flann.cpp 12.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#include <stdexcept>
#include <vector>
#include "flann.h"
#include "timer.h"
#include "common.h"
#include "logger.h"
#include "index_testing.h"
#include "saving.h"
#include "object_factory.h"
// index types
#include "kdtree_index.h"
#include "kmeans_index.h"
#include "composite_index.h"
#include "linear_index.h"
#include "autotuned_index.h"

#include <typeinfo>
using namespace std;



#include "flann.h"

#ifdef WIN32
#define EXPORTED extern "C" __declspec(dllexport)
#else
#define EXPORTED extern "C"
#endif


namespace cvflann
{

typedef ObjectFactory<IndexParams, flann_algorithm_t> ParamsFactory;


IndexParams* IndexParams::createFromParameters(const FLANNParameters& p)
{
	IndexParams* params = ParamsFactory::instance().create(p.algorithm);
	params->fromParameters(p);

	return params;
}

NNIndex* LinearIndexParams::createIndex(const Matrix<float>& dataset) const
{
	return new LinearIndex(dataset, *this);
}


NNIndex* KDTreeIndexParams::createIndex(const Matrix<float>& dataset) const
{
	return new KDTreeIndex(dataset, *this);
}

NNIndex* KMeansIndexParams::createIndex(const Matrix<float>& dataset) const
{
	return new KMeansIndex(dataset, *this);
}


NNIndex* CompositeIndexParams::createIndex(const Matrix<float>& dataset) const
{
	return new CompositeIndex(dataset, *this);
}


NNIndex* AutotunedIndexParams::createIndex(const Matrix<float>& dataset) const
{
	return new AutotunedIndex(dataset, *this);
}


NNIndex* SavedIndexParams::createIndex(const Matrix<float>& dataset) const
{

	FILE* fin = fopen(filename.c_str(), "rb");
	if (fin==NULL) {
		return NULL;
	}
	IndexHeader header = load_header(fin);
	rewind(fin);
	IndexParams* params = ParamsFactory::instance().create(header.index_type);
	NNIndex* nnIndex =  params->createIndex(dataset);
	nnIndex->loadIndex(fin);
	fclose(fin);
	delete params; //?

	return nnIndex;

}

class StaticInit
{
public:
	StaticInit()
	{
		ParamsFactory::instance().register_<LinearIndexParams>(LINEAR);
		ParamsFactory::instance().register_<KDTreeIndexParams>(KDTREE);
		ParamsFactory::instance().register_<KMeansIndexParams>(KMEANS);
		ParamsFactory::instance().register_<CompositeIndexParams>(COMPOSITE);
		ParamsFactory::instance().register_<AutotunedIndexParams>(AUTOTUNED);
		ParamsFactory::instance().register_<SavedIndexParams>(SAVED);
	}
};
StaticInit __init;



Index::Index(const Matrix<float>& dataset, const IndexParams& params)
{
	nnIndex = params.createIndex(dataset);
	nnIndex->buildIndex();
}

Index::~Index()
{
	delete nnIndex;
}


void Index::knnSearch(const Matrix<float>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& searchParams)
{
	assert(queries.cols==nnIndex->veclen());
	assert(indices.rows>=queries.rows);
	assert(dists.rows>=queries.rows);
	assert(indices.cols>=knn);
	assert(dists.cols>=knn);


    search_for_neighbors(*nnIndex, queries, indices, dists, searchParams);
}

int Index::radiusSearch(const Matrix<float>& query, Matrix<int> indices, Matrix<float> dists, float radius, const SearchParams& searchParams)
{
	if (query.rows!=1) {
		printf("I can only search one feature at a time for range search\n");
		return -1;
	}
	assert(query.cols==nnIndex->veclen());

	RadiusResultSet resultSet(radius);
	resultSet.init(query.data, query.cols);
	nnIndex->findNeighbors(resultSet,query.data,searchParams);

