ml.hpp 22.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_ML_HPP__
#define __OPENCV_ML_HPP__

#ifdef __cplusplus
#  include "opencv2/core.hpp"
#endif

#ifdef __cplusplus

#include <float.h>
#include <map>
#include <iostream>

namespace cv
{

namespace ml
{

/* Variable type */
enum
{
    VAR_NUMERICAL    =0,
    VAR_ORDERED      =0,
    VAR_CATEGORICAL  =1
};

enum
{
    TEST_ERROR = 0,
    TRAIN_ERROR = 1
};

enum
{
    ROW_SAMPLE = 0,
    COL_SAMPLE = 1
};

class CV_EXPORTS_W_MAP ParamGrid
{
public:
    ParamGrid();
    ParamGrid(double _minVal, double _maxVal, double _logStep);

    CV_PROP_RW double minVal;
    CV_PROP_RW double maxVal;
    CV_PROP_RW double logStep;
};

class CV_EXPORTS TrainData
{
public:
    static inline float missingValue() { return FLT_MAX; }
    virtual ~TrainData();

    virtual int getLayout() const = 0;
    virtual int getNTrainSamples() const = 0;
    virtual int getNTestSamples() const = 0;
    virtual int getNSamples() const = 0;
    virtual int getNVars() const = 0;
    virtual int getNAllVars() const = 0;

    virtual void getSample(InputArray varIdx, int sidx, float* buf) const = 0;
    virtual Mat getSamples() const = 0;
    virtual Mat getMissing() const = 0;
    virtual Mat getTrainSamples(int layout=ROW_SAMPLE,
                                bool compressSamples=true,
                                bool compressVars=true) const = 0;
    virtual Mat getTrainResponses() const = 0;
    virtual Mat getTrainNormCatResponses() const = 0;
    virtual Mat getTestResponses() const = 0;
    virtual Mat getTestNormCatResponses() const = 0;
    virtual Mat getResponses() const = 0;
    virtual Mat getNormCatResponses() const = 0;
    virtual Mat getSampleWeights() const = 0;
    virtual Mat getTrainSampleWeights() const = 0;
    virtual Mat getTestSampleWeights() const = 0;
    virtual Mat getVarIdx() const = 0;
    virtual Mat getVarType() const = 0;
    virtual int getResponseType() const = 0;
    virtual Mat getTrainSampleIdx() const = 0;
    virtual Mat getTestSampleIdx() const = 0;
    virtual void getValues(int vi, InputArray sidx, float* values) const = 0;
    virtual void getNormCatValues(int vi, InputArray sidx, int* values) const = 0;
    virtual Mat getDefaultSubstValues() const = 0;

    virtual int getCatCount(int vi) const = 0;
    virtual Mat getClassLabels() const = 0;

    virtual Mat getCatOfs() const = 0;
    virtual Mat getCatMap() const = 0;

    virtual void setTrainTestSplit(int count, bool shuffle=true) = 0;
    virtual void setTrainTestSplitRatio(double ratio, bool shuffle=true) = 0;
    virtual void shuffleTrainTest() = 0;

    static Mat getSubVector(const Mat& vec, const Mat& idx);
    static Ptr<TrainData> loadFromCSV(const String& filename,
                                      int headerLineCount,
                                      int responseStartIdx=-1,
                                      int responseEndIdx=-1,
                                      const String& varTypeSpec=String(),
                                      char delimiter=',',
                                      char missch='?');
    static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses,
                                 InputArray varIdx=noArray(), InputArray sampleIdx=noArray(),
                                 InputArray sampleWeights=noArray(), InputArray varType=noArray());
};


class CV_EXPORTS_W StatModel : public Algorithm
{
public:
    enum { UPDATE_MODEL = 1, RAW_OUTPUT=1, COMPRESSED_INPUT=2, PREPROCESSED_INPUT=4 };
    virtual void clear();

    virtual int getVarCount() const = 0;

    virtual bool isTrained() const = 0;
    virtual bool isClassifier() const = 0;

    virtual bool train( const Ptr<TrainData>& trainData, int flags=0 );
    virtual bool train( InputArray samples, int layout, InputArray responses );
    virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const;
    virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;

    template<typename _Tp> static Ptr<_Tp> load(const String& filename)
    {
        FileStorage fs(filename, FileStorage::READ);
        Ptr<_Tp> model = _Tp::create();
        model->read(fs.getFirstTopLevelNode());
        return model->isTrained() ? model : Ptr<_Tp>();
    }

    template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data, const typename _Tp::Params& p, int flags=0)
    {
        Ptr<_Tp> model = _Tp::create(p);
        return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>();
    }

    template<typename _Tp> static Ptr<_Tp> train(InputArray samples, int layout, InputArray responses,
                                                 const typename _Tp::Params& p, int flags=0)
    {
        Ptr<_Tp> model = _Tp::create(p);
        return !model.empty() && model->train(TrainData::create(samples, layout, responses), flags) ? model : Ptr<_Tp>();
    }

    virtual void save(const String& filename) const;
    virtual String getDefaultModelName() const = 0;
};

