1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
#include "opencl_kernels_core.hpp"
#include "stat.hpp"
namespace cv {
template<typename T>
static int countNonZero_(const T* src, int len )
{
int i=0, nz = 0;
#if CV_ENABLE_UNROLLED
for(; i <= len - 4; i += 4 )
nz += (src[i] != 0) + (src[i+1] != 0) + (src[i+2] != 0) + (src[i+3] != 0);
#endif
for( ; i < len; i++ )
nz += src[i] != 0;
return nz;
}
static int countNonZero8u( const uchar* src, int len )
{
int i=0, nz = 0;
#if CV_SIMD
int len0 = len & -v_uint8::nlanes;
v_uint8 v_zero = vx_setzero_u8();
v_uint8 v_one = vx_setall_u8(1);
v_uint32 v_sum32 = vx_setzero_u32();
while (i < len0)
{
v_uint16 v_sum16 = vx_setzero_u16();
int j = i;
while (j < std::min(len0, i + 65280 * v_uint16::nlanes))
{
v_uint8 v_sum8 = vx_setzero_u8();
int k = j;
for (; k < std::min(len0, j + 255 * v_uint8::nlanes); k += v_uint8::nlanes)
v_sum8 += v_one & (vx_load(src + k) == v_zero);
v_uint16 part1, part2;
v_expand(v_sum8, part1, part2);
v_sum16 += part1 + part2;
j = k;
}
v_uint32 part1, part2;
v_expand(v_sum16, part1, part2);
v_sum32 += part1 + part2;
i = j;
}
nz = i - v_reduce_sum(v_sum32);
v_cleanup();
#endif
for( ; i < len; i++ )
nz += src[i] != 0;
return nz;
}
static int countNonZero16u( const ushort* src, int len )
{
int i = 0, nz = 0;
#if CV_SIMD
int len0 = len & -v_int8::nlanes;
v_uint16 v_zero = vx_setzero_u16();
v_int8 v_one = vx_setall_s8(1);
v_int32 v_sum32 = vx_setzero_s32();
while (i < len0)
{
v_int16 v_sum16 = vx_setzero_s16();
int j = i;
while (j < std::min(len0, i + 32766 * v_int16::nlanes))
{
v_int8 v_sum8 = vx_setzero_s8();
int k = j;
for (; k < std::min(len0, j + 127 * v_int8::nlanes); k += v_int8::nlanes)
v_sum8 += v_one & v_pack(v_reinterpret_as_s16(vx_load(src + k) == v_zero), v_reinterpret_as_s16(vx_load(src + k + v_uint16::nlanes) == v_zero));
v_int16 part1, part2;
v_expand(v_sum8, part1, part2);
v_sum16 += part1 + part2;
j = k;
}
v_int32 part1, part2;
v_expand(v_sum16, part1, part2);
v_sum32 += part1 + part2;
i = j;
}
nz = i - v_reduce_sum(v_sum32);
v_cleanup();
#endif
return nz + countNonZero_(src + i, len - i);
}
static int countNonZero32s( const int* src, int len )
{
int i = 0, nz = 0;
#if CV_SIMD
int len0 = len & -v_int8::nlanes;
v_int32 v_zero = vx_setzero_s32();
v_int8 v_one = vx_setall_s8(1);
v_int32 v_sum32 = vx_setzero_s32();
while (i < len0)
{
v_int16 v_sum16 = vx_setzero_s16();
int j = i;
while (j < std::min(len0, i + 32766 * v_int16::nlanes))
{
v_int8 v_sum8 = vx_setzero_s8();
int k = j;
for (; k < std::min(len0, j + 127 * v_int8::nlanes); k += v_int8::nlanes)
v_sum8 += v_one & v_pack(
v_pack(vx_load(src + k ) == v_zero, vx_load(src + k + v_int32::nlanes) == v_zero),
v_pack(vx_load(src + k + 2*v_int32::nlanes) == v_zero, vx_load(src + k + 3*v_int32::nlanes) == v_zero)
);
v_int16 part1, part2;
v_expand(v_sum8, part1, part2);
v_sum16 += part1 + part2;
j = k;
}
