1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "op_halide.hpp"
#include "opencv2/core/hal/hal.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include <iostream>
namespace cv
{
namespace dnn
{
class BaseConvolutionLayerImpl : public ConvolutionLayer
{
public:
BaseConvolutionLayerImpl() {}
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_HALIDE && haveHalide();
}
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
{
CV_Assert(inputs.size() > 0);
CV_Assert(blobs.size() >= 1 && blobs.size() <= 2);
CV_Assert(blobs[0].dims == 4 && blobs[0].size[3] == kernel.width && blobs[0].size[2] == kernel.height);
const Mat &input = *inputs[0];
CV_Assert(input.dims == 4 && (input.type() == CV_32F || input.type() == CV_64F));
for (size_t i = 0; i < inputs.size(); i++)
{
CV_Assert(inputs[i]->type() == input.type());
CV_Assert(inputs[i]->dims == 4 && inputs[i]->size[1] == input.size[1]);
CV_Assert(inputs[i]->size[2] == input.size[2] && inputs[i]->size[3] == input.size[3]);
}
Size outSize = Size(outputs[0].size[3], outputs[0].size[2]);
getConvPoolPaddings(Size(input.size[3], input.size[2]), outSize,
kernel, stride, padMode, pad);
}
bool hasBias() const
{
return blobs.size() >= 2;
}
virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0;
bool is1x1() const
{
return (kernel.height == 1 && kernel.width == 1) &&
(stride.height == 1 && stride.width == 1) &&
(dilation.height == 1 && dilation.width == 1);
}
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
const std::vector<Mat*> &inputs,
const std::vector<Mat> &outputs,
int targetId) const
{
#ifdef HAVE_HALIDE
if (targetId != DNN_TARGET_CPU)
{
Layer::applyHalideScheduler(node, inputs, outputs, targetId);
return;
}
Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"), yi("yi"), yo("yo"), co("co"), ci("ci");
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs[1];
Halide::Func& padded_input = node.dynamicCast<HalideBackendNode>()->funcs[0];
int outW, outH, outC, outN;
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
if (outW == 1 || outH <= 2)
return;
if (is1x1() || outC <= 16)
top.reorder(x, c, y)
.split(y, yo, yi, 2)
.fuse(yo, n, tile)
.parallel(tile)
.unroll(yi)
.vectorize(x, outW >= 16 ? 16 : outW);
else
top.reorder(x, c, y)
.split(y, yo, yi, 2)
.split(c, co, ci, 16)
.fuse(yo, co, tile).fuse(n, tile, tile)
.parallel(tile)
.unroll(yi)
.vectorize(x, outW >= 16 ? 16 : outW);
padded_input.compute_at(top, yi);
#endif // HAVE_HALIDE
}
};
//TODO: simultaneously convolution and bias addition for cache optimization
class ConvolutionLayerImpl : public BaseConvolutionLayerImpl
{
public:
enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F };
Mat weightsMat;
std::vector<float> biasvec;
std::vector<float> reluslope;
Ptr<ActivationLayer> activ;
Ptr<BatchNormLayer> bnorm;
Ptr<ScaleLayer> scaleLayer;
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const
{
Size out(outShape[3], outShape[2]);
int inpGroupCn = blobs[0].size[1];
int ksize = inpGroupCn * kernel.height * kernel.width;
return shape(out.area(), ksize);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
CV_Assert(blobs.size() != 0);
CV_Assert(!hasBias() || blobs[1].total() == (size_t)blobs[0].size[0]);
CV_Assert(inputs.size() == (size_t)1);
internals.clear();
int inpCn = inputs[0][1];
int inpH = inputs[0][2];
int inpW = inputs[0][3];
int outCn = blobs[0].size[0];
Size out;
if (padMode.empty())
{
out.height = (inpH + 2 * pad.height - (dilation.height * (kernel.height - 1) + 1)) / stride.height + 1;
out.width = (inpW + 2 * pad.width - (dilation.width * (kernel.width - 1) + 1)) / stride.width + 1;
}
else
{
getConvPoolOutParams(Size(inpW, inpH), kernel, stride, padMode, out);
}
int ngroups = inpCn / blobs[0].size[1];
CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0);
int dims[] = {inputs[0][0], outCn, out.height, out.width};
outputs.resize(inputs.size(), shape(dims));
return false;
}
bool setActivation(const Ptr<ActivationLayer>& layer)
{
activ = layer;
if (activ.empty())
reluslope.clear();
return !activ.empty();
}
bool setBatchNorm(const Ptr<BatchNormLayer>& layer )
{
// for now the scale layer followed by the batch norm cannot be fused, only vice versa.