/****************************************************************************************\
*                                 Normal Bayes Classifier                                *
\****************************************************************************************/

/* The structure, representing the grid range of statmodel parameters.
   It is used for optimizing statmodel accuracy by varying model parameters,
   the accuracy estimate being computed by cross-validation.
   The grid is logarithmic, so <step> must be greater then 1. */

class CV_EXPORTS_W NormalBayesClassifier : public StatModel
{
public:
    class CV_EXPORTS_W Params
    {
    public:
        Params();
    };
    virtual float predictProb( InputArray inputs, OutputArray outputs,
                               OutputArray outputProbs, int flags=0 ) const = 0;
    virtual void setParams(const Params& params) = 0;
    virtual Params getParams() const = 0;

    static Ptr<NormalBayesClassifier> create(const Params& params=Params());
};

/****************************************************************************************\
*                          K-Nearest Neighbour Classifier                                *
\****************************************************************************************/

// k Nearest Neighbors
class CV_EXPORTS_W KNearest : public StatModel
{
public:
    class CV_EXPORTS_W_MAP Params
    {
    public:
        Params(int defaultK=10, bool isclassifier=true);

        CV_PROP_RW int defaultK;
        CV_PROP_RW bool isclassifier;
    };
    virtual void setParams(const Params& p) = 0;
    virtual Params getParams() const = 0;
    virtual float findNearest( InputArray samples, int k,
                               OutputArray results,
                               OutputArray neighborResponses=noArray(),
                               OutputArray dist=noArray() ) const = 0;
    static Ptr<KNearest> create(const Params& params=Params());
};

/****************************************************************************************\
*                                   Support Vector Machines                              *
\****************************************************************************************/

// SVM model
class CV_EXPORTS_W SVM : public StatModel
{
public:
    class CV_EXPORTS_W_MAP Params
    {
    public:
        Params();
        Params( int svm_type, int kernel_type,
                double degree, double gamma, double coef0,
                double Cvalue, double nu, double p,
                const Mat& classWeights, TermCriteria termCrit );

        CV_PROP_RW int         svmType;
        CV_PROP_RW int         kernelType;
        CV_PROP_RW double      gamma, coef0, degree;

        CV_PROP_RW double      C;  // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
        CV_PROP_RW double      nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
        CV_PROP_RW double      p; // for CV_SVM_EPS_SVR
        CV_PROP_RW Mat         classWeights; // for CV_SVM_C_SVC
        CV_PROP_RW TermCriteria termCrit; // termination criteria
    };

    class CV_EXPORTS Kernel : public Algorithm
    {
    public:
        virtual int getType() const = 0;
        virtual void calc( int vcount, int n, const float* vecs, const float* another, float* results ) = 0;
    };

    // SVM type
    enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };

    // SVM kernel type
    enum { CUSTOM=-1, LINEAR=0, POLY=1, RBF=2, SIGMOID=3, CHI2=4, INTER=5 };

    // SVM params type
    enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };

    virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10,
                    ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C),
                    ParamGrid gammaGrid  = SVM::getDefaultGrid(SVM::GAMMA),
                    ParamGrid pGrid      = SVM::getDefaultGrid(SVM::P),
                    ParamGrid nuGrid     = SVM::getDefaultGrid(SVM::NU),
                    ParamGrid coeffGrid  = SVM::getDefaultGrid(SVM::COEF),
                    ParamGrid degreeGrid = SVM::getDefaultGrid(SVM::DEGREE),
                    bool balanced=false) = 0;

    CV_WRAP virtual Mat getSupportVectors() const = 0;

    virtual void setParams(const Params& p, const Ptr<Kernel>& customKernel=Ptr<Kernel>()) = 0;
    virtual Params getParams() const = 0;
    virtual Ptr<Kernel> getKernel() const = 0;
    virtual double getDecisionFunction(int i, OutputArray alpha, OutputArray svidx) const = 0;

    static ParamGrid getDefaultGrid( int param_id );
    static Ptr<SVM> create(const Params& p=Params(), const Ptr<Kernel>& customKernel=Ptr<Kernel>());
};

