convolution_layer.cpp 50.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "../precomp.hpp"
#include "layers_common.hpp"
#include "op_halide.hpp"
#include "opencv2/core/hal/hal.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include <iostream>

namespace cv
{
namespace dnn
{

class BaseConvolutionLayerImpl : public ConvolutionLayer
{
public:
    BaseConvolutionLayerImpl() {}

    virtual bool supportBackend(int backendId)
    {
        return backendId == DNN_BACKEND_DEFAULT ||
               backendId == DNN_BACKEND_HALIDE && haveHalide();
    }

    void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
    {
        CV_Assert(inputs.size() > 0);

        CV_Assert(blobs.size() >= 1 && blobs.size() <= 2);
        CV_Assert(blobs[0].dims == 4 && blobs[0].size[3] == kernel.width && blobs[0].size[2] == kernel.height);

        const Mat &input = *inputs[0];
        CV_Assert(input.dims == 4 && (input.type() == CV_32F || input.type() == CV_64F));
        for (size_t i = 0; i < inputs.size(); i++)
        {
            CV_Assert(inputs[i]->type() == input.type());
            CV_Assert(inputs[i]->dims == 4 && inputs[i]->size[1] == input.size[1]);
            CV_Assert(inputs[i]->size[2] == input.size[2] && inputs[i]->size[3] == input.size[3]);
        }

        Size outSize = Size(outputs[0].size[3], outputs[0].size[2]);
        getConvPoolPaddings(Size(input.size[3], input.size[2]), outSize,
                kernel, stride, padMode, pad);
    }

    bool hasBias() const
    {
        return blobs.size() >= 2;
    }

    virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0;
    bool is1x1() const
    {
        return (kernel.height == 1 && kernel.width == 1) &&
        (stride.height == 1 && stride.width == 1) &&
        (dilation.height == 1 && dilation.width == 1);
    }

    virtual void applyHalideScheduler(Ptr<BackendNode>& node,
                                      const std::vector<Mat*> &inputs,
                                      const std::vector<Mat> &outputs,
                                      int targetId) const
    {
#ifdef HAVE_HALIDE
        if (targetId != DNN_TARGET_CPU)
        {
            Layer::applyHalideScheduler(node, inputs, outputs, targetId);
            return;
        }
        Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"), yi("yi"), yo("yo"), co("co"), ci("ci");
        Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs[1];
        Halide::Func& padded_input = node.dynamicCast<HalideBackendNode>()->funcs[0];

        int outW, outH, outC, outN;
        getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);

        if (outW == 1 || outH <= 2)
            return;

        if (is1x1() || outC <= 16)
            top.reorder(x, c, y)
               .split(y, yo, yi, 2)
               .fuse(yo, n, tile)
               .parallel(tile)
               .unroll(yi)
               .vectorize(x, outW >= 16 ? 16 : outW);
        else
            top.reorder(x, c, y)
               .split(y, yo, yi, 2)
               .split(c, co, ci, 16)
               .fuse(yo, co, tile).fuse(n, tile, tile)
               .parallel(tile)
               .unroll(yi)
               .vectorize(x, outW >= 16 ? 16 : outW);
        padded_input.compute_at(top, yi);
#endif  // HAVE_HALIDE
    }
};

//TODO: simultaneously convolution and bias addition for cache optimization
class ConvolutionLayerImpl : public BaseConvolutionLayerImpl
{
public:
    enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F };
    Mat weightsMat;
    std::vector<float> biasvec;
    std::vector<float> reluslope;
    Ptr<ActivationLayer> activ;
    Ptr<BatchNormLayer> bnorm;
    Ptr<ScaleLayer> scaleLayer;

    MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const
    {
        Size out(outShape[3], outShape[2]);
        int inpGroupCn = blobs[0].size[1];
        int ksize = inpGroupCn * kernel.height * kernel.width;
        return shape(out.area(), ksize);
    }

    bool getMemoryShapes(const std::vector<MatShape> &inputs,
                         const int requiredOutputs,
                         std::vector<MatShape> &outputs,
                         std::vector<MatShape> &internals) const
    {
        CV_Assert(blobs.size() != 0);
        CV_Assert(!hasBias() || blobs[1].total() == (size_t)blobs[0].size[0]);
        CV_Assert(inputs.size() == (size_t)1);

        internals.clear();

        int inpCn = inputs[0][1];
        int inpH = inputs[0][2];
        int inpW = inputs[0][3];

        int outCn = blobs[0].size[0];
        Size out;

        if (padMode.empty())
        {
            out.height = (inpH + 2 * pad.height - (dilation.height * (kernel.height - 1) + 1)) / stride.height + 1;
            out.width = (inpW + 2 * pad.width - (dilation.width * (kernel.width - 1) + 1)) / stride.width + 1;
        }
        else
        {
            getConvPoolOutParams(Size(inpW, inpH), kernel, stride, padMode, out);
        }

        int ngroups = inpCn / blobs[0].size[1];
        CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0);

        int dims[] = {inputs[0][0], outCn, out.height, out.width};
        outputs.resize(inputs.size(), shape(dims));

        return false;
    }

    bool setActivation(const Ptr<ActivationLayer>& layer)
    {
        activ = layer;
        if (activ.empty())
            reluslope.clear();
        return !activ.empty();
    }