v_int32 part1, part2;
v_expand(v_sum16, part1, part2);
v_sum32 += part1 + part2;
i = j;
}
nz = i - v_reduce_sum(v_sum32);
v_cleanup();
#endif
return nz + countNonZero_(src + i, len - i);
}
static int countNonZero32f( const float* src, int len )
{
int i = 0, nz = 0;
#if CV_SIMD
int len0 = len & -v_int8::nlanes;
v_float32 v_zero = vx_setzero_f32();
v_int8 v_one = vx_setall_s8(1);
v_int32 v_sum32 = vx_setzero_s32();
while (i < len0)
{
v_int16 v_sum16 = vx_setzero_s16();
int j = i;
while (j < std::min(len0, i + 32766 * v_int16::nlanes))
{
v_int8 v_sum8 = vx_setzero_s8();
int k = j;
for (; k < std::min(len0, j + 127 * v_int8::nlanes); k += v_int8::nlanes)
v_sum8 += v_one & v_pack(
v_pack(v_reinterpret_as_s32(vx_load(src + k ) == v_zero), v_reinterpret_as_s32(vx_load(src + k + v_float32::nlanes) == v_zero)),
v_pack(v_reinterpret_as_s32(vx_load(src + k + 2*v_float32::nlanes) == v_zero), v_reinterpret_as_s32(vx_load(src + k + 3*v_float32::nlanes) == v_zero))
);
v_int16 part1, part2;
v_expand(v_sum8, part1, part2);
v_sum16 += part1 + part2;
j = k;
}
v_int32 part1, part2;
v_expand(v_sum16, part1, part2);
v_sum32 += part1 + part2;
i = j;
}
nz = i - v_reduce_sum(v_sum32);
v_cleanup();
#endif
return nz + countNonZero_(src + i, len - i);
}
static int countNonZero64f( const double* src, int len )
{
return countNonZero_(src, len);
}
typedef int (*CountNonZeroFunc)(const uchar*, int);
static CountNonZeroFunc getCountNonZeroTab(int depth)
{
static CountNonZeroFunc countNonZeroTab[] =
{
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u),
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u),
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero32s), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero32f),
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero64f), 0
};
return countNonZeroTab[depth];
}
#ifdef HAVE_OPENCL
static bool ocl_countNonZero( InputArray _src, int & res )
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), kercn = ocl::predictOptimalVectorWidth(_src);
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if (depth == CV_64F && !doubleSupport)
return false;
int dbsize = ocl::Device::getDefault().maxComputeUnits();
size_t wgs = ocl::Device::getDefault().maxWorkGroupSize();
int wgs2_aligned = 1;
while (wgs2_aligned < (int)wgs)
wgs2_aligned <<= 1;
wgs2_aligned >>= 1;
ocl::Kernel k("reduce", ocl::core::reduce_oclsrc,
format("-D srcT=%s -D srcT1=%s -D cn=1 -D OP_COUNT_NON_ZERO"
" -D WGS=%d -D kercn=%d -D WGS2_ALIGNED=%d%s%s",
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)),
ocl::typeToStr(depth), (int)wgs, kercn,
wgs2_aligned, doubleSupport ? " -D DOUBLE_SUPPORT" : "",
_src.isContinuous() ? " -D HAVE_SRC_CONT" : ""));
if (k.empty())
return false;
UMat src = _src.getUMat(), db(1, dbsize, CV_32SC1);
k.args(ocl::KernelArg::ReadOnlyNoSize(src), src.cols, (int)src.total(),
dbsize, ocl::KernelArg::PtrWriteOnly(db));
