1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
cv::Mat cv::getDefaultNewCameraMatrix( InputArray _cameraMatrix, Size imgsize,
bool centerPrincipalPoint )
{
Mat cameraMatrix = _cameraMatrix.getMat();
if( !centerPrincipalPoint && cameraMatrix.type() == CV_64F )
return cameraMatrix;
Mat newCameraMatrix;
cameraMatrix.convertTo(newCameraMatrix, CV_64F);
if( centerPrincipalPoint )
{
((double*)newCameraMatrix.data)[2] = (imgsize.width-1)*0.5;
((double*)newCameraMatrix.data)[5] = (imgsize.height-1)*0.5;
}
return newCameraMatrix;
}
void cv::initUndistortRectifyMap( InputArray _cameraMatrix, InputArray _distCoeffs,
InputArray _matR, InputArray _newCameraMatrix,
Size size, int m1type, OutputArray _map1, OutputArray _map2 )
{
Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
Mat matR = _matR.getMat(), newCameraMatrix = _newCameraMatrix.getMat();
if( m1type <= 0 )
m1type = CV_16SC2;
CV_Assert( m1type == CV_16SC2 || m1type == CV_32FC1 || m1type == CV_32FC2 );
_map1.create( size, m1type );
Mat map1 = _map1.getMat(), map2;
if( m1type != CV_32FC2 )
{
_map2.create( size, m1type == CV_16SC2 ? CV_16UC1 : CV_32FC1 );
map2 = _map2.getMat();
}
else
_map2.release();
Mat_<double> R = Mat_<double>::eye(3, 3);
Mat_<double> A = Mat_<double>(cameraMatrix), Ar;
if( newCameraMatrix.data )
Ar = Mat_<double>(newCameraMatrix);
else
Ar = getDefaultNewCameraMatrix( A, size, true );
if( matR.data )
R = Mat_<double>(matR);
if( distCoeffs.data )
distCoeffs = Mat_<double>(distCoeffs);
else
{
distCoeffs.create(12, 1, CV_64F);
distCoeffs = 0.;
}
CV_Assert( A.size() == Size(3,3) && A.size() == R.size() );
CV_Assert( Ar.size() == Size(3,3) || Ar.size() == Size(4, 3));
Mat_<double> iR = (Ar.colRange(0,3)*R).inv(DECOMP_LU);
const double* ir = &iR(0,0);
double u0 = A(0, 2), v0 = A(1, 2);
double fx = A(0, 0), fy = A(1, 1);
CV_Assert( distCoeffs.size() == Size(1, 4) || distCoeffs.size() == Size(4, 1) ||
distCoeffs.size() == Size(1, 5) || distCoeffs.size() == Size(5, 1) ||
distCoeffs.size() == Size(1, 8) || distCoeffs.size() == Size(8, 1) ||
distCoeffs.size() == Size(1, 12) || distCoeffs.size() == Size(12, 1));
if( distCoeffs.rows != 1 && !distCoeffs.isContinuous() )
distCoeffs = distCoeffs.t();
double k1 = ((double*)distCoeffs.data)[0];
double k2 = ((double*)distCoeffs.data)[1];
double p1 = ((double*)distCoeffs.data)[2];
double p2 = ((double*)distCoeffs.data)[3];
double k3 = distCoeffs.cols + distCoeffs.rows - 1 >= 5 ? ((double*)distCoeffs.data)[4] : 0.;
double k4 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? ((double*)distCoeffs.data)[5] : 0.;
double k5 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? ((double*)distCoeffs.data)[6] : 0.;