    bool setBatchNorm(const Ptr<BatchNormLayer>& layer )
    {
        // for now the scale layer followed by the batch norm cannot be fused, only vice versa.
        if( !scaleLayer.empty() )
            return false;
        bnorm = layer;
        // we will need to re-compute the weights with the batch
        // norm coefficients taken into account
        weightsMat.release();
        return !bnorm.empty();
    }

    bool setScale(const Ptr<ScaleLayer>& layer)
    {
        scaleLayer = layer;
        // we will need to re-compute the weights with the scaling
        // coefficients taken into account
        weightsMat.release();
        return !scaleLayer.empty();
    }

    virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
    {
#ifdef HAVE_HALIDE
        Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);

        const int inpCn = inputBuffer.channels();
        const int outCn = blobs[0].size[0];
        const int inpGroupCn = blobs[0].size[1];
        const int group = inpCn / inpGroupCn;
        const int outGroupCn = outCn / group;

        Halide::Buffer<float> weights = wrapToHalideBuffer(blobs[0]);

        Halide::Var x("x"), y("y"), c("c"), n("n");
        Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
        Halide::Func padded_input(name + "_constant_exterior");
        if (pad.width || pad.height)
        {
            Halide::Func bounded =
                Halide::BoundaryConditions::constant_exterior(inputBuffer, 0);
            padded_input(x, y, c, n) = bounded(x, y, c, n);
        }
        else
        {
            padded_input(x, y, c, n) = inputBuffer(x, y, c, n);
        }

        Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn);

        Halide::Expr kc = r.z;
        if (group > 1)
        {
            int outCnBound = outGroupCn;
            int inpChBound = inpGroupCn;
            Halide::Expr shift = select(c < outCnBound, 0, inpChBound);
            for (int i = 2; i < group; ++i)
            {
                outCnBound += outGroupCn;
                inpChBound += inpGroupCn;
                shift = select(c < outCnBound, shift, inpChBound);
            }
            kc += shift;
        }

        Halide::Expr kx = x * stride.width - pad.width + r.x * dilation.width;
        Halide::Expr ky = y * stride.height - pad.height + r.y * dilation.height;
        Halide::Expr topExpr = sum(padded_input(kx, ky, kc, n) *
                                   weights(r.x, r.y, r.z, c));
        if (hasBias())
        {
            Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outCn});
            topExpr += bias(c);
        }
        top(x, y, c, n) = topExpr;
        Ptr<BackendNode> pp(new HalideBackendNode({ padded_input, top }));
        return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
#endif  // HAVE_HALIDE
        return Ptr<BackendNode>();
    }

    class ParallelConv : public cv::ParallelLoopBody
    {
    public:
        enum { BLK_SIZE = 32, BLK_SIZE_CN = 64 };

        const Mat* input_;
        const Mat* weights_;
        Mat* output_;
        int outShape[4];
        Size kernel_, pad_, stride_, dilation_;
        int ngroups_, nstripes_;
        std::vector<int> ofstab_;
        const std::vector<float>* biasvec_;
        const std::vector<float>* reluslope_;
        const ActivationLayer* activ_;
        bool is1x1_;
        bool useAVX;
        bool useAVX2;

        ParallelConv()
            : input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0),
              biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false)
        {}

        static void run( const Mat& input, Mat& output, const Mat& weights,
                         const std::vector<float>& biasvec,
                         const std::vector<float>& reluslope,
                         Size kernel, Size pad, Size stride, Size dilation,
                         const ActivationLayer* activ, int ngroups, int nstripes )
        {
            CV_Assert( input.dims == 4 && output.dims == 4 &&
                       input.size[0] == output.size[0] &&
                       weights.rows == output.size[1] &&
                       weights.cols == (input.size[1]/ngroups)*kernel.width*kernel.height &&
                       input.type() == output.type() &&
                       input.type() == weights.type() &&
                       input.type() == CV_32F &&
                       input.isContinuous() &&
                       output.isContinuous() &&
                       biasvec.size() == (size_t)output.size[1]+2);
            ParallelConv p;

            p.input_ = &input;
            p.weights_ = &weights;
            p.output_ = &output;
            for( int i = 0; i < 4; i++ ) p.outShape[i] = output.size[i];
            p.outShape[1] /= ngroups;
            p.kernel_ = kernel; p.pad_ = pad; p.stride_ = stride; p.dilation_ = dilation;
            p.ngroups_ = ngroups;
            p.nstripes_ = nstripes;

            int inpCnAll = input.size[1], width = input.size[3], height = input.size[2];
            int inpCn = inpCnAll / ngroups;
            p.is1x1_ = kernel == Size(0,0) && pad == Size(0, 0);
            p.useAVX = checkHardwareSupport(CPU_AVX);
            p.useAVX2 = checkHardwareSupport(CPU_AVX2);

            int ncn = std::min(inpCn, (int)BLK_SIZE_CN);
            p.ofstab_.resize(kernel.width*kernel.height*ncn);
            int* ofstab = &p.ofstab_[0];

            for( int k = 0; k < ncn; k++ )
                for( int k_r = 0; k_r < kernel.height; k_r++ )
                    for( int k_c = 0; k_c < kernel.width; k_c++ )
                        ofstab[(k*kernel.height + k_r)*kernel.width + k_c] =
                        (k*height + k_r*dilation.height)*width + k_c*dilation.width;

