1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_ML_HPP__
#define __OPENCV_ML_HPP__
#ifdef __cplusplus
# include "opencv2/core.hpp"
#endif
#ifdef __cplusplus
#include <float.h>
#include <map>
#include <iostream>
namespace cv
{
namespace ml
{
/* Variable type */
enum
{
VAR_NUMERICAL =0,
VAR_ORDERED =0,
VAR_CATEGORICAL =1
};
enum
{
TEST_ERROR = 0,
TRAIN_ERROR = 1
};
enum
{
ROW_SAMPLE = 0,
COL_SAMPLE = 1
};
class CV_EXPORTS_W_MAP ParamGrid
{
public:
ParamGrid();
ParamGrid(double _minVal, double _maxVal, double _logStep);
CV_PROP_RW double minVal;
CV_PROP_RW double maxVal;
CV_PROP_RW double logStep;
};
class CV_EXPORTS TrainData
{
public:
static inline float missingValue() { return FLT_MAX; }
virtual ~TrainData();
virtual int getLayout() const = 0;
virtual int getNTrainSamples() const = 0;
virtual int getNTestSamples() const = 0;
virtual int getNSamples() const = 0;
virtual int getNVars() const = 0;
virtual int getNAllVars() const = 0;
virtual void getSample(InputArray varIdx, int sidx, float* buf) const = 0;
virtual Mat getSamples() const = 0;
virtual Mat getMissing() const = 0;
virtual Mat getTrainSamples(int layout=ROW_SAMPLE,
bool compressSamples=true,
bool compressVars=true) const = 0;
virtual Mat getTrainResponses() const = 0;
virtual Mat getTrainNormCatResponses() const = 0;
virtual Mat getTestResponses() const = 0;
virtual Mat getTestNormCatResponses() const = 0;
virtual Mat getResponses() const = 0;
virtual Mat getNormCatResponses() const = 0;
virtual Mat getSampleWeights() const = 0;
virtual Mat getTrainSampleWeights() const = 0;
virtual Mat getTestSampleWeights() const = 0;
virtual Mat getVarIdx() const = 0;
virtual Mat getVarType() const = 0;
virtual int getResponseType() const = 0;
virtual Mat getTrainSampleIdx() const = 0;
virtual Mat getTestSampleIdx() const = 0;
virtual void getValues(int vi, InputArray sidx, float* values) const = 0;
virtual void getNormCatValues(int vi, InputArray sidx, int* values) const = 0;
virtual Mat getDefaultSubstValues() const = 0;
virtual int getCatCount(int vi) const = 0;
virtual Mat getClassLabels() const = 0;
virtual Mat getCatOfs() const = 0;
virtual Mat getCatMap() const = 0;
virtual void setTrainTestSplit(int count, bool shuffle=true) = 0;
virtual void setTrainTestSplitRatio(double ratio, bool shuffle=true) = 0;
virtual void shuffleTrainTest() = 0;
static Mat getSubVector(const Mat& vec, const Mat& idx);
static Ptr<TrainData> loadFromCSV(const String& filename,
int headerLineCount,
int responseStartIdx=-1,
int responseEndIdx=-1,
const String& varTypeSpec=String(),
char delimiter=',',
char missch='?');
static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses,
InputArray varIdx=noArray(), InputArray sampleIdx=noArray(),
InputArray sampleWeights=noArray(), InputArray varType=noArray());
};
class CV_EXPORTS_W StatModel : public Algorithm
{
public:
enum { UPDATE_MODEL = 1, RAW_OUTPUT=1, COMPRESSED_INPUT=2, PREPROCESSED_INPUT=4 };
virtual void clear();
virtual int getVarCount() const = 0;
virtual bool isTrained() const = 0;
virtual bool isClassifier() const = 0;
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 );
virtual bool train( InputArray samples, int layout, InputArray responses );
virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const;
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
template<typename _Tp> static Ptr<_Tp> load(const String& filename)
{
FileStorage fs(filename, FileStorage::READ);
Ptr<_Tp> model = _Tp::create();
model->read(fs.getFirstTopLevelNode());
return model->isTrained() ? model : Ptr<_Tp>();
}
template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data, const typename _Tp::Params& p, int flags=0)
{
Ptr<_Tp> model = _Tp::create(p);
return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>();
}
template<typename _Tp> static Ptr<_Tp> train(InputArray samples, int layout, InputArray responses,
const typename _Tp::Params& p, int flags=0)
{
Ptr<_Tp> model = _Tp::create(p);
return !model.empty() && model->train(TrainData::create(samples, layout, responses), flags) ? model : Ptr<_Tp>();
}
virtual void save(const String& filename) const;
virtual String getDefaultModelName() const = 0;
};
/****************************************************************************************\
* Normal Bayes Classifier *
\****************************************************************************************/
/* The structure, representing the grid range of statmodel parameters.
