1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::cuda::StereoConstantSpaceBP::estimateRecommendedParams(int, int, int&, int&, int&, int&) { throw_no_cuda(); }
Ptr<cuda::StereoConstantSpaceBP> cv::cuda::createStereoConstantSpaceBP(int, int, int, int, int) { throw_no_cuda(); return Ptr<cuda::StereoConstantSpaceBP>(); }
#else /* !defined (HAVE_CUDA) */
#include "cuda/stereocsbp.hpp"
namespace
{
class StereoCSBPImpl : public cuda::StereoConstantSpaceBP
{
public:
StereoCSBPImpl(int ndisp, int iters, int levels, int nr_plane, int msg_type);
void compute(InputArray left, InputArray right, OutputArray disparity);
void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream);
void compute(InputArray data, OutputArray disparity, Stream& stream);
int getMinDisparity() const { return min_disp_th_; }
void setMinDisparity(int minDisparity) { min_disp_th_ = minDisparity; }
int getNumDisparities() const { return ndisp_; }
void setNumDisparities(int numDisparities) { ndisp_ = numDisparities; }
int getBlockSize() const { return 0; }
void setBlockSize(int /*blockSize*/) {}
int getSpeckleWindowSize() const { return 0; }
void setSpeckleWindowSize(int /*speckleWindowSize*/) {}
int getSpeckleRange() const { return 0; }
void setSpeckleRange(int /*speckleRange*/) {}
int getDisp12MaxDiff() const { return 0; }
void setDisp12MaxDiff(int /*disp12MaxDiff*/) {}
int getNumIters() const { return iters_; }
void setNumIters(int iters) { iters_ = iters; }
int getNumLevels() const { return levels_; }
void setNumLevels(int levels) { levels_ = levels; }
double getMaxDataTerm() const { return max_data_term_; }
void setMaxDataTerm(double max_data_term) { max_data_term_ = (float) max_data_term; }
double getDataWeight() const { return data_weight_; }
void setDataWeight(double data_weight) { data_weight_ = (float) data_weight; }
double getMaxDiscTerm() const { return max_disc_term_; }
void setMaxDiscTerm(double max_disc_term) { max_disc_term_ = (float) max_disc_term; }
double getDiscSingleJump() const { return disc_single_jump_; }
void setDiscSingleJump(double disc_single_jump) { disc_single_jump_ = (float) disc_single_jump; }
int getMsgType() const { return msg_type_; }
void setMsgType(int msg_type) { msg_type_ = msg_type; }
int getNrPlane() const { return nr_plane_; }
void setNrPlane(int nr_plane) { nr_plane_ = nr_plane; }
bool getUseLocalInitDataCost() const { return use_local_init_data_cost_; }
void setUseLocalInitDataCost(bool use_local_init_data_cost) { use_local_init_data_cost_ = use_local_init_data_cost; }
private:
int min_disp_th_;
int ndisp_;
int iters_;
int levels_;
float max_data_term_;
float data_weight_;
float max_disc_term_;
float disc_single_jump_;
int msg_type_;
int nr_plane_;
bool use_local_init_data_cost_;
GpuMat mbuf_;
GpuMat temp_;
GpuMat outBuf_;
};
const float DEFAULT_MAX_DATA_TERM = 30.0f;
const float DEFAULT_DATA_WEIGHT = 1.0f;
const float DEFAULT_MAX_DISC_TERM = 160.0f;
const float DEFAULT_DISC_SINGLE_JUMP = 10.0f;
StereoCSBPImpl::StereoCSBPImpl(int ndisp, int iters, int levels, int nr_plane, int msg_type) :
min_disp_th_(0), ndisp_(ndisp), iters_(iters), levels_(levels),
max_data_term_(DEFAULT_MAX_DATA_TERM), data_weight_(DEFAULT_DATA_WEIGHT),
max_disc_term_(DEFAULT_MAX_DISC_TERM), disc_single_jump_(DEFAULT_DISC_SINGLE_JUMP),
msg_type_(msg_type), nr_plane_(nr_plane), use_local_init_data_cost_(true)
{
}
void StereoCSBPImpl::compute(InputArray left, InputArray right, OutputArray disparity)
{
compute(left, right, disparity, Stream::Null());
}
void StereoCSBPImpl::compute(InputArray _left, InputArray _right, OutputArray disp, Stream& _stream)
{
using namespace cv::cuda::device::stereocsbp;
CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ && 0 < nr_plane_ && levels_ <= 8 );
GpuMat left = _left.getGpuMat();
GpuMat right = _right.getGpuMat();
CV_Assert( left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4 );
CV_Assert( left.size() == right.size() && left.type() == right.type() );
cudaStream_t stream = StreamAccessor::getStream(_stream);
////////////////////////////////////////////////////////////////////////////////////////////
// Init
int rows = left.rows;
int cols = left.cols;
levels_ = std::min(levels_, int(log((double)ndisp_) / log(2.0)));
// compute sizes
AutoBuffer<int> buf(levels_ * 3);
int* cols_pyr = buf.data();
int* rows_pyr = cols_pyr + levels_;
int* nr_plane_pyr = rows_pyr + levels_;
cols_pyr[0] = cols;
rows_pyr[0] = rows;
nr_plane_pyr[0] = nr_plane_;
for (int i = 1; i < levels_; i++)
{
cols_pyr[i] = cols_pyr[i-1] / 2;
rows_pyr[i] = rows_pyr[i-1] / 2;
nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2;
}
GpuMat u[2], d[2], l[2], r[2], disp_selected_pyr[2], data_cost, data_cost_selected;
//allocate buffers
int buffers_count = 10; // (up + down + left + right + disp_selected_pyr) * 2
buffers_count += 2; // data_cost has twice more rows than other buffers, what's why +2, not +1;
buffers_count += 1; // data_cost_selected
mbuf_.create(rows * nr_plane_ * buffers_count, cols, msg_type_);
data_cost = mbuf_.rowRange(0, rows * nr_plane_ * 2);
data_cost_selected = mbuf_.rowRange(data_cost.rows, data_cost.rows + rows * nr_plane_);
for(int k = 0; k < 2; ++k) // in/out
{
GpuMat sub1 = mbuf_.rowRange(data_cost.rows + data_cost_selected.rows, mbuf_.rows);
GpuMat sub2 = sub1.rowRange((k+0)*sub1.rows/2, (k+1)*sub1.rows/2);
GpuMat *buf_ptrs[] = { &u[k], &d[k], &l[k], &r[k], &disp_selected_pyr[k] };
for(int _r = 0; _r < 5; ++_r)
{
*buf_ptrs[_r] = sub2.rowRange(_r * sub2.rows/5, (_r+1) * sub2.rows/5);
CV_DbgAssert( buf_ptrs[_r]->cols == cols && buf_ptrs[_r]->rows == rows * nr_plane_ );
}
};
size_t elem_step = mbuf_.step / mbuf_.elemSize();
Size temp_size = data_cost.size();
if ((size_t)temp_size.area() < elem_step * rows_pyr[levels_ - 1] * ndisp_)
temp_size = Size(static_cast<int>(elem_step), rows_pyr[levels_ - 1] * ndisp_);
temp_.create(temp_size, msg_type_);
////////////////////////////////////////////////////////////////////////////
// Compute
l[0].setTo(0, _stream);
d[0].setTo(0, _stream);
r[0].setTo(0, _stream);
u[0].setTo(0, _stream);
l[1].setTo(0, _stream);
d[1].setTo(0, _stream);
r[1].setTo(0, _stream);
u[1].setTo(0, _stream);
data_cost.setTo(0, _stream);
data_cost_selected.setTo(0, _stream);
int cur_idx = 0;
if (msg_type_ == CV_32F)
{
for (int i = levels_ - 1; i >= 0; i--)
{
if (i == levels_ - 1)
{
init_data_cost(left.ptr<uchar>(), right.ptr<uchar>(), temp_.ptr<uchar>(), left.step, left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<float>(), data_cost_selected.ptr<float>(),
elem_step, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], ndisp_, left.channels(), data_weight_, max_data_term_, min_disp_th_, use_local_init_data_cost_, stream);
}
else
{
compute_data_cost(left.ptr<uchar>(), right.ptr<uchar>(), left.step, disp_selected_pyr[cur_idx].ptr<float>(), data_cost.ptr<float>(), elem_step,
left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), data_weight_, max_data_term_, min_disp_th_, stream);
int new_idx = (cur_idx + 1) & 1;
init_message(temp_.ptr<uchar>(),
u[new_idx].ptr<float>(), d[new_idx].ptr<float>(), l[new_idx].ptr<float>(), r[new_idx].ptr<float>(),
u[cur_idx].ptr<float>(), d[cur_idx].ptr<float>(), l[cur_idx].ptr<float>(), r[cur_idx].ptr<float>(),
disp_selected_pyr[new_idx].ptr<float>(), disp_selected_pyr[cur_idx].ptr<float>(),