if( !scaleLayer.empty() )
return false;
bnorm = layer;
// we will need to re-compute the weights with the batch
// norm coefficients taken into account
weightsMat.release();
return !bnorm.empty();
}
bool setScale(const Ptr<ScaleLayer>& layer)
{
scaleLayer = layer;
// we will need to re-compute the weights with the scaling
// coefficients taken into account
weightsMat.release();
return !scaleLayer.empty();
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
const int inpCn = inputBuffer.channels();
const int outCn = blobs[0].size[0];
const int inpGroupCn = blobs[0].size[1];
const int group = inpCn / inpGroupCn;
const int outGroupCn = outCn / group;
Halide::Buffer<float> weights = wrapToHalideBuffer(blobs[0]);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Func padded_input(name + "_constant_exterior");
if (pad.width || pad.height)
{
Halide::Func bounded =
Halide::BoundaryConditions::constant_exterior(inputBuffer, 0);
padded_input(x, y, c, n) = bounded(x, y, c, n);
}
else
{
padded_input(x, y, c, n) = inputBuffer(x, y, c, n);
}
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn);
Halide::Expr kc = r.z;
if (group > 1)
{
int outCnBound = outGroupCn;
int inpChBound = inpGroupCn;
Halide::Expr shift = select(c < outCnBound, 0, inpChBound);
for (int i = 2; i < group; ++i)
{
outCnBound += outGroupCn;
inpChBound += inpGroupCn;
shift = select(c < outCnBound, shift, inpChBound);
}
kc += shift;
}
Halide::Expr kx = x * stride.width - pad.width + r.x * dilation.width;
Halide::Expr ky = y * stride.height - pad.height + r.y * dilation.height;
Halide::Expr topExpr = sum(padded_input(kx, ky, kc, n) *
weights(r.x, r.y, r.z, c));
if (hasBias())
{
Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outCn});
topExpr += bias(c);
}
top(x, y, c, n) = topExpr;
Ptr<BackendNode> pp(new HalideBackendNode({ padded_input, top }));
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
class ParallelConv : public cv::ParallelLoopBody
{
public:
enum { BLK_SIZE = 32, BLK_SIZE_CN = 64 };
const Mat* input_;
const Mat* weights_;
Mat* output_;
int outShape[4];
Size kernel_, pad_, stride_, dilation_;
int ngroups_, nstripes_;
std::vector<int> ofstab_;
const std::vector<float>* biasvec_;
const std::vector<float>* reluslope_;
const ActivationLayer* activ_;
bool is1x1_;
bool useAVX;
bool useAVX2;
ParallelConv()
: input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0),
biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false)
{}
static void run( const Mat& input, Mat& output, const Mat& weights,
const std::vector<float>& biasvec,
const std::vector<float>& reluslope,
Size kernel, Size pad, Size stride, Size dilation,
const ActivationLayer* activ, int ngroups, int nstripes )
{
CV_Assert( input.dims == 4 && output.dims == 4 &&
input.size[0] == output.size[0] &&
weights.rows == output.size[1] &&
weights.cols == (input.size[1]/ngroups)*kernel.width*kernel.height &&
input.type() == output.type() &&
input.type() == weights.type() &&
input.type() == CV_32F &&
input.isContinuous() &&
output.isContinuous() &&
biasvec.size() == (size_t)output.size[1]+2);
ParallelConv p;
p.input_ = &input;
p.weights_ = &weights;
p.output_ = &output;
for( int i = 0; i < 4; i++ ) p.outShape[i] = output.size[i];
p.outShape[1] /= ngroups;
p.kernel_ = kernel; p.pad_ = pad; p.stride_ = stride; p.dilation_ = dilation;
p.ngroups_ = ngroups;
p.nstripes_ = nstripes;
int inpCnAll = input.size[1], width = input.size[3], height = input.size[2];
int inpCn = inpCnAll / ngroups;
p.is1x1_ = kernel == Size(0,0) && pad == Size(0, 0);
p.useAVX = checkHardwareSupport(CPU_AVX);
p.useAVX2 = checkHardwareSupport(CPU_AVX2);
int ncn = std::min(inpCn, (int)BLK_SIZE_CN);
p.ofstab_.resize(kernel.width*kernel.height*ncn);
int* ofstab = &p.ofstab_[0];
for( int k = 0; k < ncn; k++ )
for( int k_r = 0; k_r < kernel.height; k_r++ )
for( int k_c = 0; k_c < kernel.width; k_c++ )
ofstab[(k*kernel.height + k_r)*kernel.width + k_c] =
(k*height + k_r*dilation.height)*width + k_c*dilation.width;
p.biasvec_ = &biasvec;
p.reluslope_ = &reluslope;
p.activ_ = p.reluslope_->empty() ? activ : 0;
parallel_for_(Range(0, nstripes), p, nstripes);
}
virtual void operator ()(const Range &r0) const
{
const int valign = ConvolutionLayerImpl::VEC_ALIGN;