            p.biasvec_ = &biasvec;
            p.reluslope_ = &reluslope;
            p.activ_ = p.reluslope_->empty() ? activ : 0;

            parallel_for_(Range(0, nstripes), p, nstripes);
        }

        virtual void operator ()(const Range &r0) const
        {
            const int valign = ConvolutionLayerImpl::VEC_ALIGN;
            int ngroups = ngroups_, batchSize = input_->size[0]*ngroups;
            int outW = output_->size[3], outH = output_->size[2], outCn = output_->size[1]/ngroups;
            int width = input_->size[3], height = input_->size[2], inpCn = input_->size[1]/ngroups;
            int nstripes = nstripes_;
            int kernel_w = kernel_.width, kernel_h = kernel_.height;
            int pad_w = pad_.width, pad_h = pad_.height;
            int stride_w = stride_.width, stride_h = stride_.height;
            int dilation_w = dilation_.width, dilation_h = dilation_.height;
            int karea = kernel_w*kernel_h;
            int i, j, k;
            size_t inpPlaneSize = width*height;
            size_t outPlaneSize = outW*outH;
            bool is1x1 = is1x1_;

            int stripesPerSample;
            size_t stripeSize;
            Range r = r0;

            if( nstripes >= batchSize*2 )
            {
                stripesPerSample = nstripes/batchSize;
                stripeSize = alignSize((outPlaneSize + stripesPerSample - 1)/stripesPerSample, valign);
                stripeSize = std::min(stripeSize, outPlaneSize);
            }
            else
            {
                stripesPerSample = 1;
                int samplesPerStripe = std::max((batchSize + nstripes - 1)/nstripes, 1);
                r.start *= samplesPerStripe;
                r.end *= samplesPerStripe;
                nstripes *= samplesPerStripe;
                stripeSize = outPlaneSize;
            }

            const float* data_inp0_ = input_->ptr<float>();
            const int* ofstab = &ofstab_[0];
            const float* wptr_orig_ = weights_->ptr<float>();
            size_t wstep = weights_->step1();
            const float* biasptr_ = &biasvec_->at(0);
            const float* reluptr_ = reluslope_->empty() ? 0 : &reluslope_->at(0);
            float* data_out0_ = output_->ptr<float>();
            size_t rowbufsz = (size_t)karea*BLK_SIZE_CN*BLK_SIZE;
            AutoBuffer<float> rowbuf0_(rowbufsz + valign);
            float* rowbuf0 = alignPtr((float*)rowbuf0_, (int)(valign*sizeof(float)));

            // we clear the buffer once; ultimately, it lets us to avoid
            // tail processing after running the unrolled/vectorized loop.
            // the main idea is to make sure that the tail (a.k.a. padding) of each row
            // (i.e. the elements with indices between vsz=karea*ncn and vsz_a)
            // does not contain NaNs or Infs. Because the padding in the weights
            // matrix is explicitly initialized with 0's, we handle all other
            // cases nicely, i.e. we can skip expliciting re-initialization
            // of the padding - we just retain elements from the previous iteration
            // of the loop over channels (cn0).
            memset(rowbuf0, 0, rowbufsz*sizeof(rowbuf0[0]) );

            for( int stripe = r.start; stripe < r.end; stripe++ )
            {
                int subsampleIdx = stripe/stripesPerSample;
                if( subsampleIdx >= batchSize )
                    break;
                int stripeStart = (int)((stripe - subsampleIdx*stripesPerSample)*stripeSize);
                int stripeEnd = (int)std::min(stripeStart + stripeSize, outPlaneSize);
                const float* data_inp0 = data_inp0_ + subsampleIdx*inpPlaneSize*inpCn;
                float* data_out0 = data_out0_ + subsampleIdx*outPlaneSize*outCn;
                int startOutCn = (subsampleIdx % ngroups)*outCn;
                const float* wptr_orig = wptr_orig_ + wstep*startOutCn;
                const float* biasptr = biasptr_ + startOutCn;

                for( int cn0 = 0; cn0 < inpCn; cn0 += BLK_SIZE_CN )
                {
                    int cn1 = std::min(cn0 + BLK_SIZE_CN, inpCn);
                    int ncn = cn1 - cn0, vsz = karea*ncn;
                    int vsz_a = (int)alignSize(vsz, valign);
                    const float* wptr = wptr_orig + cn0*karea;
                    // we apply [Channels][P]ReLU (if any) during the final pass only.
                    const float* relu = cn1 == inpCn && reluptr_ ? reluptr_ + startOutCn : 0;

                    for( int ofs0 = stripeStart; ofs0 < stripeEnd; ofs0 += BLK_SIZE )
                    {
                        int ofs, ofs1 = std::min(ofs0 + BLK_SIZE, stripeEnd);
                        int out_i = ofs0 / outW;
                        int out_j = ofs0 - out_i * outW;

                        // do im2row for a part of input tensor
                        float* rowbuf = rowbuf0;
                        for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i )
                        {
                            int delta = std::min(ofs1 - ofs, outW - out_j);
                            int out_j1 = out_j + delta;
                            int in_i = out_i * stride_h - pad_h;
                            int in_j = out_j * stride_w - pad_w;
                            const float* imgptr = data_inp0 + (cn0*height + in_i)*width + in_j;
                            ofs += delta;

