1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
#include "opencv2/core/core.hpp"
#include "opencv2/ml/ml.hpp"
#include <cstdio>
#include <vector>
#include <iostream>
using namespace std;
using namespace cv;
using namespace cv::ml;
static void help()
{
printf("\nThe sample demonstrates how to train Random Trees classifier\n"
"(or Boosting classifier, or MLP, or Knearest, or Nbayes, or Support Vector Machines - see main()) using the provided dataset.\n"
"\n"
"We use the sample database letter-recognition.data\n"
"from UCI Repository, here is the link:\n"
"\n"
"Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).\n"
"UCI Repository of machine learning databases\n"
"[http://www.ics.uci.edu/~mlearn/MLRepository.html].\n"
"Irvine, CA: University of California, Department of Information and Computer Science.\n"
"\n"
"The dataset consists of 20000 feature vectors along with the\n"
"responses - capital latin letters A..Z.\n"
"The first 16000 (10000 for boosting)) samples are used for training\n"
"and the remaining 4000 (10000 for boosting) - to test the classifier.\n"
"======================================================\n");
printf("\nThis is letter recognition sample.\n"
"The usage: letter_recog [-data <path to letter-recognition.data>] \\\n"
" [-save <output XML file for the classifier>] \\\n"
" [-load <XML file with the pre-trained classifier>] \\\n"
" [-boost|-mlp|-knearest|-nbayes|-svm] # to use boost/mlp/knearest/SVM classifier instead of default Random Trees\n" );
}
// This function reads data and responses from the file <filename>
static bool
read_num_class_data( const string& filename, int var_count,
Mat* _data, Mat* _responses )
{
const int M = 1024;
char buf[M+2];
Mat el_ptr(1, var_count, CV_32F);
int i;
vector<int> responses;
_data->release();
_responses->release();
FILE* f = fopen( filename.c_str(), "rt" );
if( !f )
{
cout << "Could not read the database " << filename << endl;
return false;
}
for(;;)
{
char* ptr;
if( !fgets( buf, M, f ) || !strchr( buf, ',' ) )
break;
responses.push_back((int)buf[0]);
ptr = buf+2;
for( i = 0; i < var_count; i++ )
{
int n = 0;
sscanf( ptr, "%f%n", &el_ptr.at<float>(i), &n );
ptr += n + 1;
}
if( i < var_count )
break;
_data->push_back(el_ptr);
}
fclose(f);
Mat(responses).copyTo(*_responses);
cout << "The database " << filename << " is loaded.\n";
return true;
}
template<typename T>
static Ptr<T> load_classifier(const string& filename_to_load)
{
// load classifier from the specified file
Ptr<T> model = StatModel::load<T>( filename_to_load );
if( model.empty() )
cout << "Could not read the classifier " << filename_to_load << endl;
else
cout << "The classifier " << filename_to_load << " is loaded.\n";
return model;
}
static Ptr<TrainData>
prepare_train_data(const Mat& data, const Mat& responses, int ntrain_samples)
{
Mat sample_idx = Mat::zeros( 1, data.rows, CV_8U );
Mat train_samples = sample_idx.colRange(0, ntrain_samples);
train_samples.setTo(Scalar::all(1));
int nvars = data.cols;
Mat var_type( nvars + 1, 1, CV_8U );
var_type.setTo(Scalar::all(VAR_ORDERED));
var_type.at<uchar>(nvars) = VAR_CATEGORICAL;
return TrainData::create(data, ROW_SAMPLE, responses,
noArray(), sample_idx, noArray(), var_type);
}
inline TermCriteria TC(int iters, double eps)
{
return TermCriteria(TermCriteria::MAX_ITER + (eps > 0 ? TermCriteria::EPS : 0), iters, eps);
}
