1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*
This is a modification of the variational stereo correspondence algorithm, described in:
S. Kosov, T. Thormaehlen, H.-P. Seidel "Accurate Real-Time Disparity Estimation with Variational Methods"
Proceedings of the 5th International Symposium on Visual Computing, Vegas, USA
This code is written by Sergey G. Kosov for "Visir PX" application as part of Project X (www.project-10.de)
*/
#include "precomp.hpp"
#include <limits.h>
namespace cv
{
StereoVar::StereoVar() : levels(3), pyrScale(0.5), nIt(5), minDisp(0), maxDisp(16), poly_n(3), poly_sigma(0), fi(25.0f), lambda(0.03f), penalization(PENALIZATION_TICHONOV), cycle(CYCLE_V), flags(USE_SMART_ID | USE_AUTO_PARAMS)
{
}
StereoVar::StereoVar(int _levels, double _pyrScale, int _nIt, int _minDisp, int _maxDisp, int _poly_n, double _poly_sigma, float _fi, float _lambda, int _penalization, int _cycle, int _flags) : levels(_levels), pyrScale(_pyrScale), nIt(_nIt), minDisp(_minDisp), maxDisp(_maxDisp), poly_n(_poly_n), poly_sigma(_poly_sigma), fi(_fi), lambda(_lambda), penalization(_penalization), cycle(_cycle), flags(_flags)
{ // No Parameters check, since they are all public
}
StereoVar::~StereoVar()
{
}
static Mat diffX(Mat &src)
{
int cols = src.cols - 1;
Mat dst(src.size(), src.type());
for(int y = 0; y < src.rows; y++){
const float* pSrc = src.ptr<float>(y);
float* pDst = dst.ptr<float>(y);
int x = 0;
#if CV_SSE2
for (x = 0; x <= cols - 8; x += 8) {
__m128 a0 = _mm_loadu_ps(pSrc + x);
__m128 b0 = _mm_loadu_ps(pSrc + x + 1);
__m128 a1 = _mm_loadu_ps(pSrc + x + 4);
__m128 b1 = _mm_loadu_ps(pSrc + x + 5);
b0 = _mm_sub_ps(b0, a0);
b1 = _mm_sub_ps(b1, a1);
_mm_storeu_ps(pDst + x, b0);
_mm_storeu_ps(pDst + x + 4, b1);
}
#endif
for( ; x < cols; x++) pDst[x] = pSrc[x+1] - pSrc[x];
pDst[cols] = 0.f;
}
return dst;
}
static Mat getGradient(Mat &src)
{
register int x, y;
Mat dst(src.size(), src.type());
dst.setTo(0);
for (y = 0; y < src.rows - 1; y++) {
float *pSrc = src.ptr<float>(y);
float *pSrcF = src.ptr<float>(y + 1);
float *pDst = dst.ptr<float>(y);
for (x = 0; x < src.cols - 1; x++)
pDst[x] = fabs(pSrc[x + 1] - pSrc[x]) + fabs(pSrcF[x] - pSrc[x]);
}
return dst;
}
static Mat getG_c(Mat &src, float l)
{
Mat dst(src.size(), src.type());
for (register int y = 0; y < src.rows; y++) {
float *pSrc = src.ptr<float>(y);
float *pDst = dst.ptr<float>(y);
for (register int x = 0; x < src.cols; x++)
pDst[x] = 0.5f*l / sqrtf(l*l + pSrc[x]*pSrc[x]);
}
return dst;
}
static Mat getG_p(Mat &src, float l)
{
Mat dst(src.size(), src.type());
for (register int y = 0; y < src.rows; y++) {
float *pSrc = src.ptr<float>(y);
float *pDst = dst.ptr<float>(y);
for (register int x = 0; x < src.cols; x++)
pDst[x] = 0.5f*l*l / (l*l + pSrc[x]*pSrc[x]);
}
return dst;
}
void StereoVar::VariationalSolver(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level)
{
register int n, x, y;
float gl = 1, gr = 1, gu = 1, gd = 1, gc = 4;
Mat g_c, g_p;
Mat U;
u.copyTo(U);
int N = nIt;
float l = lambda;
float Fi = fi;
if (flags & USE_SMART_ID) {
double scale = std::pow(pyrScale, (double) level) * (1 + pyrScale);
N = (int) (N / scale);
}
