convert_scale.dispatch.cpp 8.65 KB
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html


#include "precomp.hpp"
#include "opencl_kernels_core.hpp"

#include "convert_scale.simd.hpp"
#include "convert_scale.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content


namespace cv
{

static BinaryFunc getCvtScaleAbsFunc(int depth)
{
    CV_INSTRUMENT_REGION();
    CV_CPU_DISPATCH(getCvtScaleAbsFunc, (depth),
        CV_CPU_DISPATCH_MODES_ALL);
}

BinaryFunc getConvertScaleFunc(int sdepth, int ddepth)
{
    CV_INSTRUMENT_REGION();
    CV_CPU_DISPATCH(getConvertScaleFunc, (sdepth, ddepth),
        CV_CPU_DISPATCH_MODES_ALL);
}

#ifdef HAVE_OPENCL

static bool ocl_convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, double beta )
{
    const ocl::Device & d = ocl::Device::getDefault();

    int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
    bool doubleSupport = d.doubleFPConfig() > 0;
    if (!doubleSupport && depth == CV_64F)
        return false;

    _dst.create(_src.size(), CV_8UC(cn));
    int kercn = 1;
    if (d.isIntel())
    {
        static const int vectorWidths[] = {4, 4, 4, 4, 4, 4, 4, -1};
        kercn = ocl::checkOptimalVectorWidth( vectorWidths, _src, _dst,
                                              noArray(), noArray(), noArray(),
                                              noArray(), noArray(), noArray(),
                                              noArray(), ocl::OCL_VECTOR_MAX);
    }
    else
        kercn = ocl::predictOptimalVectorWidthMax(_src, _dst);

    int rowsPerWI = d.isIntel() ? 4 : 1;
    char cvt[2][50];
    int wdepth = std::max(depth, CV_32F);
    String build_opt = format("-D OP_CONVERT_SCALE_ABS -D UNARY_OP -D dstT=%s -D DEPTH_dst=%d -D srcT1=%s"
                         " -D workT=%s -D wdepth=%d -D convertToWT1=%s -D convertToDT=%s"
                         " -D workT1=%s -D rowsPerWI=%d%s",
                         ocl::typeToStr(CV_8UC(kercn)), CV_8U,
                         ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)),
                         ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)), wdepth,
                         ocl::convertTypeStr(depth, wdepth, kercn, cvt[0]),
                         ocl::convertTypeStr(wdepth, CV_8U, kercn, cvt[1]),
                         ocl::typeToStr(wdepth), rowsPerWI,
                         doubleSupport ? " -D DOUBLE_SUPPORT" : "");
    ocl::Kernel k("KF", ocl::core::arithm_oclsrc, build_opt);
    if (k.empty())
        return false;

    UMat src = _src.getUMat();
    UMat dst = _dst.getUMat();

    ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
            dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn);

    if (wdepth == CV_32F)
        k.args(srcarg, dstarg, (float)alpha, (float)beta);
    else if (wdepth == CV_64F)
        k.args(srcarg, dstarg, alpha, beta);

    size_t globalsize[2] = { (size_t)src.cols * cn / kercn, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI };
    return k.run(2, globalsize, NULL, false);
}

#endif

void convertScaleAbs(InputArray _src, OutputArray _dst, double alpha, double beta)
{
    CV_INSTRUMENT_REGION();

    CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
               ocl_convertScaleAbs(_src, _dst, alpha, beta))

    Mat src = _src.getMat();
    int cn = src.channels();
    double scale[] = {alpha, beta};
    _dst.create( src.dims, src.size, CV_8UC(cn) );
    Mat dst = _dst.getMat();
    BinaryFunc func = getCvtScaleAbsFunc(src.depth());
    CV_Assert( func != 0 );

    if( src.dims <= 2 )
    {
        Size sz = getContinuousSize2D(src, dst, cn);
        func( src.ptr(), src.step, 0, 0, dst.ptr(), dst.step, sz, scale );
    }
    else
    {
        const Mat* arrays[] = {&src, &dst, 0};
        uchar* ptrs[2] = {};
        NAryMatIterator it(arrays, ptrs);
        Size sz((int)it.size*cn, 1);

        for( size_t i = 0; i < it.nplanes; i++, ++it )
            func( ptrs[0], 0, 0, 0, ptrs[1], 0, sz, scale );
    }
}

//==================================================================================================