                            // do im2row for a part of input tensor
                            if( is1x1 )
                            {
                                for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w )
                                {
                                    for( k = 0; k < vsz; k++ )
                                        rowbuf[k] = imgptr[k*inpPlaneSize];
                                }
                            }
                            else
                            {
                                bool ok_i = 0 <= in_i && in_i < height - (kernel_h-1)*dilation_h;
                                int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h);
                                int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h);

                                for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w )
                                {
                                    // this condition should be true for most of the tensor elements, i.e.
                                    // most of the time the kernel aperture is inside the tensor X-Y plane.
                                    if( ok_i && out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w )
                                    {
                                        for( k = 0; k < vsz; k++ )
                                        {
                                            int k1 = ofstab[k];
                                            float v0 = imgptr[k1];
                                            float v1 = imgptr[k1 + stride_w];
                                            rowbuf[k] = v0;
                                            rowbuf[k+vsz_a] = v1;
                                        }
                                        out_j++;
                                        rowbuf += vsz_a;
                                        imgptr += stride_w;
                                        in_j += stride_w;
                                    }
                                    else
                                    {
                                        int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w);
                                        int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w);

                                        // here some non-continous sub-row of the row will not be
                                        // filled from the tensor; we need to make sure that the uncovered
                                        // elements are explicitly set to 0's. the easiest way is to
                                        // set all the elements to 0's before the loop.
                                        memset(rowbuf, 0, vsz*sizeof(rowbuf[0]));
                                        for( k = 0; k < ncn; k++ )
                                        {
                                            for( i = i0; i < i1; i++ )
                                            {
                                                for( j = j0; j < j1; j++ )
                                                {
                                                    int imgofs = k*(width*height) + i*(dilation_h*width) + j*dilation_w;
                                                    rowbuf[(k*kernel_h + i)*kernel_w + j] = imgptr[imgofs];
                                                }
                                            }
                                        }
                                    }
                                }
                            }
                        }

                        // now compute dot product of the weights
                        // and im2row-transformed part of the tensor
                        int bsz = ofs1 - ofs0;
                    #if CV_TRY_AVX2
                        if(useAVX2)
                            opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
                                          outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
                        else
                    #endif
                    #if CV_TRY_AVX
                        if(useAVX)
                            opt_AVX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
                                         outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
                        else
                    #endif
                        for( int i = 0; i < outCn; i += 2 )
                        {
                            const float* wptr0 = wptr + i*wstep;
                            const float* wptr1 = wptr0 + wstep;
                            float* outptr0 = data_out0 + ofs0 + i*outPlaneSize;
                            float* outptr1 = outptr0 + outPlaneSize;
                            float bias0 = biasptr[i], bias1 = biasptr[i+1];
                            float r0 = 1.f, r1 = 1.f;

                            if( i+1 >= outCn )
                            {
                                wptr1 = wptr0;
                                outptr1 = outptr0;
                                bias1 = bias0;
                            }

                            if( relu )
                            {
                                r0 = relu[i];
                                r1 = relu[i+1];
                            }

                            int j = 0;
                        #if CV_SIMD128
                            v_float32x4 vr0 = v_setall_f32(r0), vr1 = v_setall_f32(r1), z = v_setzero_f32();

                            for( ; j <= bsz - 4; j += 4 )
                            {
                                const float* rptr = rowbuf0 + j*vsz_a;
                                v_float32x4 s0, s1;

                                if( cn0 == 0 )
                                {
                                    s0 = v_setall_f32(bias0);
                                    s1 = v_setall_f32(bias1);
                                }
                                else
                                {
                                    s0 = v_load(outptr0 + j);
                                    s1 = v_load(outptr1 + j);
                                }

                                v_float32x4 vs00 = v_setzero_f32(), vs01 = v_setzero_f32(),
                                            vs02 = v_setzero_f32(), vs03 = v_setzero_f32(),
                                            vs10 = v_setzero_f32(), vs11 = v_setzero_f32(),
                                            vs12 = v_setzero_f32(), vs13 = v_setzero_f32();
                                for( k = 0; k < vsz; k += 4, rptr += 4 )
                                {
                                    v_float32x4 w0 = v_load_aligned(wptr0 + k), w1 = v_load_aligned(wptr1 + k);
                                    v_float32x4 r0 = v_load_aligned(rptr), r1 = v_load_aligned(rptr + vsz_a),
                                                r2 = v_load_aligned(rptr + vsz_a*2), r3 = v_load_aligned(rptr + vsz_a*3);

                                    vs00 += w0*r0;
                                    vs01 += w0*r1;
                                    vs02 += w0*r2;
                                    vs03 += w0*r3;

                                    vs10 += w1*r0;
                                    vs11 += w1*r1;
                                    vs12 += w1*r2;
                                    vs13 += w1*r3;
                                }
                                s0 += v_reduce_sum4(vs00, vs01, vs02, vs03);
                                s1 += v_reduce_sum4(vs10, vs11, vs12, vs13);
                                if( relu )
                                {
                                    s0 = v_select(s0 > z, s0, s0*vr0);
                                    s1 = v_select(s1 > z, s1, s1*vr1);
                                }

                                v_store(outptr0 + j, s0);
                                v_store(outptr1 + j, s1);
                            }
                        #endif
                            for( ; j < bsz; j++ )
                            {
                                const float* rptr = rowbuf0 + j*vsz_a;
                                float s00, s10;