static void test_and_save_classifier(const Ptr<StatModel>& model,
const Mat& data, const Mat& responses,
int ntrain_samples, int rdelta,
const string& filename_to_save)
{
int i, nsamples_all = data.rows;
double train_hr = 0, test_hr = 0;
// compute prediction error on train and test data
for( i = 0; i < nsamples_all; i++ )
{
Mat sample = data.row(i);
float r = model->predict( sample );
r = std::abs(r + rdelta - responses.at<int>(i)) <= FLT_EPSILON ? 1.f : 0.f;
if( i < ntrain_samples )
train_hr += r;
else
test_hr += r;
}
test_hr /= nsamples_all - ntrain_samples;
train_hr = ntrain_samples > 0 ? train_hr/ntrain_samples : 1.;
printf( "Recognition rate: train = %.1f%%, test = %.1f%%\n",
train_hr*100., test_hr*100. );
if( !filename_to_save.empty() )
{
model->save( filename_to_save );
}
}
static bool
build_rtrees_classifier( const string& data_filename,
const string& filename_to_save,
const string& filename_to_load )
{
Mat data;
Mat responses;
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
if( !ok )
return ok;
Ptr<RTrees> model;
int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.8);
// Create or load Random Trees classifier
if( !filename_to_load.empty() )
{
model = load_classifier<RTrees>(filename_to_load);
if( model.empty() )
return false;
ntrain_samples = 0;
}
else
{
// create classifier by using <data> and <responses>
cout << "Training the classifier ...\n";
// Params( int maxDepth, int minSampleCount,
// double regressionAccuracy, bool useSurrogates,
// int maxCategories, const Mat& priors,
// bool calcVarImportance, int nactiveVars,
// TermCriteria termCrit );
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
model = RTrees::create();
model->setMaxDepth(10);
model->setMinSampleCount(10);
model->setRegressionAccuracy(0);
model->setUseSurrogates(false);
model->setMaxCategories(15);
model->setPriors(Mat());
model->setCalculateVarImportance(true);
model->setActiveVarCount(4);
model->setTermCriteria(TC(100,0.01f));
model->train(tdata);
cout << endl;
}
test_and_save_classifier(model, data, responses, ntrain_samples, 0, filename_to_save);
cout << "Number of trees: " << model->getRoots().size() << endl;
// Print variable importance
Mat var_importance = model->getVarImportance();
if( !var_importance.empty() )
{
double rt_imp_sum = sum( var_importance )[0];
printf("var#\timportance (in %%):\n");
int i, n = (int)var_importance.total();
for( i = 0; i < n; i++ )
printf( "%-2d\t%-4.1f\n", i, 100.f*var_importance.at<float>(i)/rt_imp_sum);
}
return true;
}
static bool
build_boost_classifier( const string& data_filename,
const string& filename_to_save,
const string& filename_to_load )
{
const int class_count = 26;
Mat data;
Mat responses;
Mat weak_responses;
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
if( !ok )
return ok;
int i, j, k;
Ptr<Boost> model;
int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.5);
int var_count = data.cols;
// Create or load Boosted Tree classifier
if( !filename_to_load.empty() )
{
model = load_classifier<Boost>(filename_to_load);
if( model.empty() )
return false;
ntrain_samples = 0;
}
else
{
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//
// As currently boosted tree classifier in MLL can only be trained
// for 2-class problems, we transform the training database by
// "unrolling" each training sample as many times as the number of
// classes (26) that we have.