It is used for optimizing statmodel accuracy by varying model parameters,
the accuracy estimate being computed by cross-validation.
The grid is logarithmic, so <step> must be greater then 1. */
class CV_EXPORTS_W NormalBayesClassifier : public StatModel
{
public:
class CV_EXPORTS_W Params
{
public:
Params();
};
virtual float predictProb( InputArray inputs, OutputArray outputs,
OutputArray outputProbs, int flags=0 ) const = 0;
virtual void setParams(const Params& params) = 0;
virtual Params getParams() const = 0;
static Ptr<NormalBayesClassifier> create(const Params& params=Params());
};
/****************************************************************************************\
* K-Nearest Neighbour Classifier *
\****************************************************************************************/
// k Nearest Neighbors
class CV_EXPORTS_W KNearest : public StatModel
{
public:
class CV_EXPORTS_W_MAP Params
{
public:
Params(int defaultK=10, bool isclassifier=true);
CV_PROP_RW int defaultK;
CV_PROP_RW bool isclassifier;
};
virtual void setParams(const Params& p) = 0;
virtual Params getParams() const = 0;
virtual float findNearest( InputArray samples, int k,
OutputArray results,
OutputArray neighborResponses=noArray(),
OutputArray dist=noArray() ) const = 0;
static Ptr<KNearest> create(const Params& params=Params());
};
/****************************************************************************************\
* Support Vector Machines *
\****************************************************************************************/
// SVM model
class CV_EXPORTS_W SVM : public StatModel
{
public:
class CV_EXPORTS_W_MAP Params
{
public:
Params();
Params( int svm_type, int kernel_type,
double degree, double gamma, double coef0,
double Cvalue, double nu, double p,
const Mat& classWeights, TermCriteria termCrit );
CV_PROP_RW int svmType;
CV_PROP_RW int kernelType;
CV_PROP_RW double gamma, coef0, degree;
CV_PROP_RW double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
CV_PROP_RW double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
CV_PROP_RW double p; // for CV_SVM_EPS_SVR
CV_PROP_RW Mat classWeights; // for CV_SVM_C_SVC
CV_PROP_RW TermCriteria termCrit; // termination criteria
};
class CV_EXPORTS Kernel : public Algorithm
{
public:
virtual int getType() const = 0;
virtual void calc( int vcount, int n, const float* vecs, const float* another, float* results ) = 0;
};
// SVM type
enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };
// SVM kernel type
enum { CUSTOM=-1, LINEAR=0, POLY=1, RBF=2, SIGMOID=3, CHI2=4, INTER=5 };
// SVM params type
enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };
virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10,
ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C),
ParamGrid gammaGrid = SVM::getDefaultGrid(SVM::GAMMA),
ParamGrid pGrid = SVM::getDefaultGrid(SVM::P),
ParamGrid nuGrid = SVM::getDefaultGrid(SVM::NU),
ParamGrid coeffGrid = SVM::getDefaultGrid(SVM::COEF),
ParamGrid degreeGrid = SVM::getDefaultGrid(SVM::DEGREE),
bool balanced=false) = 0;
CV_WRAP virtual Mat getSupportVectors() const = 0;
virtual void setParams(const Params& p, const Ptr<Kernel>& customKernel=Ptr<Kernel>()) = 0;
virtual Params getParams() const = 0;
virtual Ptr<Kernel> getKernel() const = 0;
virtual double getDecisionFunction(int i, OutputArray alpha, OutputArray svidx) const = 0;
static ParamGrid getDefaultGrid( int param_id );
static Ptr<SVM> create(const Params& p=Params(), const Ptr<Kernel>& customKernel=Ptr<Kernel>());
};
/****************************************************************************************\
* Expectation - Maximization *
\****************************************************************************************/
class CV_EXPORTS_W EM : public StatModel
{
public:
// Type of covariation matrices
enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL};
// Default parameters
enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};
// The initial step
enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
class CV_EXPORTS_W_MAP Params
{
public:
explicit Params(int nclusters=DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
EM::DEFAULT_MAX_ITERS, 1e-6));
CV_PROP_RW int nclusters;
CV_PROP_RW int covMatType;
CV_PROP_RW TermCriteria termCrit;
};
virtual void setParams(const Params& p) = 0;
virtual Params getParams() const = 0;
virtual Mat getWeights() const = 0;
virtual Mat getMeans() const = 0;
virtual void getCovs(std::vector<Mat>& covs) const = 0;
CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0;
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ) = 0;
static Ptr<EM> train(InputArray samples,
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray(),
const Params& params=Params());
static Ptr<EM> train_startWithE(InputArray samples, InputArray means0,
InputArray covs0=noArray(),
InputArray weights0=noArray(),
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray(),
const Params& params=Params());
static Ptr<EM> train_startWithM(InputArray samples, InputArray probs0,
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray(),
const Params& params=Params());
static Ptr<EM> create(const Params& params=Params());
};
/****************************************************************************************\
* Decision Tree *
\****************************************************************************************/
class CV_EXPORTS_W DTrees : public StatModel
{
public:
enum { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) };
class CV_EXPORTS_W_MAP Params
{
public:
Params();
Params( int maxDepth, int minSampleCount,
double regressionAccuracy, bool useSurrogates,
int maxCategories, int CVFolds,
bool use1SERule, bool truncatePrunedTree,
const Mat& priors );
CV_PROP_RW int maxCategories;
CV_PROP_RW int maxDepth;
CV_PROP_RW int minSampleCount;
CV_PROP_RW int CVFolds;
CV_PROP_RW bool useSurrogates;
CV_PROP_RW bool use1SERule;
CV_PROP_RW bool truncatePrunedTree;
CV_PROP_RW float regressionAccuracy;
CV_PROP_RW Mat priors;
};
class CV_EXPORTS Node
{
public:
Node();
double value;
int classIdx;
int parent;
int left;
int right;
int defaultDir;
int split;
};
class CV_EXPORTS Split
{
public:
Split();
int varIdx;
bool inversed;
float quality;
int next;
float c;
int subsetOfs;
};
virtual void setDParams(const Params& p);
virtual Params getDParams() const;
virtual const std::vector<int>& getRoots() const = 0;
virtual const std::vector<Node>& getNodes() const = 0;
virtual const std::vector<Split>& getSplits() const = 0;
virtual const std::vector<int>& getSubsets() const = 0;
static Ptr<DTrees> create(const Params& params=Params());
};
/****************************************************************************************\
* Random Trees Classifier *
\****************************************************************************************/
class CV_EXPORTS_W RTrees : public DTrees
{
public:
class CV_EXPORTS_W_MAP Params : public DTrees::Params
{
public:
Params();
Params( int maxDepth, int minSampleCount,
double regressionAccuracy, bool useSurrogates,
int maxCategories, const Mat& priors,
bool calcVarImportance, int nactiveVars,
TermCriteria termCrit );
CV_PROP_RW bool calcVarImportance; // true <=> RF processes variable importance
CV_PROP_RW int nactiveVars;
CV_PROP_RW TermCriteria termCrit;
};
virtual void setRParams(const Params& p) = 0;
virtual Params getRParams() const = 0;
virtual Mat getVarImportance() const = 0;
static Ptr<RTrees> create(const Params& params=Params());
};
/****************************************************************************************\
* Boosted tree classifier *
\****************************************************************************************/
class CV_EXPORTS_W Boost : public DTrees
{
public:
class CV_EXPORTS_W_MAP Params : public DTrees::Params
{
public:
CV_PROP_RW int boostType;
CV_PROP_RW int weakCount;
CV_PROP_RW double weightTrimRate;
Params();
Params( int boostType, int weakCount, double weightTrimRate,
int maxDepth, bool useSurrogates, const Mat& priors );
};
// Boosting type
enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 };
virtual Params getBParams() const = 0;