                                if( cn0 == 0 )
                                {
                                    s00 = bias0;
                                    s10 = bias1;
                                }
                                else
                                {
                                    s00 = outptr0[j];
                                    s10 = outptr1[j];
                                }

                                for( k = 0; k < vsz; k++ )
                                {
                                    float r0 = rptr[k];
                                    s00 += wptr0[k]*r0;
                                    s10 += wptr1[k]*r0;
                                }
                                if( relu )
                                {
                                    s00 = s00 > 0.f ? s00 : s00*r0;
                                    s10 = s10 > 0.f ? s10 : s10*r1;
                                }

                                outptr0[j] = s00;
                                outptr1[j] = s10;
                            }
                        }
                    }
                }

                if( activ_ )
                    activ_->forwardSlice(data_out0 + stripeStart, data_out0 + stripeStart,
                                         (int)(stripeEnd - stripeStart),
                                         outPlaneSize, startOutCn, startOutCn + outCn);
            }
        }
    };

    void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
    {
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(name, "name", name.c_str());

        /*printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
               name.c_str(), inputs[0]->size[0], inputs[0]->size[1], inputs[0]->size[2], inputs[0]->size[3],
               kernel.width, kernel.height, pad.width, pad.height,
               stride.width, stride.height, dilation.width, dilation.height);*/
        CV_Assert(inputs.size() == (size_t)1 && inputs[0]->size[1] % blobs[0].size[1] == 0);
        int ngroups = inputs[0]->size[1]/blobs[0].size[1];
        CV_Assert(outputs[0].size[1] % ngroups == 0);

        int k, outCn = blobs[0].size[0];

        if( weightsMat.empty() )
        {
            // prepare weightsMat where each row is aligned and has enough zero padding on the right to
            // use vectorized (i.e. with intrinsics) loops without tail processing
            Mat wm = blobs[0].reshape(1, outCn).clone();
            if( wm.step1() % VEC_ALIGN != 0 )
            {
                int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
                Mat wm_buffer = Mat(outCn, newcols, wm.type());
                Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
                wm_padding.setTo(Scalar::all(0.));
                Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
                wm.copyTo(wm_aligned);
                wm = wm_aligned;
            }
            weightsMat = wm;

            Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat();
            biasvec.resize(outCn+2);
            if( biasMat.empty() )
            {
                for( k = 0; k < outCn; k++ )
                    biasvec[k] = 0.f;
            }
            else
            {
                for( k = 0; k < outCn; k++ )
                    biasvec[k] = biasMat.at<float>(k);
            }

            if( !bnorm.empty() || !scaleLayer.empty() )
            {
                Mat scale, shift, scale2, shift2;
                const float *scaleptr = 0, *shiftptr = 0;
                const float *scaleptr2 = 0, *shiftptr2 = 0;

                if( !bnorm.empty() )
                {
                    bnorm->getScaleShift(scale, shift);
                    CV_Assert( scale.isContinuous() && shift.isContinuous() &&
                               scale.type() == CV_32F && shift.type() == CV_32F &&
                               scale.total() == (size_t)outCn &&
                               shift.total() == (size_t)outCn );
                    scaleptr = scale.ptr<float>();
                    shiftptr = shift.ptr<float>();
                }
                if( !scaleLayer.empty() )
                {
                    scale2 = scaleLayer->blobs[0];
                    CV_Assert( scale2.isContinuous() && scale2.type() == CV_32F &&
                               scale2.total() == (size_t)outCn );
                    scaleptr2 = scale2.ptr<float>();
                    if( scaleLayer->hasBias )
                    {
                        shift2 = scaleLayer->blobs[1];
                        CV_Assert( shift2.isContinuous() && shift2.type() == CV_32F &&
                                   shift2.total() == (size_t)outCn );
                        shiftptr2 = shift2.ptr<float>();
                    }
                }

                for( int i = 0; i < outCn; i++ )
                {
                    float s1 = scaleptr ? scaleptr[i] : 1.f;
                    float delta1 = shiftptr ? shiftptr[i] : 0.f;
                    float s2 = scaleptr2 ? scaleptr2[i] : 1.f;
                    float delta2 = shiftptr2 ? shiftptr2[i] : 0.f;
                    float* w_i = weightsMat.ptr<float>(i);
                    int j, wcols = weightsMat.cols;

                    for( j = 0; j < wcols; j++ )
                        w_i[j] *= (s1*s2);

                    biasvec[i] = biasvec[i]*(s1*s2) + (delta1*s2 + delta2);
                }
            }
            biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
        }

        reluslope.clear();
        if( activ )
        {
            Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
            if( !activ_relu.empty() )
                reluslope.assign(outCn+2, activ_relu->negativeSlope);

            Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
            if( !activ_chprelu.empty() )
            {
                const Mat& m = activ_chprelu->blobs[0];
                CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
                const float* mdata = m.ptr<float>();
                reluslope.resize(outCn+2);
                std::copy(mdata, mdata + outCn, reluslope.begin());
                reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
            }
        }

        int nstripes = std::max(getNumThreads(), 1);

        ParallelConv::run(*inputs[0], outputs[0], weightsMat, biasvec, reluslope,
                          kernel, pad, stride, dilation, activ.get(), ngroups, nstripes);
    }

    virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
                           const std::vector<MatShape> &outputs) const
    {
        CV_Assert(inputs.size() == outputs.size());

        int64 flops = 0;
        for (int i = 0; i < inputs.size(); i++)
        {
            flops += total(outputs[i])*(2*kernel.area()*inputs[i][1] + 1);
        }

        return flops;
    }
};

class DeConvolutionLayerImpl : public BaseConvolutionLayerImpl
{
public:
    Mat weightsMat, biasesMat;

    MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const
    {
        int inpCn = inpShape[1];
        int inpH = inpShape[2];
        int inpW = inpShape[3];
        int outCn = outShape[1];
        int ngroups = inpCn / blobs[0].size[1];
        int outGroupCn = outCn / ngroups;
        int ksize = outGroupCn * kernel.height * kernel.width;
        return shape(ksize, inpH * inpW);
    }

    bool getMemoryShapes(const std::vector<MatShape> &inputs,
                         const int requiredOutputs,
                         std::vector<MatShape> &outputs,
                         std::vector<MatShape> &internals) const
    {
        CV_Assert(!hasBias() || blobs[1].total() == (size_t)blobs[0].size[0]);
        CV_Assert(inputs.size() != 0);

        int inpCn = inputs[0][1];
        int inpH = inputs[0][2];
        int inpW = inputs[0][3];

        int outH = stride.height * (inpH - 1) + kernel.height - 2 * pad.height + adjustPad.height;
        int outW = stride.width * (inpW - 1) + kernel.width - 2 * pad.width + adjustPad.width;
        int outCn = blobs[0].size[0];

        int ngroups = inpCn / blobs[0].size[1];

        CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0);
        CV_Assert(blobs[0].size[0] == outCn && blobs[0].size[1] == inpCn / ngroups);

        int dims[] = {inputs[0][0], outCn, outH, outW};
        outputs.resize(inputs.size(), shape(dims));

        internals.push_back(MatShape());
        if (!is1x1())
            internals[0] = computeColRowShape(inputs[0], outputs[0]);

        if (hasBias())
            internals.push_back(shape(1, outH*outW));

        return false;
    }

    class MatMulInvoker : public ParallelLoopBody
    {
    public:
        MatMulInvoker(const Mat& a, const Mat& b, Mat& c, int nstripes)
        {
            a_ = &a;
            b_ = &b;
            c_ = &c;
            nstripes_ = nstripes;
            useAVX = checkHardwareSupport(CPU_AVX);
            useAVX2 = checkHardwareSupport(CPU_AVX2);
        }

        void operator()(const Range& range_) const
        {
            int stripeSize = (int)alignSize((b_->cols + nstripes_ - 1)/nstripes_, 16);
            Range range(range_.start*stripeSize, std::min(range_.end*stripeSize, b_->cols));
            int mmax = a_->rows;
            int nmax = range.end - range.start;
            int kmax = a_->cols;
            int m, n, k;
            const float* aptr = a_->ptr<float>();
            const float* bptr = b_->ptr<float>() + range.start;
            float* cptr = c_->ptr<float>() + range.start;
            size_t astep = a_->step1();
            size_t bstep = b_->step1();
            size_t cstep = c_->step1();

        #if CV_TRY_AVX2
            if( useAVX2 )
                opt_AVX2::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
            else
        #endif
        #if CV_TRY_AVX
            if( useAVX )
                opt_AVX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
            else
        #endif
            for( m = 0; m < mmax; m += 2 )
            {
                float* dst0 = cptr + cstep*m;
                float* dst1 = cptr + cstep*std::min(m+1, mmax-1);
                const float* aptr0 = aptr + astep*m;
                const float* aptr1 = aptr + astep*std::min(m+1, mmax-1);

                for( n = 0; n < nmax; n++ )
                {
                    dst0[n] = 0.f;
                    dst1[n] = 0.f;
                }

                for( k = 0; k < kmax; k += 4 )
                {
                    float alpha00 = aptr0[k];
                    float alpha01 = aptr1[k];
                    float alpha10 = 0.f, alpha11 = 0.f;
                    float alpha20 = 0.f, alpha21 = 0.f;
                    float alpha30 = 0.f, alpha31 = 0.f;
                    const float* bptr0 = bptr + k*bstep;
                    const float* bptr1 = bptr0;
                    const float* bptr2 = bptr0;
                    const float* bptr3 = bptr0;

                    if( k+1 < kmax )
                    {
                        alpha10 = aptr0[k+1];
                        alpha11 = aptr1[k+1];
                        bptr1 = bptr0 + bstep;
                        if( k+2 < kmax )
                        {
                            alpha20 = aptr0[k+2];
                            alpha21 = aptr1[k+2];
                            bptr2 = bptr1 + bstep;
                            if( k+3 < kmax )
                            {
                                alpha30 = aptr0[k+3];
                                alpha31 = aptr1[k+3];
                                bptr3 = bptr2 + bstep;
                            }
                        }
                    }
                    n = 0;