data_cost_selected.ptr<float>(), data_cost.ptr<float>(), elem_step, rows_pyr[i],
cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], stream);
cur_idx = new_idx;
}
calc_all_iterations(temp_.ptr<uchar>(), u[cur_idx].ptr<float>(), d[cur_idx].ptr<float>(), l[cur_idx].ptr<float>(), r[cur_idx].ptr<float>(),
data_cost_selected.ptr<float>(), disp_selected_pyr[cur_idx].ptr<float>(), elem_step,
rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], iters_, max_disc_term_, disc_single_jump_, stream);
}
}
else
{
for (int i = levels_ - 1; i >= 0; i--)
{
if (i == levels_ - 1)
{
init_data_cost(left.ptr<uchar>(), right.ptr<uchar>(), temp_.ptr<uchar>(), left.step, left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<short>(), data_cost_selected.ptr<short>(),
elem_step, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], ndisp_, left.channels(), data_weight_, max_data_term_, min_disp_th_, use_local_init_data_cost_, stream);
}
else
{
compute_data_cost(left.ptr<uchar>(), right.ptr<uchar>(), left.step, disp_selected_pyr[cur_idx].ptr<short>(), data_cost.ptr<short>(), elem_step,
left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), data_weight_, max_data_term_, min_disp_th_, stream);
int new_idx = (cur_idx + 1) & 1;
init_message(temp_.ptr<uchar>(),
u[new_idx].ptr<short>(), d[new_idx].ptr<short>(), l[new_idx].ptr<short>(), r[new_idx].ptr<short>(),
u[cur_idx].ptr<short>(), d[cur_idx].ptr<short>(), l[cur_idx].ptr<short>(), r[cur_idx].ptr<short>(),
disp_selected_pyr[new_idx].ptr<short>(), disp_selected_pyr[cur_idx].ptr<short>(),
data_cost_selected.ptr<short>(), data_cost.ptr<short>(), elem_step, rows_pyr[i],
cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], stream);
cur_idx = new_idx;
}
calc_all_iterations(temp_.ptr<uchar>(), u[cur_idx].ptr<short>(), d[cur_idx].ptr<short>(), l[cur_idx].ptr<short>(), r[cur_idx].ptr<short>(),
data_cost_selected.ptr<short>(), disp_selected_pyr[cur_idx].ptr<short>(), elem_step,
rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], iters_, max_disc_term_, disc_single_jump_, stream);
}
}
const int dtype = disp.fixedType() ? disp.type() : CV_16SC1;
disp.create(rows, cols, dtype);
GpuMat out = disp.getGpuMat();
if (dtype != CV_16SC1)
{
outBuf_.create(rows, cols, CV_16SC1);
out = outBuf_;
}
out.setTo(0, _stream);
if (msg_type_ == CV_32F)
{
compute_disp(u[cur_idx].ptr<float>(), d[cur_idx].ptr<float>(), l[cur_idx].ptr<float>(), r[cur_idx].ptr<float>(),
data_cost_selected.ptr<float>(), disp_selected_pyr[cur_idx].ptr<float>(), elem_step, out, nr_plane_pyr[0], stream);
}
else
{
compute_disp(u[cur_idx].ptr<short>(), d[cur_idx].ptr<short>(), l[cur_idx].ptr<short>(), r[cur_idx].ptr<short>(),
data_cost_selected.ptr<short>(), disp_selected_pyr[cur_idx].ptr<short>(), elem_step, out, nr_plane_pyr[0], stream);
}
if (dtype != CV_16SC1)
out.convertTo(disp, dtype, _stream);
}
void StereoCSBPImpl::compute(InputArray /*data*/, OutputArray /*disparity*/, Stream& /*stream*/)
{
CV_Error(Error::StsNotImplemented, "Not implemented");
}
}
Ptr<cuda::StereoConstantSpaceBP> cv::cuda::createStereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, int msg_type)
{
return makePtr<StereoCSBPImpl>(ndisp, iters, levels, nr_plane, msg_type);
}
void cv::cuda::StereoConstantSpaceBP::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane)
{
ndisp = (int) ((float) width / 3.14f);
if ((ndisp & 1) != 0)
ndisp++;
int mm = std::max(width, height);
iters = mm / 100 + ((mm > 1200)? - 4 : 4);
levels = (int)::log(static_cast<double>(mm)) * 2 / 3;
if (levels == 0) levels++;
nr_plane = (int) ((float) ndisp / std::pow(2.0, levels + 1));
}
#endif /* !defined (HAVE_CUDA) */