#ifdef HAVE_OPENCL

static bool ocl_normalize( InputArray _src, InputOutputArray _dst, InputArray _mask, int dtype,
                           double scale, double delta )
{
    UMat src = _src.getUMat();

    if( _mask.empty() )
        src.convertTo( _dst, dtype, scale, delta );
    else if (src.channels() <= 4)
    {
        const ocl::Device & dev = ocl::Device::getDefault();

        int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype),
                ddepth = CV_MAT_DEPTH(dtype), wdepth = std::max(CV_32F, std::max(sdepth, ddepth)),
                rowsPerWI = dev.isIntel() ? 4 : 1;

        float fscale = static_cast<float>(scale), fdelta = static_cast<float>(delta);
        bool haveScale = std::fabs(scale - 1) > DBL_EPSILON,
                haveZeroScale = !(std::fabs(scale) > DBL_EPSILON),
                haveDelta = std::fabs(delta) > DBL_EPSILON,
                doubleSupport = dev.doubleFPConfig() > 0;

        if (!haveScale && !haveDelta && stype == dtype)
        {
            _src.copyTo(_dst, _mask);
            return true;
        }
        if (haveZeroScale)
        {
            _dst.setTo(Scalar(delta), _mask);
            return true;
        }

        if ((sdepth == CV_64F || ddepth == CV_64F) && !doubleSupport)
            return false;

        char cvt[2][40];
        String opts = format("-D srcT=%s -D dstT=%s -D convertToWT=%s -D cn=%d -D rowsPerWI=%d"
                             " -D convertToDT=%s -D workT=%s%s%s%s -D srcT1=%s -D dstT1=%s",
                             ocl::typeToStr(stype), ocl::typeToStr(dtype),
                             ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]), cn,
                             rowsPerWI, ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]),
                             ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)),
                             doubleSupport ? " -D DOUBLE_SUPPORT" : "",
                             haveScale ? " -D HAVE_SCALE" : "",
                             haveDelta ? " -D HAVE_DELTA" : "",
                             ocl::typeToStr(sdepth), ocl::typeToStr(ddepth));

        ocl::Kernel k("normalizek", ocl::core::normalize_oclsrc, opts);
        if (k.empty())
            return false;

        UMat mask = _mask.getUMat(), dst = _dst.getUMat();

        ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
                maskarg = ocl::KernelArg::ReadOnlyNoSize(mask),
                dstarg = ocl::KernelArg::ReadWrite(dst);

        if (haveScale)
        {
            if (haveDelta)
                k.args(srcarg, maskarg, dstarg, fscale, fdelta);
            else
                k.args(srcarg, maskarg, dstarg, fscale);
        }
        else
        {
            if (haveDelta)
                k.args(srcarg, maskarg, dstarg, fdelta);
            else
                k.args(srcarg, maskarg, dstarg);
        }

        size_t globalsize[2] = { (size_t)src.cols, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI };
        return k.run(2, globalsize, NULL, false);
    }
    else
    {
        UMat temp;
        src.convertTo( temp, dtype, scale, delta );
        temp.copyTo( _dst, _mask );
    }

    return true;
}

#endif

void normalize(InputArray _src, InputOutputArray _dst, double a, double b,
               int norm_type, int rtype, InputArray _mask)
{
    CV_INSTRUMENT_REGION();

    double scale = 1, shift = 0;
    int type = _src.type(), depth = CV_MAT_DEPTH(type);

    if( rtype < 0 )
        rtype = _dst.fixedType() ? _dst.depth() : depth;

    if( norm_type == CV_MINMAX )
    {
        double smin = 0, smax = 0;
        double dmin = MIN( a, b ), dmax = MAX( a, b );
        minMaxIdx( _src, &smin, &smax, 0, 0, _mask );
        scale = (dmax - dmin)*(smax - smin > DBL_EPSILON ? 1./(smax - smin) : 0);
        if( rtype == CV_32F )
        {
            scale = (float)scale;
            shift = (float)dmin - (float)(smin*scale);
        }
        else
            shift = dmin - smin*scale;
    }
    else if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C )
    {
        scale = norm( _src, norm_type, _mask );
        scale = scale > DBL_EPSILON ? a/scale : 0.;
        shift = 0;
    }
    else
        CV_Error( CV_StsBadArg, "Unknown/unsupported norm type" );

    CV_OCL_RUN(_dst.isUMat(),
               ocl_normalize(_src, _dst, _mask, rtype, scale, shift))

    Mat src = _src.getMat();
    if( _mask.empty() )
        src.convertTo( _dst, rtype, scale, shift );
    else
    {
        Mat temp;
        src.convertTo( temp, rtype, scale, shift );
        temp.copyTo( _dst, _mask );
    }
}

} // namespace