int ngroups = ngroups_, batchSize = input_->size[0]*ngroups;
int outW = output_->size[3], outH = output_->size[2], outCn = output_->size[1]/ngroups;
int width = input_->size[3], height = input_->size[2], inpCn = input_->size[1]/ngroups;
int nstripes = nstripes_;
int kernel_w = kernel_.width, kernel_h = kernel_.height;
int pad_w = pad_.width, pad_h = pad_.height;
int stride_w = stride_.width, stride_h = stride_.height;
int dilation_w = dilation_.width, dilation_h = dilation_.height;
int karea = kernel_w*kernel_h;
int i, j, k;
size_t inpPlaneSize = width*height;
size_t outPlaneSize = outW*outH;
bool is1x1 = is1x1_;
int stripesPerSample;
size_t stripeSize;
Range r = r0;
if( nstripes >= batchSize*2 )
{
stripesPerSample = nstripes/batchSize;
stripeSize = alignSize((outPlaneSize + stripesPerSample - 1)/stripesPerSample, valign);
stripeSize = std::min(stripeSize, outPlaneSize);
}
else
{
stripesPerSample = 1;
int samplesPerStripe = std::max((batchSize + nstripes - 1)/nstripes, 1);
r.start *= samplesPerStripe;
r.end *= samplesPerStripe;
nstripes *= samplesPerStripe;
stripeSize = outPlaneSize;
}
const float* data_inp0_ = input_->ptr<float>();
const int* ofstab = &ofstab_[0];
const float* wptr_orig_ = weights_->ptr<float>();
size_t wstep = weights_->step1();
const float* biasptr_ = &biasvec_->at(0);
const float* reluptr_ = reluslope_->empty() ? 0 : &reluslope_->at(0);
float* data_out0_ = output_->ptr<float>();
size_t rowbufsz = (size_t)karea*BLK_SIZE_CN*BLK_SIZE;
AutoBuffer<float> rowbuf0_(rowbufsz + valign);
float* rowbuf0 = alignPtr((float*)rowbuf0_, (int)(valign*sizeof(float)));
// we clear the buffer once; ultimately, it lets us to avoid
// tail processing after running the unrolled/vectorized loop.
// the main idea is to make sure that the tail (a.k.a. padding) of each row
// (i.e. the elements with indices between vsz=karea*ncn and vsz_a)
// does not contain NaNs or Infs. Because the padding in the weights
// matrix is explicitly initialized with 0's, we handle all other
// cases nicely, i.e. we can skip expliciting re-initialization
// of the padding - we just retain elements from the previous iteration
// of the loop over channels (cn0).
memset(rowbuf0, 0, rowbufsz*sizeof(rowbuf0[0]) );
for( int stripe = r.start; stripe < r.end; stripe++ )
{
int subsampleIdx = stripe/stripesPerSample;
if( subsampleIdx >= batchSize )
break;
int stripeStart = (int)((stripe - subsampleIdx*stripesPerSample)*stripeSize);
int stripeEnd = (int)std::min(stripeStart + stripeSize, outPlaneSize);
const float* data_inp0 = data_inp0_ + subsampleIdx*inpPlaneSize*inpCn;
float* data_out0 = data_out0_ + subsampleIdx*outPlaneSize*outCn;
int startOutCn = (subsampleIdx % ngroups)*outCn;
const float* wptr_orig = wptr_orig_ + wstep*startOutCn;
const float* biasptr = biasptr_ + startOutCn;
for( int cn0 = 0; cn0 < inpCn; cn0 += BLK_SIZE_CN )
{
int cn1 = std::min(cn0 + BLK_SIZE_CN, inpCn);
int ncn = cn1 - cn0, vsz = karea*ncn;
int vsz_a = (int)alignSize(vsz, valign);
const float* wptr = wptr_orig + cn0*karea;
// we apply [Channels][P]ReLU (if any) during the final pass only.
const float* relu = cn1 == inpCn && reluptr_ ? reluptr_ + startOutCn : 0;
for( int ofs0 = stripeStart; ofs0 < stripeEnd; ofs0 += BLK_SIZE )
{
int ofs, ofs1 = std::min(ofs0 + BLK_SIZE, stripeEnd);
int out_i = ofs0 / outW;
int out_j = ofs0 - out_i * outW;
// do im2row for a part of input tensor
float* rowbuf = rowbuf0;
for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i )
{
int delta = std::min(ofs1 - ofs, outW - out_j);
int out_j1 = out_j + delta;
int in_i = out_i * stride_h - pad_h;
int in_j = out_j * stride_w - pad_w;
const float* imgptr = data_inp0 + (cn0*height + in_i)*width + in_j;
ofs += delta;
// do im2row for a part of input tensor
if( is1x1 )
{
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w )
{
for( k = 0; k < vsz; k++ )
rowbuf[k] = imgptr[k*inpPlaneSize];
}
}
else
{
bool ok_i = 0 <= in_i && in_i < height - (kernel_h-1)*dilation_h;
int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h);
int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h);
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w )
{
// this condition should be true for most of the tensor elements, i.e.