/****************************************************************************************\
*                              Expectation - Maximization                                *
\****************************************************************************************/
class CV_EXPORTS_W EM : public StatModel
{
public:
    // Type of covariation matrices
    enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL};

    // Default parameters
    enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};

    // The initial step
    enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};

    class CV_EXPORTS_W_MAP Params
    {
    public:
        explicit Params(int nclusters=DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
                        const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
                                                                  EM::DEFAULT_MAX_ITERS, 1e-6));
        CV_PROP_RW int nclusters;
        CV_PROP_RW int covMatType;
        CV_PROP_RW TermCriteria termCrit;
    };

    virtual void setParams(const Params& p) = 0;
    virtual Params getParams() const = 0;
    virtual Mat getWeights() const = 0;
    virtual Mat getMeans() const = 0;
    virtual void getCovs(std::vector<Mat>& covs) const = 0;

    CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0;

    virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ) = 0;

    static Ptr<EM> train(InputArray samples,
                          OutputArray logLikelihoods=noArray(),
                          OutputArray labels=noArray(),
                          OutputArray probs=noArray(),
                          const Params& params=Params());

    static Ptr<EM> train_startWithE(InputArray samples, InputArray means0,
                                     InputArray covs0=noArray(),
                                     InputArray weights0=noArray(),
                                     OutputArray logLikelihoods=noArray(),
                                     OutputArray labels=noArray(),
                                     OutputArray probs=noArray(),
                                     const Params& params=Params());

    static Ptr<EM> train_startWithM(InputArray samples, InputArray probs0,
                                     OutputArray logLikelihoods=noArray(),
                                     OutputArray labels=noArray(),
                                     OutputArray probs=noArray(),
                                     const Params& params=Params());
    static Ptr<EM> create(const Params& params=Params());
};


/****************************************************************************************\
*                                      Decision Tree                                     *
\****************************************************************************************/

class CV_EXPORTS_W DTrees : public StatModel
{
public:
    enum { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) };

    class CV_EXPORTS_W_MAP Params
    {
    public:
        Params();
        Params( int maxDepth, int minSampleCount,
               double regressionAccuracy, bool useSurrogates,
               int maxCategories, int CVFolds,
               bool use1SERule, bool truncatePrunedTree,
               const Mat& priors );

        CV_PROP_RW int   maxCategories;
        CV_PROP_RW int   maxDepth;
        CV_PROP_RW int   minSampleCount;
        CV_PROP_RW int   CVFolds;
        CV_PROP_RW bool  useSurrogates;
        CV_PROP_RW bool  use1SERule;
        CV_PROP_RW bool  truncatePrunedTree;
        CV_PROP_RW float regressionAccuracy;
        CV_PROP_RW Mat priors;
    };

    class CV_EXPORTS Node
    {
    public:
        Node();
        double value;
        int classIdx;

        int parent;
        int left;
        int right;
        int defaultDir;

        int split;
    };

    class CV_EXPORTS Split
    {
    public:
        Split();
        int varIdx;
        bool inversed;
        float quality;
        int next;
        float c;
        int subsetOfs;
    };

    virtual void setDParams(const Params& p);
    virtual Params getDParams() const;

    virtual const std::vector<int>& getRoots() const = 0;
    virtual const std::vector<Node>& getNodes() const = 0;
    virtual const std::vector<Split>& getSplits() const = 0;
    virtual const std::vector<int>& getSubsets() const = 0;

    static Ptr<DTrees> create(const Params& params=Params());
};

/****************************************************************************************\
*                                   Random Trees Classifier                              *
\****************************************************************************************/

class CV_EXPORTS_W RTrees : public DTrees
{
public:
    class CV_EXPORTS_W_MAP Params : public DTrees::Params
    {
    public:
        Params();
        Params( int maxDepth, int minSampleCount,
                double regressionAccuracy, bool useSurrogates,
                int maxCategories, const Mat& priors,
                bool calcVarImportance, int nactiveVars,
                TermCriteria termCrit );

        CV_PROP_RW bool calcVarImportance; // true <=> RF processes variable importance
        CV_PROP_RW int nactiveVars;
        CV_PROP_RW TermCriteria termCrit;
    };

    virtual void setRParams(const Params& p) = 0;
    virtual Params getRParams() const = 0;

    virtual Mat getVarImportance() const = 0;

    static Ptr<RTrees> create(const Params& params=Params());
};

