIZE)
{
T reg = dist[i];
if (reg < myMin)
{
myMin = reg;
myMinIdx = i;
}
}
sdist[tid] = myMin;
strainIdx[tid] = myMinIdx;
__syncthreads();
if (BLOCK_SIZE >= 512 && tid < 256)
{
T reg = sdist[tid + 256];
if (reg < myMin)
{
sdist[tid] = myMin = reg;
strainIdx[tid] = strainIdx[tid + 256];
}
__syncthreads();
}
if (BLOCK_SIZE >= 256 && tid < 128)
{
T reg = sdist[tid + 128];
if (reg < myMin)
{
sdist[tid] = myMin = reg;
strainIdx[tid] = strainIdx[tid + 128];
}
__syncthreads();
}
if (BLOCK_SIZE >= 128 && tid < 64)
{
T reg = sdist[tid + 64];
if (reg < myMin)
{
sdist[tid] = myMin = reg;
strainIdx[tid] = strainIdx[tid + 64];
}
__syncthreads();
}
warpReduceMinIdx<BLOCK_SIZE>(sdist, strainIdx, myMin, tid);
}
///////////////////////////////////////////////////////////////////////////////
// find knn match kernel
template <int BLOCK_SIZE>
__global__ void findBestMatch(DevMem2Df allDist_, int i, PtrStepi trainIdx_, PtrStepf distance_)
{
const int SMEM_SIZE = BLOCK_SIZE > 64 ? BLOCK_SIZE : 64;
__shared__ float sdist[SMEM_SIZE];
__shared__ int strainIdx[SMEM_SIZE];
const int queryIdx = blockIdx.x;
float* allDist = allDist_.ptr(queryIdx);
int* trainIdx = trainIdx_.ptr(queryIdx);
float* distance = distance_.ptr(queryIdx);
reduceMinIdx<BLOCK_SIZE>(allDist, allDist_.cols, sdist, strainIdx);
if (threadIdx.x == 0)
{
float dist = sdist[0];
if (dist < numeric_limits_gpu<float>::max())
{
int bestIdx = strainIdx[0];
allDist[bestIdx] = numeric_limits_gpu<float>::max();
trainIdx[i] = bestIdx;
distance[i] = dist;
}
}
}
///////////////////////////////////////////////////////////////////////////////
// find knn match kernel caller
template <int BLOCK_SIZE>
void findKnnMatch_caller(int knn, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream)
{
dim3 threads(BLOCK_SIZE, 1, 1);
dim3 grid(trainIdx.rows, 1, 1);
for (int i = 0; i < knn; ++i)
{
findBestMatch<BLOCK_SIZE><<<grid, threads, 0, stream>>>(allDist, i, trainIdx, distance);
cudaSafeCall( cudaGetLastError() );
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// knn match caller
template <typename Dist, typename T, typename Mask>
void calcDistanceDispatcher(const DevMem2D_<T>& queryDescs, const DevMem2D_<T>& trainDescs, const Mask& mask, const DevMem2Df& allDist, cudaStream_t stream)
{
calcDistance_caller<16, 16, Dist>(queryDescs, trainDescs, mask, allDist, stream);
}
void findKnnMatchDispatcher(int knn, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream)
{
findKnnMatch_caller<256>(knn, trainIdx, distance, allDist, stream);
}
template <typename T>
void knnMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream)
{
if (mask.data)
{
calcDistanceDispatcher< L1Dist<T> >((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs, SingleMask(mask), allDist, stream);
}
else
{
calcDistanceDispatcher< L1Dist<T> >((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs, WithOutMask(), allDist, stream);
}
findKnnMatchDispatcher(knn, trainIdx, distance, allDist, stream);
}
template void knnMatchL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template <typename T>
void knnMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream)
{
if (mask.data)
{
calcDistanceDispatcher<L2Dist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
SingleMask(mask), allDist, stream);
}
else
{
calcDistanceDispatcher<L2Dist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
WithOutMask(), allDist, stream);
}
findKnnMatchDispatcher(knn, trainIdx, distance, allDist, stream);
}
template void knnMatchL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template <typename T>
void knnMatchHamming_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream)
{
if (mask.data)
{
calcDistanceDispatcher<HammingDist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
SingleMask(mask), allDist, stream);
}
else
{
calcDistanceDispatcher<HammingDist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
WithOutMask(), allDist, stream);
}
findKnnMatchDispatcher(knn, trainIdx, distance, allDist, stream);
}
template void knnMatchHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