double k6 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? ((double*)distCoeffs.data)[7] : 0.;
double s1 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? ((double*)distCoeffs.data)[8] : 0.;
double s2 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? ((double*)distCoeffs.data)[9] : 0.;
double s3 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? ((double*)distCoeffs.data)[10] : 0.;
double s4 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? ((double*)distCoeffs.data)[11] : 0.;
for( int i = 0; i < size.height; i++ )
{
float* m1f = (float*)(map1.data + map1.step*i);
float* m2f = (float*)(map2.data + map2.step*i);
short* m1 = (short*)m1f;
ushort* m2 = (ushort*)m2f;
double _x = i*ir[1] + ir[2], _y = i*ir[4] + ir[5], _w = i*ir[7] + ir[8];
for( int j = 0; j < size.width; j++, _x += ir[0], _y += ir[3], _w += ir[6] )
{
double w = 1./_w, x = _x*w, y = _y*w;
double x2 = x*x, y2 = y*y;
double r2 = x2 + y2, _2xy = 2*x*y;
double kr = (1 + ((k3*r2 + k2)*r2 + k1)*r2)/(1 + ((k6*r2 + k5)*r2 + k4)*r2);
double u = fx*(x*kr + p1*_2xy + p2*(r2 + 2*x2) + s1*r2+s2*r2*r2) + u0;
double v = fy*(y*kr + p1*(r2 + 2*y2) + p2*_2xy + s3*r2+s4*r2*r2) + v0;
if( m1type == CV_16SC2 )
{
int iu = saturate_cast<int>(u*INTER_TAB_SIZE);
int iv = saturate_cast<int>(v*INTER_TAB_SIZE);
m1[j*2] = (short)(iu >> INTER_BITS);
m1[j*2+1] = (short)(iv >> INTER_BITS);
m2[j] = (ushort)((iv & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE + (iu & (INTER_TAB_SIZE-1)));
}
else if( m1type == CV_32FC1 )
{
m1f[j] = (float)u;
m2f[j] = (float)v;
}
else
{
m1f[j*2] = (float)u;
m1f[j*2+1] = (float)v;
}
}
}
}
void cv::undistort( InputArray _src, OutputArray _dst, InputArray _cameraMatrix,
InputArray _distCoeffs, InputArray _newCameraMatrix )
{
Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat();
Mat distCoeffs = _distCoeffs.getMat(), newCameraMatrix = _newCameraMatrix.getMat();
_dst.create( src.size(), src.type() );
Mat dst = _dst.getMat();
CV_Assert( dst.data != src.data );
int stripe_size0 = std::min(std::max(1, (1 << 12) / std::max(src.cols, 1)), src.rows);
Mat map1(stripe_size0, src.cols, CV_16SC2), map2(stripe_size0, src.cols, CV_16UC1);
Mat_<double> A, Ar, I = Mat_<double>::eye(3,3);
cameraMatrix.convertTo(A, CV_64F);
if( distCoeffs.data )
distCoeffs = Mat_<double>(distCoeffs);
else
{
distCoeffs.create(5, 1, CV_64F);
distCoeffs = 0.;
}
if( newCameraMatrix.data )
newCameraMatrix.convertTo(Ar, CV_64F);
else
A.copyTo(Ar);
double v0 = Ar(1, 2);
for( int y = 0; y < src.rows; y += stripe_size0 )
{
int stripe_size = std::min( stripe_size0, src.rows - y );
Ar(1, 2) = v0 - y;
Mat map1_part = map1.rowRange(0, stripe_size),
map2_part = map2.rowRange(0, stripe_size),