// most of the time the kernel aperture is inside the tensor X-Y plane.
if( ok_i && out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w )
{
for( k = 0; k < vsz; k++ )
{
int k1 = ofstab[k];
float v0 = imgptr[k1];
float v1 = imgptr[k1 + stride_w];
rowbuf[k] = v0;
rowbuf[k+vsz_a] = v1;
}
out_j++;
rowbuf += vsz_a;
imgptr += stride_w;
in_j += stride_w;
}
else
{
int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w);
int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w);
// here some non-continous sub-row of the row will not be
// filled from the tensor; we need to make sure that the uncovered
// elements are explicitly set to 0's. the easiest way is to
// set all the elements to 0's before the loop.
memset(rowbuf, 0, vsz*sizeof(rowbuf[0]));
for( k = 0; k < ncn; k++ )
{
for( i = i0; i < i1; i++ )
{
for( j = j0; j < j1; j++ )
{
int imgofs = k*(width*height) + i*(dilation_h*width) + j*dilation_w;
rowbuf[(k*kernel_h + i)*kernel_w + j] = imgptr[imgofs];
}
}
}
}
}
}
}
// now compute dot product of the weights
// and im2row-transformed part of the tensor
int bsz = ofs1 - ofs0;
#if CV_TRY_AVX2
if(useAVX2)
opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
else
#endif
#if CV_TRY_AVX
if(useAVX)
opt_AVX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
else
#endif
for( int i = 0; i < outCn; i += 2 )
{
const float* wptr0 = wptr + i*wstep;
const float* wptr1 = wptr0 + wstep;
float* outptr0 = data_out0 + ofs0 + i*outPlaneSize;
float* outptr1 = outptr0 + outPlaneSize;
float bias0 = biasptr[i], bias1 = biasptr[i+1];
float r0 = 1.f, r1 = 1.f;
if( i+1 >= outCn )
{
wptr1 = wptr0;
outptr1 = outptr0;
bias1 = bias0;
}
if( relu )
{
r0 = relu[i];
r1 = relu[i+1];
}
int j = 0;
#if CV_SIMD128
v_float32x4 vr0 = v_setall_f32(r0), vr1 = v_setall_f32(r1), z = v_setzero_f32();
for( ; j <= bsz - 4; j += 4 )
{
const float* rptr = rowbuf0 + j*vsz_a;
v_float32x4 s0, s1;
if( cn0 == 0 )
{
s0 = v_setall_f32(bias0);
s1 = v_setall_f32(bias1);
}
else
{
s0 = v_load(outptr0 + j);
s1 = v_load(outptr1 + j);
}
v_float32x4 vs00 = v_setzero_f32(), vs01 = v_setzero_f32(),
vs02 = v_setzero_f32(), vs03 = v_setzero_f32(),
vs10 = v_setzero_f32(), vs11 = v_setzero_f32(),
vs12 = v_setzero_f32(), vs13 = v_setzero_f32();
for( k = 0; k < vsz; k += 4, rptr += 4 )
{
v_float32x4 w0 = v_load_aligned(wptr0 + k), w1 = v_load_aligned(wptr1 + k);
v_float32x4 r0 = v_load_aligned(rptr), r1 = v_load_aligned(rptr + vsz_a),
r2 = v_load_aligned(rptr + vsz_a*2), r3 = v_load_aligned(rptr + vsz_a*3);
vs00 += w0*r0;
vs01 += w0*r1;
vs02 += w0*r2;
vs03 += w0*r3;
vs10 += w1*r0;
vs11 += w1*r1;
vs12 += w1*r2;
vs13 += w1*r3;
}
s0 += v_reduce_sum4(vs00, vs01, vs02, vs03);
s1 += v_reduce_sum4(vs10, vs11, vs12, vs13);
if( relu )
{
s0 = v_select(s0 > z, s0, s0*vr0);
s1 = v_select(s1 > z, s1, s1*vr1);
}
v_store(outptr0 + j, s0);
v_store(outptr1 + j, s1);
}
#endif
for( ; j < bsz; j++ )
{
const float* rptr = rowbuf0 + j*vsz_a;
float s00, s10;
if( cn0 == 0 )
{
s00 = bias0;
s10 = bias1;
}
else
{
s00 = outptr0[j];
s10 = outptr1[j];
}
for( k = 0; k < vsz; k++ )
{
float r0 = rptr[k];
s00 += wptr0[k]*r0;
s10 += wptr1[k]*r0;
}
if( relu )
{
s00 = s00 > 0.f ? s00 : s00*r0;
s10 = s10 > 0.f ? s10 : s10*r1;
}
outptr0[j] = s00;
outptr1[j] = s10;
}
}
}
}
if( activ_ )
activ_->forwardSlice(data_out0 + stripeStart, data_out0 + stripeStart,
(int)(stripeEnd - stripeStart),
outPlaneSize, startOutCn, startOutCn + outCn);
}
}
};
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
/*printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
name.c_str(), inputs[0]->size[0], inputs[0]->size[1], inputs[0]->size[2], inputs[0]->size[3],
kernel.width, kernel.height, pad.width, pad.height,