double scale = std::pow(pyrScale, (double) level);
Fi /= (float) scale;
l *= (float) scale;
int width = u.cols - 1;
int height = u.rows - 1;
for (n = 0; n < N; n++) {
if (penalization != PENALIZATION_TICHONOV) {
Mat gradient = getGradient(U);
switch (penalization) {
case PENALIZATION_CHARBONNIER: g_c = getG_c(gradient, l); break;
case PENALIZATION_PERONA_MALIK: g_p = getG_p(gradient, l); break;
}
gradient.release();
}
for (y = 1 ; y < height; y++) {
float *pU = U.ptr<float>(y);
float *pUu = U.ptr<float>(y + 1);
float *pUd = U.ptr<float>(y - 1);
float *pu = u.ptr<float>(y);
float *pI1 = I1.ptr<float>(y);
float *pI2 = I2.ptr<float>(y);
float *pI2x = I2x.ptr<float>(y);
float *pG_c = NULL, *pG_cu = NULL, *pG_cd = NULL;
float *pG_p = NULL, *pG_pu = NULL, *pG_pd = NULL;
switch (penalization) {
case PENALIZATION_CHARBONNIER:
pG_c = g_c.ptr<float>(y);
pG_cu = g_c.ptr<float>(y + 1);
pG_cd = g_c.ptr<float>(y - 1);
break;
case PENALIZATION_PERONA_MALIK:
pG_p = g_p.ptr<float>(y);
pG_pu = g_p.ptr<float>(y + 1);
pG_pd = g_p.ptr<float>(y - 1);
break;
}
for (x = 1; x < width; x++) {
switch (penalization) {
case PENALIZATION_CHARBONNIER:
gc = pG_c[x];
gl = gc + pG_c[x - 1];
gr = gc + pG_c[x + 1];
gu = gc + pG_cu[x];
gd = gc + pG_cd[x];
gc = gl + gr + gu + gd;
break;
case PENALIZATION_PERONA_MALIK:
gc = pG_p[x];
gl = gc + pG_p[x - 1];
gr = gc + pG_p[x + 1];
gu = gc + pG_pu[x];
gd = gc + pG_pd[x];
gc = gl + gr + gu + gd;
break;
}
float _fi = Fi;
if (maxDisp > minDisp) {
if (pU[x] > maxDisp * scale) {_fi *= 1000; pU[x] = static_cast<float>(maxDisp * scale);}
if (pU[x] < minDisp * scale) {_fi *= 1000; pU[x] = static_cast<float>(minDisp * scale);}
}
int A = static_cast<int>(pU[x]);
int neg = 0; if (pU[x] <= 0) neg = -1;
if (x + A > width)
pu[x] = pU[width - A];
else if (x + A + neg < 0)
pu[x] = pU[- A + 2];
else {
pu[x] = A + (pI2x[x + A + neg] * (pI1[x] - pI2[x + A])
+ _fi * (gr * pU[x + 1] + gl * pU[x - 1] + gu * pUu[x] + gd * pUd[x] - gc * A))
/ (pI2x[x + A + neg] * pI2x[x + A + neg] + gc * _fi) ;
}
}// x
pu[0] = pu[1];
pu[width] = pu[width - 1];
}// y
for (x = 0; x <= width; x++) {
u.at<float>(0, x) = u.at<float>(1, x);
u.at<float>(height, x) = u.at<float>(height - 1, x);
}
u.copyTo(U);
if (!g_c.empty()) g_c.release();
if (!g_p.empty()) g_p.release();
}//n
}
void StereoVar::VCycle_MyFAS(Mat &I1, Mat &I2, Mat &I2x, Mat &_u, int level)
{
Size imgSize = _u.size();
Size frmSize = Size((int) (imgSize.width * pyrScale + 0.5), (int) (imgSize.height * pyrScale + 0.5));
Mat I1_h, I2_h, I2x_h, u_h, U, U_h;
//PRE relaxation
VariationalSolver(I1, I2, I2x, _u, level);
if (level >= levels - 1) return;
level ++;
//scaling DOWN
resize(I1, I1_h, frmSize, 0, 0, INTER_AREA);
resize(I2, I2_h, frmSize, 0, 0, INTER_AREA);
resize(_u, u_h, frmSize, 0, 0, INTER_AREA);
u_h.convertTo(u_h, u_h.type(), pyrScale);
I2x_h = diffX(I2_h);
//Next level
U_h = u_h.clone();
VCycle_MyFAS(I1_h, I2_h, I2x_h, U_h, level);
subtract(U_h, u_h, U_h);
U_h.convertTo(U_h, U_h.type(), 1.0 / pyrScale);
//scaling UP
resize(U_h, U, imgSize);
//correcting the solution
add(_u, U, _u);
//POST relaxation
VariationalSolver(I1, I2, I2x, _u, level - 1);
if (flags & USE_MEDIAN_FILTERING) medianBlur(_u, _u, 3);