dst_part = dst.rowRange(y, y + stripe_size);
initUndistortRectifyMap( A, distCoeffs, I, Ar, Size(src.cols, stripe_size),
map1_part.type(), map1_part, map2_part );
remap( src, dst_part, map1_part, map2_part, INTER_LINEAR, BORDER_CONSTANT );
}
}
CV_IMPL void
cvUndistort2( const CvArr* srcarr, CvArr* dstarr, const CvMat* Aarr, const CvMat* dist_coeffs, const CvMat* newAarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), dst0 = dst;
cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs = cv::cvarrToMat(dist_coeffs), newA;
if( newAarr )
newA = cv::cvarrToMat(newAarr);
CV_Assert( src.size() == dst.size() && src.type() == dst.type() );
cv::undistort( src, dst, A, distCoeffs, newA );
}
CV_IMPL void cvInitUndistortMap( const CvMat* Aarr, const CvMat* dist_coeffs,
CvArr* mapxarr, CvArr* mapyarr )
{
cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs = cv::cvarrToMat(dist_coeffs);
cv::Mat mapx = cv::cvarrToMat(mapxarr), mapy, mapx0 = mapx, mapy0;
if( mapyarr )
mapy0 = mapy = cv::cvarrToMat(mapyarr);
cv::initUndistortRectifyMap( A, distCoeffs, cv::Mat(), A,
mapx.size(), mapx.type(), mapx, mapy );
CV_Assert( mapx0.data == mapx.data && mapy0.data == mapy.data );
}
void
cvInitUndistortRectifyMap( const CvMat* Aarr, const CvMat* dist_coeffs,
const CvMat *Rarr, const CvMat* ArArr, CvArr* mapxarr, CvArr* mapyarr )
{
cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs, R, Ar;
cv::Mat mapx = cv::cvarrToMat(mapxarr), mapy, mapx0 = mapx, mapy0;
if( mapyarr )
mapy0 = mapy = cv::cvarrToMat(mapyarr);
if( dist_coeffs )
distCoeffs = cv::cvarrToMat(dist_coeffs);
if( Rarr )
R = cv::cvarrToMat(Rarr);
if( ArArr )
Ar = cv::cvarrToMat(ArArr);
cv::initUndistortRectifyMap( A, distCoeffs, R, Ar, mapx.size(), mapx.type(), mapx, mapy );
CV_Assert( mapx0.data == mapx.data && mapy0.data == mapy.data );
}
void cvUndistortPoints( const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix,
const CvMat* _distCoeffs,
const CvMat* matR, const CvMat* matP )
{
double A[3][3], RR[3][3], k[12]={0,0,0,0,0,0,0,0,0,0,0}, fx, fy, ifx, ify, cx, cy;
CvMat matA=cvMat(3, 3, CV_64F, A), _Dk;
CvMat _RR=cvMat(3, 3, CV_64F, RR);
const CvPoint2D32f* srcf;
const CvPoint2D64f* srcd;
CvPoint2D32f* dstf;
CvPoint2D64f* dstd;
int stype, dtype;
int sstep, dstep;
int i, j, n, iters = 1;
CV_Assert( CV_IS_MAT(_src) && CV_IS_MAT(_dst) &&
(_src->rows == 1 || _src->cols == 1) &&
(_dst->rows == 1 || _dst->cols == 1) &&
_src->cols + _src->rows - 1 == _dst->rows + _dst->cols - 1 &&
(CV_MAT_TYPE(_src->type) == CV_32FC2 || CV_MAT_TYPE(_src->type) == CV_64FC2) &&
(CV_MAT_TYPE(_dst->type) == CV_32FC2 || CV_MAT_TYPE(_dst->type) == CV_64FC2));
CV_Assert( CV_IS_MAT(_cameraMatrix) &&