                #if CV_SIMD128
                    v_float32x4 a00 = v_setall_f32(alpha00);
                    v_float32x4 a01 = v_setall_f32(alpha01);
                    v_float32x4 a10 = v_setall_f32(alpha10);
                    v_float32x4 a11 = v_setall_f32(alpha11);
                    v_float32x4 a20 = v_setall_f32(alpha20);
                    v_float32x4 a21 = v_setall_f32(alpha21);
                    v_float32x4 a30 = v_setall_f32(alpha30);
                    v_float32x4 a31 = v_setall_f32(alpha31);

                    for( ; n <= nmax - 4; n += 4 )
                    {
                        v_float32x4 b0 = v_load(bptr0 + n);
                        v_float32x4 b1 = v_load(bptr1 + n);
                        v_float32x4 b2 = v_load(bptr2 + n);
                        v_float32x4 b3 = v_load(bptr3 + n);
                        v_float32x4 d0 = v_load(dst0 + n);
                        v_float32x4 d1 = v_load(dst1 + n);
                        d0 += b0*a00;
                        d1 += b0*a01;
                        d0 += b1*a10;
                        d1 += b1*a11;
                        d0 += b2*a20;
                        d1 += b2*a21;
                        d0 += b3*a30;
                        d1 += b3*a31;
                        v_store(dst0 + n, d0);
                        v_store(dst1 + n, d1);
                    }
                #endif

                    for( ; n < nmax; n++ )
                    {
                        float b0 = bptr0[n], b1 = bptr1[n];
                        float b2 = bptr2[n], b3 = bptr3[n];
                        float d0 = dst0[n] + alpha00*b0 + alpha10*b1 + alpha20*b2 + alpha30*b3;
                        float d1 = dst1[n] + alpha01*b0 + alpha11*b1 + alpha21*b2 + alpha31*b3;
                        dst0[n] = d0;
                        dst1[n] = d1;
                    }
                }
            }
        }

        const Mat *a_, *b_;
        Mat* c_;
        int nstripes_;
        bool useAVX;
        bool useAVX2;
    };

    class Col2ImInvoker : public cv::ParallelLoopBody
    {
    public:
        const float* data_col;
        const float* biasvec;
        int channels, height, width;
        int kernel_h, kernel_w;
        int pad_h, pad_w;
        int stride_h, stride_w;
        float* data_im;
        int height_col, width_col;
        int nstripes;
        bool is1x1;

        Col2ImInvoker()
            : data_col(0), biasvec(0), channels(0), height(0), width(0),
              kernel_h(0), kernel_w(0), pad_h(0), pad_w(0), stride_h(0), stride_w(0), data_im(0),
              height_col(0), width_col(0), nstripes(0), is1x1(0)
        {}

        static void run(const float* data_col,
                        int channels, int height, int width,
                        int kernel_h, int kernel_w,
                        int pad_h, int pad_w,
                        int stride_h, int stride_w,
                        float* data_im,
                        const float* biasvec,
                        bool is1x1)
        {
            const int nstripes = getNumThreads();

            Col2ImInvoker t;
            t.data_col = data_col;
            t.data_im = data_im;
            t.channels = channels; t.height = height; t.width = width;
            t.kernel_h = kernel_h; t.kernel_w = kernel_w;
            t.pad_h = pad_h; t.pad_w = pad_w;
            t.stride_h = stride_h; t.stride_w = stride_w;
            t.height_col = (height + 2 * pad_h - kernel_h) / stride_h + 1;
            t.width_col = (width + 2 * pad_w - kernel_w) / stride_w + 1;
            t.nstripes = nstripes;
            t.is1x1 = is1x1;
            t.biasvec = biasvec;

            parallel_for_(Range(0, nstripes), t, nstripes);
        }

        virtual void operator ()(const Range &r) const
        {
            const float* data_col_ = data_col;
            float* data_im_ = data_im;
            int coeff_h = (1 - stride_h * kernel_w * height_col) * width_col;
            int coeff_w = (1 - stride_w * height_col * width_col);
            size_t total = (size_t)channels * height * width;
            size_t stripeSize = (total + nstripes - 1)/nstripes;
            size_t startIndex = r.start*stripeSize;
            size_t endIndex = std::min(r.end*stripeSize, total);
            int w = (int)(startIndex % width + pad_w);
            int h = (int)((startIndex / width) % height + pad_h);
            int c = (int)(startIndex / (width * height));
            int h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
            int h_col_end = std::min(h / stride_h + 1, height_col);
            int plane_size_col = height_col * width_col;
            int offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
            bool is1x1_ = is1x1;
            const float* biasvec_ = biasvec;

            for (size_t index = startIndex; index < endIndex; index++)
            {
                // compute the start and end of the output
                int w_col_start = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1;
                int w_col_end = std::min(w / stride_w + 1, width_col);
                float val;

                if( is1x1_ )
                    val = data_im_[index];
                else
                {
                    val = 0.f;
                    for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
                        for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
                            val += data_col_[offset + h_col * coeff_h + w_col * coeff_w];
                        }
                    }
                }
                data_im_[index] = val + biasvec_[c];

                offset += plane_size_col;
                if( ++w >= width + pad_w )
                {
                    w = (int)((index + 1)% width + pad_w);
                    h = (int)(((index + 1) / width) % height + pad_h);
                    c = (int)((index + 1) / (width * height));
                    h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
                    h_col_end = std::min(h / stride_h + 1, height_col);
                    offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
                }
            }
        }
    };

    void forward(std::vector<Mat *> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
    {
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(name, "name", name.c_str());

        int outCn = blobs[0].size[0];
        int inpCn = inputs[0]->size[1];
        bool is1x1flag = is1x1();
        int nstripes = getNumThreads();

        if( weightsMat.empty() )
        {
            transpose(blobs[0].reshape(1, inpCn), weightsMat);
            biasesMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat::zeros(outCn, 1, CV_32F);
        }

        for (size_t ii = 0; ii < outputs.size(); ii++)
        {
            int ngroups = inpCn / blobs[0].size[1];
            int inpGroupCn = blobs[0].size[1];
            int outGroupCn = outCn / ngroups;
            const Mat& inp = *inputs[ii];
            Mat& out = outputs[ii];
            int numImg = inp.size[0];
            int outH = out.size[2], outW = out.size[3];