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Mat new_data( ntrain_samples*class_count, var_count + 1, CV_32F );
Mat new_responses( ntrain_samples*class_count, 1, CV_32S );
// 1. unroll the database type mask
printf( "Unrolling the database...\n");
for( i = 0; i < ntrain_samples; i++ )
{
const float* data_row = data.ptr<float>(i);
for( j = 0; j < class_count; j++ )
{
float* new_data_row = (float*)new_data.ptr<float>(i*class_count+j);
memcpy(new_data_row, data_row, var_count*sizeof(data_row[0]));
new_data_row[var_count] = (float)j;
new_responses.at<int>(i*class_count + j) = responses.at<int>(i) == j+'A';
}
}
Mat var_type( 1, var_count + 2, CV_8U );
var_type.setTo(Scalar::all(VAR_ORDERED));
var_type.at<uchar>(var_count) = var_type.at<uchar>(var_count+1) = VAR_CATEGORICAL;
Ptr<TrainData> tdata = TrainData::create(new_data, ROW_SAMPLE, new_responses,
noArray(), noArray(), noArray(), var_type);
vector<double> priors(2);
priors[0] = 1;
priors[1] = 26;
cout << "Training the classifier (may take a few minutes)...\n";
model = Boost::create();
model->setBoostType(Boost::GENTLE);
model->setWeakCount(100);
model->setWeightTrimRate(0.95);
model->setMaxDepth(5);
model->setUseSurrogates(false);
model->setPriors(Mat(priors));
model->train(tdata);
cout << endl;
}
Mat temp_sample( 1, var_count + 1, CV_32F );
float* tptr = temp_sample.ptr<float>();
// compute prediction error on train and test data
double train_hr = 0, test_hr = 0;
for( i = 0; i < nsamples_all; i++ )
{
int best_class = 0;
double max_sum = -DBL_MAX;
const float* ptr = data.ptr<float>(i);
for( k = 0; k < var_count; k++ )
tptr[k] = ptr[k];
for( j = 0; j < class_count; j++ )
{
tptr[var_count] = (float)j;
float s = model->predict( temp_sample, noArray(), StatModel::RAW_OUTPUT );
if( max_sum < s )
{
max_sum = s;
best_class = j + 'A';
}
}
double r = std::abs(best_class - responses.at<int>(i)) < FLT_EPSILON ? 1 : 0;
if( i < ntrain_samples )
train_hr += r;
else
test_hr += r;
}
test_hr /= nsamples_all-ntrain_samples;
train_hr = ntrain_samples > 0 ? train_hr/ntrain_samples : 1.;
printf( "Recognition rate: train = %.1f%%, test = %.1f%%\n",
train_hr*100., test_hr*100. );
cout << "Number of trees: " << model->getRoots().size() << endl;
// Save classifier to file if needed
if( !filename_to_save.empty() )
model->save( filename_to_save );
return true;
}
static bool
build_mlp_classifier( const string& data_filename,
const string& filename_to_save,
const string& filename_to_load )
{
const int class_count = 26;
Mat data;
Mat responses;
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
if( !ok )
return ok;
Ptr<ANN_MLP> model;
int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.8);
// Create or load MLP classifier
if( !filename_to_load.empty() )
{
model = load_classifier<ANN_MLP>(filename_to_load);
if( model.empty() )
return false;
ntrain_samples = 0;
}
else
{
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//
// MLP does not support categorical variables by explicitly.
// So, instead of the output class label, we will use
// a binary vector of <class_count> components for training and,
// therefore, MLP will give us a vector of "probabilities" at the
// prediction stage
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Mat train_data = data.rowRange(0, ntrain_samples);
Mat train_responses = Mat::zeros( ntrain_samples, class_count, CV_32F );
// 1. unroll the responses
cout << "Unrolling the responses...\n";
for( int i = 0; i < ntrain_samples; i++ )
{
int cls_label = responses.at<int>(i) - 'A';
train_responses.at<float>(i, cls_label) = 1.f;
}
// 2. train classifier
int layer_sz[] = { data.cols, 100, 100, class_count };
int nlayers = (int)(sizeof(layer_sz)/sizeof(layer_sz[0]));
Mat layer_sizes( 1, nlayers, CV_32S, layer_sz );
#if 1
int method = ANN_MLP::BACKPROP;
double method_param = 0.001;
int max_iter = 300;
#else
int method = ANN_MLP::RPROP;
double method_param = 0.1;
int max_iter = 1000;
#endif