_cameraMatrix->rows == 3 && _cameraMatrix->cols == 3 );
cvConvert( _cameraMatrix, &matA );
if( _distCoeffs )
{
CV_Assert( CV_IS_MAT(_distCoeffs) &&
(_distCoeffs->rows == 1 || _distCoeffs->cols == 1) &&
(_distCoeffs->rows*_distCoeffs->cols == 4 ||
_distCoeffs->rows*_distCoeffs->cols == 5 ||
_distCoeffs->rows*_distCoeffs->cols == 8 ||
_distCoeffs->rows*_distCoeffs->cols == 12));
_Dk = cvMat( _distCoeffs->rows, _distCoeffs->cols,
CV_MAKETYPE(CV_64F,CV_MAT_CN(_distCoeffs->type)), k);
cvConvert( _distCoeffs, &_Dk );
iters = 5;
}
if( matR )
{
CV_Assert( CV_IS_MAT(matR) && matR->rows == 3 && matR->cols == 3 );
cvConvert( matR, &_RR );
}
else
cvSetIdentity(&_RR);
if( matP )
{
double PP[3][3];
CvMat _P3x3, _PP=cvMat(3, 3, CV_64F, PP);
CV_Assert( CV_IS_MAT(matP) && matP->rows == 3 && (matP->cols == 3 || matP->cols == 4));
cvConvert( cvGetCols(matP, &_P3x3, 0, 3), &_PP );
cvMatMul( &_PP, &_RR, &_RR );
}
srcf = (const CvPoint2D32f*)_src->data.ptr;
srcd = (const CvPoint2D64f*)_src->data.ptr;
dstf = (CvPoint2D32f*)_dst->data.ptr;
dstd = (CvPoint2D64f*)_dst->data.ptr;
stype = CV_MAT_TYPE(_src->type);
dtype = CV_MAT_TYPE(_dst->type);
sstep = _src->rows == 1 ? 1 : _src->step/CV_ELEM_SIZE(stype);
dstep = _dst->rows == 1 ? 1 : _dst->step/CV_ELEM_SIZE(dtype);
n = _src->rows + _src->cols - 1;
fx = A[0][0];
fy = A[1][1];
ifx = 1./fx;
ify = 1./fy;
cx = A[0][2];
cy = A[1][2];
for( i = 0; i < n; i++ )
{
double x, y, x0, y0;
if( stype == CV_32FC2 )
{
x = srcf[i*sstep].x;
y = srcf[i*sstep].y;
}
else
{
x = srcd[i*sstep].x;
y = srcd[i*sstep].y;
}
x0 = x = (x - cx)*ifx;
y0 = y = (y - cy)*ify;
// compensate distortion iteratively
for( j = 0; j < iters; j++ )
{
double r2 = x*x + y*y;
double icdist = (1 + ((k[7]*r2 + k[6])*r2 + k[5])*r2)/(1 + ((k[4]*r2 + k[1])*r2 + k[0])*r2);
double deltaX = 2*k[2]*x*y + k[3]*(r2 + 2*x*x)+ k[8]*r2+k[9]*r2*r2;
double deltaY = k[2]*(r2 + 2*y*y) + 2*k[3]*x*y+ k[10]*r2+k[11]*r2*r2;
x = (x0 - deltaX)*icdist;
y = (y0 - deltaY)*icdist;
}
double xx = RR[0][0]*x + RR[0][1]*y + RR[0][2];
double yy = RR[1][0]*x + RR[1][1]*y + RR[1][2];
double ww = 1./(RR[2][0]*x + RR[2][1]*y + RR[2][2]);
x = xx*ww;
y = yy*ww;
if( dtype == CV_32FC2 )
{
dstf[i*dstep].x = (float)x;
dstf[i*dstep].y = (float)y;
}
else
{
dstd[i*dstep].x = x;
dstd[i*dstep].y = y;
}
}
}
void cv::undistortPoints( InputArray _src, OutputArray _dst,
InputArray _cameraMatrix,
InputArray _distCoeffs,
InputArray _Rmat,
InputArray _Pmat )
{
Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat();
Mat distCoeffs = _distCoeffs.getMat(), R = _Rmat.getMat(), P = _Pmat.getMat();
CV_Assert( src.isContinuous() && (src.depth() == CV_32F || src.depth() == CV_64F) &&