	// TODO: optimize here
	int* neighbors = resultSet.getNeighbors();
	float* distances = resultSet.getDistances();
	int count_nn = min((long)resultSet.size(), indices.cols);

	assert (dists.cols>=count_nn);

	for (int i=0;i<count_nn;++i) {
		indices[0][i] = neighbors[i];
		dists[0][i] = distances[i];
	}

	return count_nn;
}


void Index::save(string filename)
{
	FILE* fout = fopen(filename.c_str(), "wb");
	if (fout==NULL) {
		logger.error("Cannot open file: %s", filename.c_str());
		throw FLANNException("Cannot open file");
	}
	nnIndex->saveIndex(fout);
	fclose(fout);
}

int Index::size() const
{
	return nnIndex->size();
}

int Index::veclen() const
{
	return nnIndex->veclen();
}


int hierarchicalClustering(const Matrix<float>& features, Matrix<float>& centers, const KMeansIndexParams& params)
{
    KMeansIndex kmeans(features, params);
	kmeans.buildIndex();

    int clusterNum = kmeans.getClusterCenters(centers);
	return clusterNum;
}

} // namespace FLANN



using namespace cvflann;

typedef NNIndex* NNIndexPtr;
typedef Matrix<float>* MatrixPtr;



void init_flann_parameters(FLANNParameters* p)
{
	if (p != NULL) {
 		flann_log_verbosity(p->log_level);
        if (p->random_seed>0) {
		  seed_random(p->random_seed);
        }
	}
}


EXPORTED void flann_log_verbosity(int level)
{
    if (level>=0) {
        logger.setLevel(level);
    }
}

EXPORTED void flann_set_distance_type(flann_distance_t distance_type, int order)
{
	flann_distance_type = distance_type;
	flann_minkowski_order = order;
}


EXPORTED flann_index_t flann_build_index(float* dataset, int rows, int cols, float* /*speedup*/, FLANNParameters* flann_params)
{
	try {
		init_flann_parameters(flann_params);
		if (flann_params == NULL) {
			throw FLANNException("The flann_params argument must be non-null");
		}
		IndexParams* params = IndexParams::createFromParameters(*flann_params);
		Index* index = new Index(Matrix<float>(rows,cols,dataset), *params);

		return index;
	}
	catch (runtime_error& e) {
		logger.error("Caught exception: %s\n",e.what());
		return NULL;
	}
}



EXPORTED int flann_save_index(flann_index_t index_ptr, char* filename)
{
	try {
		if (index_ptr==NULL) {
			throw FLANNException("Invalid index");
		}

		Index* index = (Index*)index_ptr;
		index->save(filename);

		return 0;
	}
	catch(runtime_error& e) {
		logger.error("Caught exception: %s\n",e.what());
		return -1;
	}
}


EXPORTED FLANN_INDEX flann_load_index(char* filename, float* dataset, int rows, int cols)
{
	try {
		Index* index = new Index(Matrix<float>(rows,cols,dataset), SavedIndexParams(filename));
		return index;
	}
	catch(runtime_error& e) {
		logger.error("Caught exception: %s\n",e.what());
		return NULL;
	}
}



EXPORTED int flann_find_nearest_neighbors(float* dataset,  int rows, int cols, float* testset, int tcount, int* result, float* dists, int nn, FLANNParameters* flann_params)
{
    int _result = 0;
	try {
		init_flann_parameters(flann_params);

		IndexParams* params = IndexParams::createFromParameters(*flann_params);
		Index* index = new Index(Matrix<float>(rows,cols,dataset), *params);
		Matrix<int> m_indices(tcount, nn, result);
		Matrix<float> m_dists(tcount, nn, dists);
		index->knnSearch(Matrix<float>(tcount, index->veclen(), testset),
						m_indices,
						m_dists, nn, SearchParams(flann_params->checks) );
	}
	catch(runtime_error& e) {
		logger.error("Caught exception: %s\n",e.what());
        _result = -1;
	}

	return _result;
}


EXPORTED int flann_find_nearest_neighbors_index(flann_index_t index_ptr, float* testset, int tcount, int* result, float* dists, int nn, int checks, FLANNParameters* flann_params)
{
	try {
		init_flann_parameters(flann_params);
		if (index_ptr==NULL) {
			throw FLANNException("Invalid index");
		}
		Index* index = (Index*) index_ptr;

		Matrix<int> m_indices(tcount, nn, result);
		Matrix<float> m_dists(tcount, nn, dists);
		index->knnSearch(Matrix<float>(tcount, index->veclen(), testset),
						m_indices,
						m_dists, nn, SearchParams(checks) );