            Mat convBlob = inputs[ii]->reshape(1, numImg*inpCn);
            Mat decnBlob = out.reshape(1, numImg*outCn);

            for (int n = 0; n < numImg; n++)
            {
                for (int g = 0; g < ngroups; g++)
                {
                    Mat dstMat = decnBlob.rowRange(_Range((g + n * ngroups) * outGroupCn, outGroupCn));
                    Mat &colMat = is1x1flag ? dstMat : internals[0];

                    Mat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn));
                    Mat wghtMat = weightsMat.colRange(_Range(g * inpGroupCn, inpGroupCn));
                    Mat curBiasMat = biasesMat.rowRange(_Range(g * outGroupCn, outGroupCn));

                    //gemm(wghtMat, convMat, 1, colMat, 0, colMat, 0);
                    MatMulInvoker mminvoker(wghtMat, convMat, colMat, nstripes);
                    parallel_for_(Range(0, nstripes), mminvoker, nstripes);

                    Col2ImInvoker::run(colMat.ptr<float>(), outGroupCn, outH, outW,
                                       kernel.height, kernel.width, pad.height, pad.width,
                                       stride.height, stride.width, dstMat.ptr<float>(),
                                       curBiasMat.ptr<float>(), is1x1flag);
                }
            }
        }
    }

    virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
    {
#ifdef HAVE_HALIDE
        Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);

        int inW, inH, inC, inN, outC = blobs[0].size[0];
        getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);

        if (inC / blobs[0].size[1] != 1)
            CV_Error(cv::Error::StsNotImplemented,
                     "Halide backend for Deconvolution with group > 1 is not implemented");

        Halide::Var x("x"), y("y"), c("c"), n("n");
        Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
        Halide::Func padded_input(name + "_constant_exterior");
        auto weights = wrapToHalideBuffer(blobs[0], {kernel.width,
                                                     kernel.height, outC, inC});

        Halide::Func dilated_input("dilated_input");
        dilated_input(x, y, c, n) = 0.0f;
        Halide::RDom r1(0, inW, 0, inH);
        dilated_input(r1.x * stride.width, r1.y * stride.height, c, n) =
              inputBuffer(r1.x, r1.y, c, n);
        dilated_input.compute_root();

        Halide::Func bounded =
            Halide::BoundaryConditions::constant_exterior(dilated_input, 0,
                                                          0, (inW - 1) * stride.width + 1,
                                                          0, (inH - 1) * stride.height + 1,
                                                          0, inC, 0, inN);
        padded_input(x, y, c, n) = bounded(x, y, c, n);

        Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inC);
        Halide::Expr topExpr = sum(
            padded_input(x + pad.width - r.x, y + pad.height - r.y, r.z, n) *
            weights(r.x, r.y, c, r.z));
        if (hasBias())
        {
            auto bias = wrapToHalideBuffer(blobs[1], {outC});
            topExpr += bias(c);
        }
        top(x, y, c, n) = topExpr;
        return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
#endif  // HAVE_HALIDE
        return Ptr<BackendNode>();
    }

    virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
                           const std::vector<MatShape> &outputs) const
    {
        CV_Assert(inputs.size() == outputs.size());

        float flops = 0;
        int outChannels = blobs[0].size[0];

        for (int i = 0; i < inputs.size(); i++)
        {
            flops += 2*outChannels*kernel.area()*total(inputs[i]);
        }

        return flops;
    }
};

//Convolution and Deconvolution
static void initConvDeconvLayerFromCaffe(Ptr<BaseConvolutionLayer> l, const LayerParams &params)
{
    l->setParamsFrom(params);
    getConvolutionKernelParams(params, l->kernel.height, l->kernel.width, l->pad.height,
                               l->pad.width, l->stride.height, l->stride.width, l->dilation.height,
                               l->dilation.width, l->padMode);

    bool bias = params.get<bool>("bias_term", true);
    int numOutput = params.get<int>("num_output");
    int ngroups = params.get<int>("group", 1);

    l->adjustPad.height = params.get<int>("adj_h", 0);
    l->adjustPad.width = params.get<int>("adj_w", 0);

    CV_Assert(numOutput % ngroups == 0);
    CV_Assert((bias && l->blobs.size() == 2) || (!bias && l->blobs.size() == 1));
    CV_Assert(l->adjustPad.width < l->stride.width &&
              l->adjustPad.height < l->stride.height);
}

Ptr<BaseConvolutionLayer> ConvolutionLayer::create(const LayerParams &params)
{
    Ptr<BaseConvolutionLayer> l(new ConvolutionLayerImpl);
    initConvDeconvLayerFromCaffe(l, params);
    return l;
}

Ptr<BaseConvolutionLayer> DeconvolutionLayer::create(const LayerParams &params)
{
    Ptr<BaseConvolutionLayer> l(new DeConvolutionLayerImpl);
    initConvDeconvLayerFromCaffe(l, params);

    return l;
}

}
}