((src.rows == 1 && src.channels() == 2) || src.cols*src.channels() == 2));
_dst.create(src.size(), src.type(), -1, true);
Mat dst = _dst.getMat();
CvMat _csrc = src, _cdst = dst, _ccameraMatrix = cameraMatrix;
CvMat matR, matP, _cdistCoeffs, *pR=0, *pP=0, *pD=0;
if( R.data )
pR = &(matR = R);
if( P.data )
pP = &(matP = P);
if( distCoeffs.data )
pD = &(_cdistCoeffs = distCoeffs);
cvUndistortPoints(&_csrc, &_cdst, &_ccameraMatrix, pD, pR, pP);
}
namespace cv
{
static Point2f mapPointSpherical(const Point2f& p, float alpha, Vec4d* J, int projType)
{
double x = p.x, y = p.y;
double beta = 1 + 2*alpha;
double v = x*x + y*y + 1, iv = 1/v;
double u = std::sqrt(beta*v + alpha*alpha);
double k = (u - alpha)*iv;
double kv = (v*beta/u - (u - alpha)*2)*iv*iv;
double kx = kv*x, ky = kv*y;
if( projType == PROJ_SPHERICAL_ORTHO )
{
if(J)
*J = Vec4d(kx*x + k, kx*y, ky*x, ky*y + k);
return Point2f((float)(x*k), (float)(y*k));
}
if( projType == PROJ_SPHERICAL_EQRECT )
{
// equirectangular
double iR = 1/(alpha + 1);
double x1 = std::max(std::min(x*k*iR, 1.), -1.);
double y1 = std::max(std::min(y*k*iR, 1.), -1.);
if(J)
{
double fx1 = iR/std::sqrt(1 - x1*x1);
double fy1 = iR/std::sqrt(1 - y1*y1);
*J = Vec4d(fx1*(kx*x + k), fx1*ky*x, fy1*kx*y, fy1*(ky*y + k));
}
return Point2f((float)asin(x1), (float)asin(y1));
}
CV_Error(CV_StsBadArg, "Unknown projection type");
return Point2f();
}
static Point2f invMapPointSpherical(Point2f _p, float alpha, int projType)
{
static int avgiter = 0, avgn = 0;
double eps = 1e-12;
Vec2d p(_p.x, _p.y), q(_p.x, _p.y), err;
Vec4d J;
int i, maxiter = 5;
for( i = 0; i < maxiter; i++ )
{
Point2f p1 = mapPointSpherical(Point2f((float)q[0], (float)q[1]), alpha, &J, projType);
err = Vec2d(p1.x, p1.y) - p;
if( err[0]*err[0] + err[1]*err[1] < eps )
break;
Vec4d JtJ(J[0]*J[0] + J[2]*J[2], J[0]*J[1] + J[2]*J[3],
J[0]*J[1] + J[2]*J[3], J[1]*J[1] + J[3]*J[3]);
double d = JtJ[0]*JtJ[3] - JtJ[1]*JtJ[2];
d = d ? 1./d : 0;
Vec4d iJtJ(JtJ[3]*d, -JtJ[1]*d, -JtJ[2]*d, JtJ[0]*d);
Vec2d JtErr(J[0]*err[0] + J[2]*err[1], J[1]*err[0] + J[3]*err[1]);
q -= Vec2d(iJtJ[0]*JtErr[0] + iJtJ[1]*JtErr[1], iJtJ[2]*JtErr[0] + iJtJ[3]*JtErr[1]);
//Matx22d J(kx*x + k, kx*y, ky*x, ky*y + k);
//q -= Vec2d((J.t()*J).inv()*(J.t()*err));
}
if( i < maxiter )
{
avgiter += i;
avgn++;
if( avgn == 1500 )
printf("avg iters = %g\n", (double)avgiter/avgn);
}
return i < maxiter ? Point2f((float)q[0], (float)q[1]) : Point2f(-FLT_MAX, -FLT_MAX);
}
}
float cv::initWideAngleProjMap( InputArray _cameraMatrix0, InputArray _distCoeffs0,
Size imageSize, int destImageWidth, int m1type,
OutputArray _map1, OutputArray _map2, int projType, double _alpha )
{