Ptr<TrainData> tdata = TrainData::create(train_data, ROW_SAMPLE, train_responses);
cout << "Training the classifier (may take a few minutes)...\n";
model = ANN_MLP::create();
model->setLayerSizes(layer_sizes);
model->setActivationFunction(ANN_MLP::SIGMOID_SYM, 0, 0);
model->setTermCriteria(TC(max_iter,0));
model->setTrainMethod(method, method_param);
model->train(tdata);
cout << endl;
}
test_and_save_classifier(model, data, responses, ntrain_samples, 'A', filename_to_save);
return true;
}
static bool
build_knearest_classifier( const string& data_filename, int K )
{
Mat data;
Mat responses;
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
if( !ok )
return ok;
int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.8);
// create classifier by using <data> and <responses>
cout << "Training the classifier ...\n";
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
Ptr<KNearest> model = KNearest::create();
model->setDefaultK(K);
model->setIsClassifier(true);
model->train(tdata);
cout << endl;
test_and_save_classifier(model, data, responses, ntrain_samples, 0, string());
return true;
}
static bool
build_nbayes_classifier( const string& data_filename )
{
Mat data;
Mat responses;
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
if( !ok )
return ok;
Ptr<NormalBayesClassifier> model;
int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.8);
// create classifier by using <data> and <responses>
cout << "Training the classifier ...\n";
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
model = NormalBayesClassifier::create();
model->train(tdata);
cout << endl;
test_and_save_classifier(model, data, responses, ntrain_samples, 0, string());
return true;
}
static bool
build_svm_classifier( const string& data_filename,
const string& filename_to_save,
const string& filename_to_load )
{
Mat data;
Mat responses;
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
if( !ok )
return ok;
Ptr<SVM> model;
int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.8);
// Create or load Random Trees classifier
if( !filename_to_load.empty() )
{
model = load_classifier<SVM>(filename_to_load);
if( model.empty() )
return false;
ntrain_samples = 0;
}
else
{
// create classifier by using <data> and <responses>
cout << "Training the classifier ...\n";
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
model = SVM::create();
model->setType(SVM::C_SVC);
model->setKernel(SVM::LINEAR);
model->setC(1);
model->train(tdata);
cout << endl;
}
test_and_save_classifier(model, data, responses, ntrain_samples, 0, filename_to_save);
return true;
}
int main( int argc, char *argv[] )
{
string filename_to_save = "";
string filename_to_load = "";
string data_filename = "../data/letter-recognition.data";
int method = 0;
int i;
for( i = 1; i < argc; i++ )
{
if( strcmp(argv[i],"-data") == 0 ) // flag "-data letter_recognition.xml"
{
i++;
data_filename = argv[i];
}
else if( strcmp(argv[i],"-save") == 0 ) // flag "-save filename.xml"
{
i++;
filename_to_save = argv[i];
}
else if( strcmp(argv[i],"-load") == 0) // flag "-load filename.xml"
{
i++;
filename_to_load = argv[i];
}
else if( strcmp(argv[i],"-boost") == 0)
{
method = 1;
}
else if( strcmp(argv[i],"-mlp") == 0 )
{
method = 2;
}
else if( strcmp(argv[i], "-knearest") == 0 || strcmp(argv[i], "-knn") == 0 )
{
method = 3;
}
else if( strcmp(argv[i], "-nbayes") == 0)
{
method = 4;
}
else if( strcmp(argv[i], "-svm") == 0)
{
method = 5;
}
else
break;
}
if( i < argc ||
(method == 0 ?
build_rtrees_classifier( data_filename, filename_to_save, filename_to_load ) :
method == 1 ?
build_boost_classifier( data_filename, filename_to_save, filename_to_load ) :
method == 2 ?
build_mlp_classifier( data_filename, filename_to_save, filename_to_load ) :
method == 3 ?
build_knearest_classifier( data_filename, 10 ) :
method == 4 ?
build_nbayes_classifier( data_filename) :
method == 5 ?
build_svm_classifier( data_filename, filename_to_save, filename_to_load ):
-1) < 0)
{
help();
}
return 0;
}