	}
	catch(runtime_error& e) {
		logger.error("Caught exception: %s\n",e.what());
		return -1;
	}

	return -1;
}


EXPORTED int flann_radius_search(FLANN_INDEX index_ptr,
										float* query,
										int* indices,
										float* dists,
										int max_nn,
										float radius,
										int checks,
										FLANNParameters* flann_params)
{
	try {
		init_flann_parameters(flann_params);
		if (index_ptr==NULL) {
			throw FLANNException("Invalid index");
		}
		Index* index = (Index*) index_ptr;

		Matrix<int> m_indices(1, max_nn, indices);
		Matrix<float> m_dists(1, max_nn, dists);
		int count = index->radiusSearch(Matrix<float>(1, index->veclen(), query),
						m_indices,
						m_dists, radius, SearchParams(checks) );


		return count;
	}
	catch(runtime_error& e) {
		logger.error("Caught exception: %s\n",e.what());
		return -1;
	}

}


EXPORTED int flann_free_index(FLANN_INDEX index_ptr, FLANNParameters* flann_params)
{
	try {
		init_flann_parameters(flann_params);
        if (index_ptr==NULL) {
            throw FLANNException("Invalid index");
        }
        Index* index = (Index*) index_ptr;
        delete index;

        return 0;
	}
	catch(runtime_error& e) {
		logger.error("Caught exception: %s\n",e.what());
        return -1;
	}
}


EXPORTED int flann_compute_cluster_centers(float* dataset, int rows, int cols, int clusters, float* result, FLANNParameters* flann_params)
{
	try {
		init_flann_parameters(flann_params);

        MatrixPtr inputData = new Matrix<float>(rows,cols,dataset);
        KMeansIndexParams params(flann_params->branching, flann_params->iterations, flann_params->centers_init, flann_params->cb_index);
		Matrix<float> centers(clusters, cols, result);
        int clusterNum = hierarchicalClustering(*inputData,centers, params);

		return clusterNum;
	} catch (runtime_error& e) {
		logger.error("Caught exception: %s\n",e.what());
		return -1;
	}
}


EXPORTED void compute_ground_truth_float(float* dataset, int dshape[], float* testset, int tshape[], int* match, int mshape[], int skip)
{
    assert(dshape[1]==tshape[1]);
    assert(tshape[0]==mshape[0]);

    Matrix<int> _match(mshape[0], mshape[1], match);
    compute_ground_truth(Matrix<float>(dshape[0], dshape[1], dataset), Matrix<float>(tshape[0], tshape[1], testset), _match, skip);
}


EXPORTED float test_with_precision(FLANN_INDEX index_ptr, float* dataset, int dshape[], float* testset, int tshape[], int* matches, int mshape[],
             int nn, float precision, int* checks, int skip = 0)
{
    assert(dshape[1]==tshape[1]);
    assert(tshape[0]==mshape[0]);

    try {
        if (index_ptr==NULL) {
            throw FLANNException("Invalid index");
        }
        NNIndexPtr index = (NNIndexPtr)index_ptr;
        return test_index_precision(*index, Matrix<float>(dshape[0], dshape[1],dataset), Matrix<float>(tshape[0], tshape[1], testset),
                Matrix<int>(mshape[0],mshape[1],matches), precision, *checks, nn, skip);
    } catch (runtime_error& e) {
        logger.error("Caught exception: %s\n",e.what());
        return -1;
    }
}

EXPORTED float test_with_checks(FLANN_INDEX index_ptr, float* dataset, int dshape[], float* testset, int tshape[], int* matches, int mshape[],
             int nn, int checks, float* precision, int skip = 0)
{
    assert(dshape[1]==tshape[1]);
    assert(tshape[0]==mshape[0]);

    try {
        if (index_ptr==NULL) {
            throw FLANNException("Invalid index");
        }
        NNIndexPtr index = (NNIndexPtr)index_ptr;
        return test_index_checks(*index, Matrix<float>(dshape[0], dshape[1],dataset), Matrix<float>(tshape[0], tshape[1], testset),
                Matrix<int>(mshape[0],mshape[1],matches), checks, *precision, nn, skip);
    } catch (runtime_error& e) {
        logger.error("Caught exception: %s\n",e.what());
        return -1;
    }
}