Mat cameraMatrix0 = _cameraMatrix0.getMat(), distCoeffs0 = _distCoeffs0.getMat();
double k[12] = {0,0,0,0,0,0,0,0,0,0,0}, M[9]={0,0,0,0,0,0,0,0,0};
Mat distCoeffs(distCoeffs0.rows, distCoeffs0.cols, CV_MAKETYPE(CV_64F,distCoeffs0.channels()), k);
Mat cameraMatrix(3,3,CV_64F,M);
Point2f scenter((float)cameraMatrix.at<double>(0,2), (float)cameraMatrix.at<double>(1,2));
Point2f dcenter((destImageWidth-1)*0.5f, 0.f);
float xmin = FLT_MAX, xmax = -FLT_MAX, ymin = FLT_MAX, ymax = -FLT_MAX;
int N = 9;
std::vector<Point2f> uvec(1), vvec(1);
Mat I = Mat::eye(3,3,CV_64F);
float alpha = (float)_alpha;
int ndcoeffs = distCoeffs0.cols*distCoeffs0.rows*distCoeffs0.channels();
CV_Assert((distCoeffs0.cols == 1 || distCoeffs0.rows == 1) &&
(ndcoeffs == 4 || ndcoeffs == 5 || ndcoeffs == 8));
CV_Assert(cameraMatrix0.size() == Size(3,3));
distCoeffs0.convertTo(distCoeffs,CV_64F);
cameraMatrix0.convertTo(cameraMatrix,CV_64F);
alpha = std::min(alpha, 0.999f);
for( int i = 0; i < N; i++ )
for( int j = 0; j < N; j++ )
{
Point2f p((float)j*imageSize.width/(N-1), (float)i*imageSize.height/(N-1));
uvec[0] = p;
undistortPoints(uvec, vvec, cameraMatrix, distCoeffs, I, I);
Point2f q = mapPointSpherical(vvec[0], alpha, 0, projType);
if( xmin > q.x ) xmin = q.x;
if( xmax < q.x ) xmax = q.x;
if( ymin > q.y ) ymin = q.y;
if( ymax < q.y ) ymax = q.y;
}
float scale = (float)std::min(dcenter.x/fabs(xmax), dcenter.x/fabs(xmin));
Size dsize(destImageWidth, cvCeil(std::max(scale*fabs(ymin)*2, scale*fabs(ymax)*2)));
dcenter.y = (dsize.height - 1)*0.5f;
Mat mapxy(dsize, CV_32FC2);
double k1 = k[0], k2 = k[1], k3 = k[2], p1 = k[3], p2 = k[4], k4 = k[5], k5 = k[6], k6 = k[7], s1 = k[8], s2 = k[9], s3 = k[10], s4 = k[11];
double fx = cameraMatrix.at<double>(0,0), fy = cameraMatrix.at<double>(1,1), cx = scenter.x, cy = scenter.y;
for( int y = 0; y < dsize.height; y++ )
{
Point2f* mxy = mapxy.ptr<Point2f>(y);
for( int x = 0; x < dsize.width; x++ )
{
Point2f p = (Point2f((float)x, (float)y) - dcenter)*(1.f/scale);
Point2f q = invMapPointSpherical(p, alpha, projType);
if( q.x <= -FLT_MAX && q.y <= -FLT_MAX )
{
mxy[x] = Point2f(-1.f, -1.f);
continue;
}
double x2 = q.x*q.x, y2 = q.y*q.y;
double r2 = x2 + y2, _2xy = 2*q.x*q.y;
double kr = 1 + ((k3*r2 + k2)*r2 + k1)*r2/(1 + ((k6*r2 + k5)*r2 + k4)*r2);
double u = fx*(q.x*kr + p1*_2xy + p2*(r2 + 2*x2) + s1*r2+ s2*r2*r2) + cx;
double v = fy*(q.y*kr + p1*(r2 + 2*y2) + p2*_2xy + s3*r2+ s4*r2*r2) + cy;
mxy[x] = Point2f((float)u, (float)v);
}
}
if(m1type == CV_32FC2)
{
_map1.create(mapxy.size(), mapxy.type());
Mat map1 = _map1.getMat();
mapxy.copyTo(map1);
_map2.release();
}
else
convertMaps(mapxy, Mat(), _map1, _map2, m1type, false);
return scale;
}
/* End of file */