stride.width, stride.height, dilation.width, dilation.height);*/
CV_Assert(inputs.size() == (size_t)1 && inputs[0]->size[1] % blobs[0].size[1] == 0);
int ngroups = inputs[0]->size[1]/blobs[0].size[1];
CV_Assert(outputs[0].size[1] % ngroups == 0);
int k, outCn = blobs[0].size[0];
if( weightsMat.empty() )
{
// prepare weightsMat where each row is aligned and has enough zero padding on the right to
// use vectorized (i.e. with intrinsics) loops without tail processing
Mat wm = blobs[0].reshape(1, outCn).clone();
if( wm.step1() % VEC_ALIGN != 0 )
{
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
Mat wm_buffer = Mat(outCn, newcols, wm.type());
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
wm_padding.setTo(Scalar::all(0.));
Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
wm.copyTo(wm_aligned);
wm = wm_aligned;
}
weightsMat = wm;
Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat();
biasvec.resize(outCn+2);
if( biasMat.empty() )
{
for( k = 0; k < outCn; k++ )
biasvec[k] = 0.f;
}
else
{
for( k = 0; k < outCn; k++ )
biasvec[k] = biasMat.at<float>(k);
}
if( !bnorm.empty() || !scaleLayer.empty() )
{
Mat scale, shift, scale2, shift2;
const float *scaleptr = 0, *shiftptr = 0;
const float *scaleptr2 = 0, *shiftptr2 = 0;
if( !bnorm.empty() )
{
bnorm->getScaleShift(scale, shift);
CV_Assert( scale.isContinuous() && shift.isContinuous() &&
scale.type() == CV_32F && shift.type() == CV_32F &&
scale.total() == (size_t)outCn &&
shift.total() == (size_t)outCn );
scaleptr = scale.ptr<float>();
shiftptr = shift.ptr<float>();
}
if( !scaleLayer.empty() )
{
scale2 = scaleLayer->blobs[0];
CV_Assert( scale2.isContinuous() && scale2.type() == CV_32F &&
scale2.total() == (size_t)outCn );
scaleptr2 = scale2.ptr<float>();
if( scaleLayer->hasBias )
{
shift2 = scaleLayer->blobs[1];
CV_Assert( shift2.isContinuous() && shift2.type() == CV_32F &&
shift2.total() == (size_t)outCn );
shiftptr2 = shift2.ptr<float>();
}
}
for( int i = 0; i < outCn; i++ )
{
float s1 = scaleptr ? scaleptr[i] : 1.f;
float delta1 = shiftptr ? shiftptr[i] : 0.f;
float s2 = scaleptr2 ? scaleptr2[i] : 1.f;
float delta2 = shiftptr2 ? shiftptr2[i] : 0.f;
float* w_i = weightsMat.ptr<float>(i);
int j, wcols = weightsMat.cols;
for( j = 0; j < wcols; j++ )
w_i[j] *= (s1*s2);
biasvec[i] = biasvec[i]*(s1*s2) + (delta1*s2 + delta2);
}
}
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
}
reluslope.clear();
if( activ )
{
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
if( !activ_relu.empty() )
reluslope.assign(outCn+2, activ_relu->negativeSlope);
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
if( !activ_chprelu.empty() )
{
const Mat& m = activ_chprelu->blobs[0];
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
const float* mdata = m.ptr<float>();
reluslope.resize(outCn+2);
std::copy(mdata, mdata + outCn, reluslope.begin());
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
}
}
int nstripes = std::max(getNumThreads(), 1);
ParallelConv::run(*inputs[0], outputs[0], weightsMat, biasvec, reluslope,
kernel, pad, stride, dilation, activ.get(), ngroups, nstripes);
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{
CV_Assert(inputs.size() == outputs.size());
int64 flops = 0;
for (int i = 0; i < inputs.size(); i++)
{
flops += total(outputs[i])*(2*kernel.area()*inputs[i][1] + 1);
}
return flops;
}
};
class DeConvolutionLayerImpl : public BaseConvolutionLayerImpl
{
public:
Mat weightsMat, biasesMat;
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const
{
int inpCn = inpShape[1];
int inpH = inpShape[2];
int inpW = inpShape[3];
int outCn = outShape[1];
int ngroups = inpCn / blobs[0].size[1];
int outGroupCn = outCn / ngroups;