/****************************************************************************************\
*                                   Boosted tree classifier                              *
\****************************************************************************************/

class CV_EXPORTS_W Boost : public DTrees
{
public:
    class CV_EXPORTS_W_MAP Params : public DTrees::Params
    {
    public:
        CV_PROP_RW int boostType;
        CV_PROP_RW int weakCount;
        CV_PROP_RW double weightTrimRate;

        Params();
        Params( int boostType, int weakCount, double weightTrimRate,
                int maxDepth, bool useSurrogates, const Mat& priors );
    };

    // Boosting type
    enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 };

    virtual Params getBParams() const = 0;
    virtual void setBParams(const Params& p) = 0;

    static Ptr<Boost> create(const Params& params=Params());
};

/****************************************************************************************\
*                                   Gradient Boosted Trees                               *
\****************************************************************************************/

/*class CV_EXPORTS_W GBTrees : public DTrees
{
public:
    struct CV_EXPORTS_W_MAP Params : public DTrees::Params
    {
        CV_PROP_RW int weakCount;
        CV_PROP_RW int lossFunctionType;
        CV_PROP_RW float subsamplePortion;
        CV_PROP_RW float shrinkage;

        Params();
        Params( int lossFunctionType, int weakCount, float shrinkage,
                float subsamplePortion, int maxDepth, bool useSurrogates );
    };

    enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};

    virtual void setK(int k) = 0;

    virtual float predictSerial( InputArray samples,
                                 OutputArray weakResponses, int flags) const = 0;

    static Ptr<GBTrees> create(const Params& p);
};*/

/****************************************************************************************\
*                              Artificial Neural Networks (ANN)                          *
\****************************************************************************************/

/////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////

class CV_EXPORTS_W ANN_MLP : public StatModel
{
public:
    struct CV_EXPORTS_W_MAP Params
    {
        Params();
        Params( const Mat& layerSizes, int activateFunc, double fparam1, double fparam2,
                TermCriteria termCrit, int trainMethod, double param1, double param2=0 );

        enum { BACKPROP=0, RPROP=1 };

        CV_PROP_RW Mat layerSizes;
        CV_PROP_RW int activateFunc;
        CV_PROP_RW double fparam1;
        CV_PROP_RW double fparam2;

        CV_PROP_RW TermCriteria termCrit;
        CV_PROP_RW int trainMethod;

        // backpropagation parameters
        CV_PROP_RW double bpDWScale, bpMomentScale;

        // rprop parameters
        CV_PROP_RW double rpDW0, rpDWPlus, rpDWMinus, rpDWMin, rpDWMax;
    };

    // possible activation functions
    enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 };

    // available training flags
    enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 };

    virtual Mat getWeights(int layerIdx) const = 0;
    virtual void setParams(const Params& p) = 0;
    virtual Params getParams() const = 0;

    static Ptr<ANN_MLP> create(const Params& params=Params());
};

/****************************************************************************************\
*                           Logistic Regression                                          *
\****************************************************************************************/

class CV_EXPORTS LogisticRegression : public StatModel
{
public:
    class CV_EXPORTS Params
    {
    public:
        Params(double learning_rate = 0.001,
               int iters = 1000,
               int method = LogisticRegression::BATCH,
               int normlization = LogisticRegression::REG_L2,
               int reg = 1,
               int batch_size = 1);
        double alpha;
        int num_iters;
        int norm;
        int regularized;
        int train_method;
        int mini_batch_size;
        TermCriteria term_crit;
    };

    enum { REG_L1 = 0, REG_L2 = 1};
    enum { BATCH = 0, MINI_BATCH = 1};

    // Algorithm interface
    virtual void write( FileStorage &fs ) const = 0;
    virtual void read( const FileNode &fn ) = 0;

    // StatModel interface
    virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ) = 0;
    virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
    virtual void clear() = 0;

    virtual Mat get_learnt_thetas() const = 0;

    static Ptr<LogisticRegression> create( const Params& params = Params() );
};

/****************************************************************************************\
*                           Auxilary functions declarations                              *
\****************************************************************************************/

/* Generates <sample> from multivariate normal distribution, where <mean> - is an
   average row vector, <cov> - symmetric covariation matrix */
CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples);

/* Generates sample from gaussian mixture distribution */
CV_EXPORTS void randGaussMixture( InputArray means, InputArray covs, InputArray weights,
                                  int nsamples, OutputArray samples, OutputArray sampClasses );

/* creates test set */
CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
                                                OutputArray samples, OutputArray responses);

}
}

#endif // __cplusplus
#endif // __OPENCV_ML_HPP__

/* End of file. */