size_t globalsize = dbsize * wgs;
if (k.run(1, &globalsize, &wgs, true))
return res = saturate_cast<int>(cv::sum(db.getMat(ACCESS_READ))[0]), true;
return false;
}
#endif
#if defined HAVE_IPP
static bool ipp_countNonZero( Mat &src, int &res )
{
CV_INSTRUMENT_REGION_IPP();
#if IPP_VERSION_X100 < 201801
// Poor performance of SSE42
if(cv::ipp::getIppTopFeatures() == ippCPUID_SSE42)
return false;
#endif
Ipp32s count = 0;
int depth = src.depth();
if(src.dims <= 2)
{
IppStatus status;
IppiSize size = {src.cols*src.channels(), src.rows};
if(depth == CV_8U)
status = CV_INSTRUMENT_FUN_IPP(ippiCountInRange_8u_C1R, (const Ipp8u *)src.ptr(), (int)src.step, size, &count, 0, 0);
else if(depth == CV_32F)
status = CV_INSTRUMENT_FUN_IPP(ippiCountInRange_32f_C1R, (const Ipp32f *)src.ptr(), (int)src.step, size, &count, 0, 0);
else
return false;
if(status < 0)
return false;
res = size.width*size.height - count;
}
else
{
IppStatus status;
const Mat *arrays[] = {&src, NULL};
Mat planes[1];
NAryMatIterator it(arrays, planes, 1);
IppiSize size = {(int)it.size*src.channels(), 1};
res = 0;
for (size_t i = 0; i < it.nplanes; i++, ++it)
{
if(depth == CV_8U)
status = CV_INSTRUMENT_FUN_IPP(ippiCountInRange_8u_C1R, it.planes->ptr<Ipp8u>(), (int)it.planes->step, size, &count, 0, 0);
else if(depth == CV_32F)
status = CV_INSTRUMENT_FUN_IPP(ippiCountInRange_32f_C1R, it.planes->ptr<Ipp32f>(), (int)it.planes->step, size, &count, 0, 0);
else
return false;
if(status < 0 || (int)it.planes->total()*src.channels() < count)
return false;
res += (int)it.planes->total()*src.channels() - count;
}
}
return true;
}
#endif
} // cv::
int cv::countNonZero( InputArray _src )
{
CV_INSTRUMENT_REGION();
int type = _src.type(), cn = CV_MAT_CN(type);
CV_Assert( cn == 1 );
#if defined HAVE_OPENCL || defined HAVE_IPP
int res = -1;
#endif
#ifdef HAVE_OPENCL
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2,
ocl_countNonZero(_src, res),
res)
#endif
Mat src = _src.getMat();
CV_IPP_RUN_FAST(ipp_countNonZero(src, res), res);
CountNonZeroFunc func = getCountNonZeroTab(src.depth());
CV_Assert( func != 0 );
const Mat* arrays[] = {&src, 0};
uchar* ptrs[1] = {};
NAryMatIterator it(arrays, ptrs);
int total = (int)it.size, nz = 0;
for( size_t i = 0; i < it.nplanes; i++, ++it )
nz += func( ptrs[0], total );
return nz;
}
void cv::findNonZero( InputArray _src, OutputArray _idx )
{
CV_INSTRUMENT_REGION();
Mat src = _src.getMat();
CV_Assert( src.type() == CV_8UC1 );
int n = countNonZero(src);
if( n == 0 )
{
_idx.release();
return;
}
if( _idx.kind() == _InputArray::MAT && !_idx.getMatRef().isContinuous() )
_idx.release();
_idx.create(n, 1, CV_32SC2);
Mat idx = _idx.getMat();
CV_Assert(idx.isContinuous());
Point* idx_ptr = idx.ptr<Point>();
for( int i = 0; i < src.rows; i++ )
{
const uchar* bin_ptr = src.ptr(i);
for( int j = 0; j < src.cols; j++ )
if( bin_ptr[j] )
*idx_ptr++ = Point(j, i);
}
}