int ksize = outGroupCn * kernel.height * kernel.width;
return shape(ksize, inpH * inpW);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
CV_Assert(!hasBias() || blobs[1].total() == (size_t)blobs[0].size[0]);
CV_Assert(inputs.size() != 0);
int inpCn = inputs[0][1];
int inpH = inputs[0][2];
int inpW = inputs[0][3];
int outH = stride.height * (inpH - 1) + kernel.height - 2 * pad.height + adjustPad.height;
int outW = stride.width * (inpW - 1) + kernel.width - 2 * pad.width + adjustPad.width;
int outCn = blobs[0].size[0];
int ngroups = inpCn / blobs[0].size[1];
CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0);
CV_Assert(blobs[0].size[0] == outCn && blobs[0].size[1] == inpCn / ngroups);
int dims[] = {inputs[0][0], outCn, outH, outW};
outputs.resize(inputs.size(), shape(dims));
internals.push_back(MatShape());
if (!is1x1())
internals[0] = computeColRowShape(inputs[0], outputs[0]);
if (hasBias())
internals.push_back(shape(1, outH*outW));
return false;
}
class MatMulInvoker : public ParallelLoopBody
{
public:
MatMulInvoker(const Mat& a, const Mat& b, Mat& c, int nstripes)
{
a_ = &a;
b_ = &b;
c_ = &c;
nstripes_ = nstripes;
useAVX = checkHardwareSupport(CPU_AVX);
useAVX2 = checkHardwareSupport(CPU_AVX2);
}
void operator()(const Range& range_) const
{
int stripeSize = (int)alignSize((b_->cols + nstripes_ - 1)/nstripes_, 16);
Range range(range_.start*stripeSize, std::min(range_.end*stripeSize, b_->cols));
int mmax = a_->rows;
int nmax = range.end - range.start;
int kmax = a_->cols;
int m, n, k;
const float* aptr = a_->ptr<float>();
const float* bptr = b_->ptr<float>() + range.start;
float* cptr = c_->ptr<float>() + range.start;
size_t astep = a_->step1();
size_t bstep = b_->step1();
size_t cstep = c_->step1();
#if CV_TRY_AVX2
if( useAVX2 )
opt_AVX2::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
else
#endif
#if CV_TRY_AVX
if( useAVX )
opt_AVX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
else
#endif
for( m = 0; m < mmax; m += 2 )
{
float* dst0 = cptr + cstep*m;
float* dst1 = cptr + cstep*std::min(m+1, mmax-1);
const float* aptr0 = aptr + astep*m;
const float* aptr1 = aptr + astep*std::min(m+1, mmax-1);
for( n = 0; n < nmax; n++ )
{
dst0[n] = 0.f;
dst1[n] = 0.f;
}
for( k = 0; k < kmax; k += 4 )
{
float alpha00 = aptr0[k];
float alpha01 = aptr1[k];
float alpha10 = 0.f, alpha11 = 0.f;
float alpha20 = 0.f, alpha21 = 0.f;
float alpha30 = 0.f, alpha31 = 0.f;
const float* bptr0 = bptr + k*bstep;
const float* bptr1 = bptr0;
const float* bptr2 = bptr0;
const float* bptr3 = bptr0;
if( k+1 < kmax )
{
alpha10 = aptr0[k+1];
alpha11 = aptr1[k+1];
bptr1 = bptr0 + bstep;
if( k+2 < kmax )
{
alpha20 = aptr0[k+2];
alpha21 = aptr1[k+2];
bptr2 = bptr1 + bstep;
if( k+3 < kmax )
{
alpha30 = aptr0[k+3];
alpha31 = aptr1[k+3];
bptr3 = bptr2 + bstep;
}
}
}
n = 0;
#if CV_SIMD128
v_float32x4 a00 = v_setall_f32(alpha00);
v_float32x4 a01 = v_setall_f32(alpha01);
v_float32x4 a10 = v_setall_f32(alpha10);
v_float32x4 a11 = v_setall_f32(alpha11);
v_float32x4 a20 = v_setall_f32(alpha20);
v_float32x4 a21 = v_setall_f32(alpha21);
v_float32x4 a30 = v_setall_f32(alpha30);
v_float32x4 a31 = v_setall_f32(alpha31);
for( ; n <= nmax - 4; n += 4 )
{
v_float32x4 b0 = v_load(bptr0 + n);
v_float32x4 b1 = v_load(bptr1 + n);
v_float32x4 b2 = v_load(bptr2 + n);
v_float32x4 b3 = v_load(bptr3 + n);
v_float32x4 d0 = v_load(dst0 + n);
v_float32x4 d1 = v_load(dst1 + n);
d0 += b0*a00;
d1 += b0*a01;
d0 += b1*a10;
d1 += b1*a11;
d0 += b2*a20;
d1 += b2*a21;
d0 += b3*a30;
d1 += b3*a31;
v_store(dst0 + n, d0);
v_store(dst1 + n, d1);
}
#endif
for( ; n < nmax; n++ )
{
float b0 = bptr0[n], b1 = bptr1[n];
float b2 = bptr2[n], b3 = bptr3[n];