template void knnMatchHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream);
///////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////// Radius Match //////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Radius Match kernel
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
__global__ void radiusMatch(PtrStep_<T> queryDescs_, DevMem2D_<T> trainDescs_,
float maxDistance, Mask mask, DevMem2Di trainIdx_, unsigned int* nMatches, PtrStepf distance)
{
#if defined (__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
__shared__ typename Dist::ResultType smem[BLOCK_DIM_X * BLOCK_DIM_Y];
typename Dist::ResultType* sdiff_row = smem + BLOCK_DIM_X * threadIdx.y;
const int queryIdx = blockIdx.x;
const T* queryDescs = queryDescs_.ptr(queryIdx);
const int trainIdx = blockIdx.y * BLOCK_DIM_Y + threadIdx.y;
if (trainIdx < trainDescs_.rows)
{
const T* trainDescs = trainDescs_.ptr(trainIdx);
if (mask(queryIdx, trainIdx))
{
Dist dist;
reduceDescDiff<BLOCK_DIM_X>(queryDescs, trainDescs, trainDescs_.cols, dist, sdiff_row);
if (threadIdx.x == 0)
{
if (dist < maxDistance)
{
unsigned int i = atomicInc(nMatches + queryIdx, (unsigned int) -1);
if (i < trainIdx_.cols)
{
distance.ptr(queryIdx)[i] = dist;
trainIdx_.ptr(queryIdx)[i] = trainIdx;
}
}
}
}
}
#endif
}
///////////////////////////////////////////////////////////////////////////////
// Radius Match kernel caller
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
void radiusMatch_caller(const DevMem2D_<T>& queryDescs, const DevMem2D_<T>& trainDescs,
float maxDistance, const Mask& mask, const DevMem2Di& trainIdx, unsigned int* nMatches,
const DevMem2Df& distance, cudaStream_t stream)
{
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
dim3 grid(queryDescs.rows, divUp(trainDescs.rows, BLOCK_DIM_Y), 1);
radiusMatch<BLOCK_DIM_X, BLOCK_DIM_Y, Dist, T><<<grid, threads, 0, stream>>>(
queryDescs, trainDescs, maxDistance, mask, trainIdx, nMatches, distance);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// Radius Match caller
template <typename Dist, typename T, typename Mask>
void radiusMatchDispatcher(const DevMem2D_<T>& queryDescs, const DevMem2D_<T>& trainDescs,
float maxDistance, const Mask& mask, const DevMem2Di& trainIdx, unsigned int* nMatches,
const DevMem2Df& distance, cudaStream_t stream)
{
radiusMatch_caller<16, 16, Dist>(queryDescs, trainDescs, maxDistance, mask,
trainIdx, nMatches, distance, stream);
}
template <typename T>
void radiusMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream)
{
if (mask.data)
{
radiusMatchDispatcher< L1Dist<T> >((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
maxDistance, SingleMask(mask), trainIdx, nMatches, distance, stream);
}
else
{
radiusMatchDispatcher< L1Dist<T> >((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
maxDistance, WithOutMask(), trainIdx, nMatches, distance, stream);
}
}
template void radiusMatchL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template <typename T>
void radiusMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream)
{
if (mask.data)
{
radiusMatchDispatcher<L2Dist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
maxDistance, SingleMask(mask), trainIdx, nMatches, distance, stream);
}
else
{
radiusMatchDispatcher<L2Dist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
maxDistance, WithOutMask(), trainIdx, nMatches, distance, stream);
}
}
template void radiusMatchL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template <typename T>
void radiusMatchHamming_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream)
{
if (mask.data)
{
radiusMatchDispatcher<HammingDist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
maxDistance, SingleMask(mask), trainIdx, nMatches, distance, stream);
}
else
{
radiusMatchDispatcher<HammingDist>((DevMem2D_<T>)queryDescs, (DevMem2D_<T>)trainDescs,
maxDistance, WithOutMask(), trainIdx, nMatches, distance, stream);
}
}
template void radiusMatchHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
template void radiusMatchHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance, cudaStream_t stream);
}}}