virtual void setBParams(const Params& p) = 0;
static Ptr<Boost> create(const Params& params=Params());
};
/****************************************************************************************\
* Gradient Boosted Trees *
\****************************************************************************************/
/*class CV_EXPORTS_W GBTrees : public DTrees
{
public:
struct CV_EXPORTS_W_MAP Params : public DTrees::Params
{
CV_PROP_RW int weakCount;
CV_PROP_RW int lossFunctionType;
CV_PROP_RW float subsamplePortion;
CV_PROP_RW float shrinkage;
Params();
Params( int lossFunctionType, int weakCount, float shrinkage,
float subsamplePortion, int maxDepth, bool useSurrogates );
};
enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};
virtual void setK(int k) = 0;
virtual float predictSerial( InputArray samples,
OutputArray weakResponses, int flags) const = 0;
static Ptr<GBTrees> create(const Params& p);
};*/
/****************************************************************************************\
* Artificial Neural Networks (ANN) *
\****************************************************************************************/
/////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////
class CV_EXPORTS_W ANN_MLP : public StatModel
{
public:
struct CV_EXPORTS_W_MAP Params
{
Params();
Params( const Mat& layerSizes, int activateFunc, double fparam1, double fparam2,
TermCriteria termCrit, int trainMethod, double param1, double param2=0 );
enum { BACKPROP=0, RPROP=1 };
CV_PROP_RW Mat layerSizes;
CV_PROP_RW int activateFunc;
CV_PROP_RW double fparam1;
CV_PROP_RW double fparam2;
CV_PROP_RW TermCriteria termCrit;
CV_PROP_RW int trainMethod;
// backpropagation parameters
CV_PROP_RW double bpDWScale, bpMomentScale;
// rprop parameters
CV_PROP_RW double rpDW0, rpDWPlus, rpDWMinus, rpDWMin, rpDWMax;
};
// possible activation functions
enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 };
// available training flags
enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 };
virtual Mat getWeights(int layerIdx) const = 0;
virtual void setParams(const Params& p) = 0;
virtual Params getParams() const = 0;
static Ptr<ANN_MLP> create(const Params& params=Params());
};
/****************************************************************************************\
* Logistic Regression *
\****************************************************************************************/
class CV_EXPORTS LogisticRegression : public StatModel
{
public:
class CV_EXPORTS Params
{
public:
Params(double learning_rate = 0.001,
int iters = 1000,
int method = LogisticRegression::BATCH,
int normlization = LogisticRegression::REG_L2,
int reg = 1,
int batch_size = 1);
double alpha;
int num_iters;
int norm;
int regularized;
int train_method;
int mini_batch_size;
TermCriteria term_crit;
};
enum { REG_L1 = 0, REG_L2 = 1};
enum { BATCH = 0, MINI_BATCH = 1};
// Algorithm interface
virtual void write( FileStorage &fs ) const = 0;
virtual void read( const FileNode &fn ) = 0;
// StatModel interface
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 ) = 0;
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
virtual void clear() = 0;
virtual Mat get_learnt_thetas() const = 0;
static Ptr<LogisticRegression> create( const Params& params = Params() );
};
/****************************************************************************************\
* Auxilary functions declarations *
\****************************************************************************************/
/* Generates <sample> from multivariate normal distribution, where <mean> - is an
average row vector, <cov> - symmetric covariation matrix */
CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples);
/* Generates sample from gaussian mixture distribution */
CV_EXPORTS void randGaussMixture( InputArray means, InputArray covs, InputArray weights,
int nsamples, OutputArray samples, OutputArray sampClasses );
/* creates test set */
CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
OutputArray samples, OutputArray responses);
}
}
#endif // __cplusplus
#endif // __OPENCV_ML_HPP__
/* End of file. */