float d0 = dst0[n] + alpha00*b0 + alpha10*b1 + alpha20*b2 + alpha30*b3;
float d1 = dst1[n] + alpha01*b0 + alpha11*b1 + alpha21*b2 + alpha31*b3;
dst0[n] = d0;
dst1[n] = d1;
}
}
}
}
const Mat *a_, *b_;
Mat* c_;
int nstripes_;
bool useAVX;
bool useAVX2;
};
class Col2ImInvoker : public cv::ParallelLoopBody
{
public:
const float* data_col;
const float* biasvec;
int channels, height, width;
int kernel_h, kernel_w;
int pad_h, pad_w;
int stride_h, stride_w;
float* data_im;
int height_col, width_col;
int nstripes;
bool is1x1;
Col2ImInvoker()
: data_col(0), biasvec(0), channels(0), height(0), width(0),
kernel_h(0), kernel_w(0), pad_h(0), pad_w(0), stride_h(0), stride_w(0), data_im(0),
height_col(0), width_col(0), nstripes(0), is1x1(0)
{}
static void run(const float* data_col,
int channels, int height, int width,
int kernel_h, int kernel_w,
int pad_h, int pad_w,
int stride_h, int stride_w,
float* data_im,
const float* biasvec,
bool is1x1)
{
const int nstripes = getNumThreads();
Col2ImInvoker t;
t.data_col = data_col;
t.data_im = data_im;
t.channels = channels; t.height = height; t.width = width;
t.kernel_h = kernel_h; t.kernel_w = kernel_w;
t.pad_h = pad_h; t.pad_w = pad_w;
t.stride_h = stride_h; t.stride_w = stride_w;
t.height_col = (height + 2 * pad_h - kernel_h) / stride_h + 1;
t.width_col = (width + 2 * pad_w - kernel_w) / stride_w + 1;
t.nstripes = nstripes;
t.is1x1 = is1x1;
t.biasvec = biasvec;
parallel_for_(Range(0, nstripes), t, nstripes);
}
virtual void operator ()(const Range &r) const
{
const float* data_col_ = data_col;
float* data_im_ = data_im;
int coeff_h = (1 - stride_h * kernel_w * height_col) * width_col;
int coeff_w = (1 - stride_w * height_col * width_col);
size_t total = (size_t)channels * height * width;
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t startIndex = r.start*stripeSize;
size_t endIndex = std::min(r.end*stripeSize, total);
int w = (int)(startIndex % width + pad_w);
int h = (int)((startIndex / width) % height + pad_h);
int c = (int)(startIndex / (width * height));
int h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
int h_col_end = std::min(h / stride_h + 1, height_col);
int plane_size_col = height_col * width_col;
int offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
bool is1x1_ = is1x1;
const float* biasvec_ = biasvec;
for (size_t index = startIndex; index < endIndex; index++)
{
// compute the start and end of the output
int w_col_start = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1;
int w_col_end = std::min(w / stride_w + 1, width_col);
float val;
if( is1x1_ )
val = data_im_[index];
else
{
val = 0.f;
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
val += data_col_[offset + h_col * coeff_h + w_col * coeff_w];
}
}
}
data_im_[index] = val + biasvec_[c];
offset += plane_size_col;
if( ++w >= width + pad_w )
{
w = (int)((index + 1)% width + pad_w);
h = (int)(((index + 1) / width) % height + pad_h);
c = (int)((index + 1) / (width * height));
h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
h_col_end = std::min(h / stride_h + 1, height_col);
offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
}
}
}
};
void forward(std::vector<Mat *> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
int outCn = blobs[0].size[0];
int inpCn = inputs[0]->size[1];
bool is1x1flag = is1x1();
int nstripes = getNumThreads();
if( weightsMat.empty() )
{
transpose(blobs[0].reshape(1, inpCn), weightsMat);
biasesMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat::zeros(outCn, 1, CV_32F);
}
for (size_t ii = 0; ii < outputs.size(); ii++)
{
int ngroups = inpCn / blobs[0].size[1];
int inpGroupCn = blobs[0].size[1];
int outGroupCn = outCn / ngroups;
const Mat& inp = *inputs[ii];