I1_h.release();
I2_h.release();
I2x_h.release();
u_h.release();
U.release();
U_h.release();
}
void StereoVar::FMG(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level)
{
double scale = std::pow(pyrScale, (double) level);
Size frmSize = Size((int) (u.cols * scale + 0.5), (int) (u.rows * scale + 0.5));
Mat I1_h, I2_h, I2x_h, u_h;
//scaling DOWN
resize(I1, I1_h, frmSize, 0, 0, INTER_AREA);
resize(I2, I2_h, frmSize, 0, 0, INTER_AREA);
resize(u, u_h, frmSize, 0, 0, INTER_AREA);
u_h.convertTo(u_h, u_h.type(), scale);
I2x_h = diffX(I2_h);
switch (cycle) {
case CYCLE_O:
VariationalSolver(I1_h, I2_h, I2x_h, u_h, level);
break;
case CYCLE_V:
VCycle_MyFAS(I1_h, I2_h, I2x_h, u_h, level);
break;
}
u_h.convertTo(u_h, u_h.type(), 1.0 / scale);
//scaling UP
resize(u_h, u, u.size(), 0, 0, INTER_CUBIC);
I1_h.release();
I2_h.release();
I2x_h.release();
u_h.release();
level--;
if ((flags & USE_AUTO_PARAMS) && (level < levels / 3)) {
penalization = PENALIZATION_PERONA_MALIK;
fi *= 100;
flags -= USE_AUTO_PARAMS;
autoParams();
}
if (flags & USE_MEDIAN_FILTERING) medianBlur(u, u, 3);
if (level >= 0) FMG(I1, I2, I2x, u, level);
}
void StereoVar::autoParams()
{
int maxD = MAX(labs(maxDisp), labs(minDisp));
if (!maxD) pyrScale = 0.85;
else if (maxD < 8) pyrScale = 0.5;
else if (maxD < 64) pyrScale = 0.5 + static_cast<double>(maxD - 8) * 0.00625;
else pyrScale = 0.85;
if (maxD) {
levels = 0;
while ( std::pow(pyrScale, levels) * maxD > 1.5) levels ++;
levels++;
}
switch(penalization) {
case PENALIZATION_TICHONOV: cycle = CYCLE_V; break;
case PENALIZATION_CHARBONNIER: cycle = CYCLE_O; break;
case PENALIZATION_PERONA_MALIK: cycle = CYCLE_O; break;
}
}
void StereoVar::operator ()( const Mat& left, const Mat& right, Mat& disp )
{
CV_Assert(left.size() == right.size() && left.type() == right.type());
Size imgSize = left.size();
int MaxD = MAX(labs(minDisp), labs(maxDisp));
int SignD = 1; if (MIN(minDisp, maxDisp) < 0) SignD = -1;
if (minDisp >= maxDisp) {MaxD = 256; SignD = 1;}
Mat u;
if ((flags & USE_INITIAL_DISPARITY) && (!disp.empty())) {
CV_Assert(disp.size() == left.size() && disp.type() == CV_8UC1);
disp.convertTo(u, CV_32FC1, static_cast<double>(SignD * MaxD) / 256);
} else {
u.create(imgSize, CV_32FC1);
u.setTo(0);
}
// Preprocessing
Mat leftgray, rightgray;
if (left.type() != CV_8UC1) {
cvtColor(left, leftgray, COLOR_BGR2GRAY);
cvtColor(right, rightgray, COLOR_BGR2GRAY);
} else {
left.copyTo(leftgray);
right.copyTo(rightgray);
}
if (flags & USE_EQUALIZE_HIST) {
equalizeHist(leftgray, leftgray);
equalizeHist(rightgray, rightgray);
}
if (poly_sigma > 0.0001) {
GaussianBlur(leftgray, leftgray, Size(poly_n, poly_n), poly_sigma);
GaussianBlur(rightgray, rightgray, Size(poly_n, poly_n), poly_sigma);
}
if (flags & USE_AUTO_PARAMS) {
penalization = PENALIZATION_TICHONOV;
autoParams();
}
Mat I1, I2;
leftgray.convertTo(I1, CV_32FC1);
rightgray.convertTo(I2, CV_32FC1);
leftgray.release();
rightgray.release();
Mat I2x = diffX(I2);
FMG(I1, I2, I2x, u, levels - 1);
I1.release();
I2.release();
I2x.release();
disp.create( left.size(), CV_8UC1 );
u = abs(u);
u.convertTo(disp, disp.type(), 256 / MaxD, 0);
u.release();
}
} // namespace