Mat& out = outputs[ii];
int numImg = inp.size[0];
int outH = out.size[2], outW = out.size[3];
Mat convBlob = inputs[ii]->reshape(1, numImg*inpCn);
Mat decnBlob = out.reshape(1, numImg*outCn);
for (int n = 0; n < numImg; n++)
{
for (int g = 0; g < ngroups; g++)
{
Mat dstMat = decnBlob.rowRange(_Range((g + n * ngroups) * outGroupCn, outGroupCn));
Mat &colMat = is1x1flag ? dstMat : internals[0];
Mat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn));
Mat wghtMat = weightsMat.colRange(_Range(g * inpGroupCn, inpGroupCn));
Mat curBiasMat = biasesMat.rowRange(_Range(g * outGroupCn, outGroupCn));
//gemm(wghtMat, convMat, 1, colMat, 0, colMat, 0);
MatMulInvoker mminvoker(wghtMat, convMat, colMat, nstripes);
parallel_for_(Range(0, nstripes), mminvoker, nstripes);
Col2ImInvoker::run(colMat.ptr<float>(), outGroupCn, outH, outW,
kernel.height, kernel.width, pad.height, pad.width,
stride.height, stride.width, dstMat.ptr<float>(),
curBiasMat.ptr<float>(), is1x1flag);
}
}
}
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
int inW, inH, inC, inN, outC = blobs[0].size[0];
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
if (inC / blobs[0].size[1] != 1)
CV_Error(cv::Error::StsNotImplemented,
"Halide backend for Deconvolution with group > 1 is not implemented");
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Func padded_input(name + "_constant_exterior");
auto weights = wrapToHalideBuffer(blobs[0], {kernel.width,
kernel.height, outC, inC});
Halide::Func dilated_input("dilated_input");
dilated_input(x, y, c, n) = 0.0f;
Halide::RDom r1(0, inW, 0, inH);
dilated_input(r1.x * stride.width, r1.y * stride.height, c, n) =
inputBuffer(r1.x, r1.y, c, n);
dilated_input.compute_root();
Halide::Func bounded =
Halide::BoundaryConditions::constant_exterior(dilated_input, 0,
0, (inW - 1) * stride.width + 1,
0, (inH - 1) * stride.height + 1,
0, inC, 0, inN);
padded_input(x, y, c, n) = bounded(x, y, c, n);
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inC);
Halide::Expr topExpr = sum(
padded_input(x + pad.width - r.x, y + pad.height - r.y, r.z, n) *
weights(r.x, r.y, c, r.z));
if (hasBias())
{
auto bias = wrapToHalideBuffer(blobs[1], {outC});
topExpr += bias(c);
}
top(x, y, c, n) = topExpr;
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{
CV_Assert(inputs.size() == outputs.size());
float flops = 0;
int outChannels = blobs[0].size[0];
for (int i = 0; i < inputs.size(); i++)
{
flops += 2*outChannels*kernel.area()*total(inputs[i]);
}
return flops;
}
};
//Convolution and Deconvolution
static void initConvDeconvLayerFromCaffe(Ptr<BaseConvolutionLayer> l, const LayerParams ¶ms)
{
l->setParamsFrom(params);
getConvolutionKernelParams(params, l->kernel.height, l->kernel.width, l->pad.height,
l->pad.width, l->stride.height, l->stride.width, l->dilation.height,
l->dilation.width, l->padMode);
bool bias = params.get<bool>("bias_term", true);
int numOutput = params.get<int>("num_output");
int ngroups = params.get<int>("group", 1);
l->adjustPad.height = params.get<int>("adj_h", 0);
l->adjustPad.width = params.get<int>("adj_w", 0);
CV_Assert(numOutput % ngroups == 0);
CV_Assert((bias && l->blobs.size() == 2) || (!bias && l->blobs.size() == 1));
CV_Assert(l->adjustPad.width < l->stride.width &&
l->adjustPad.height < l->stride.height);
}
Ptr<BaseConvolutionLayer> ConvolutionLayer::create(const LayerParams ¶ms)
{
Ptr<BaseConvolutionLayer> l(new ConvolutionLayerImpl);
initConvDeconvLayerFromCaffe(l, params);
return l;
}
Ptr<BaseConvolutionLayer> DeconvolutionLayer::create(const LayerParams ¶ms)
{
Ptr<BaseConvolutionLayer> l(new DeConvolutionLayerImpl);
initConvDeconvLayerFromCaffe(l, params);
return l;
}
}
}