1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <stdio.h>
using namespace cv;
void help()
{
printf("\nProgram to demonstrate the use of the distance transform function between edge images.\n"
"Usage:\n"
"./distrans [image_name -- default image is stuff.jpg]\n"
);
printf( "\nHot keys: \n"
"\tESC - quit the program\n"
"\tC - use C/Inf metric\n"
"\tL1 - use L1 metric\n"
"\tL2 - use L2 metric\n"
"\t3 - use 3x3 mask\n"
"\t5 - use 5x5 mask\n"
"\t0 - use precise distance transform\n"
"\tv - switch Voronoi diagram mode on/off\n"
"\tSPACE - loop through all the modes\n" );
}
int maskSize0 = CV_DIST_MASK_5;
bool buildVoronoi = false;
int edgeThresh = 100;
int distType0 = CV_DIST_L1;
// The output and temporary images
Mat gray;
// threshold trackbar callback
void onTrackbar( int, void* )
{
static const Scalar colors[] =
{
Scalar(0,0,0),
Scalar(255,0,0),
Scalar(255,128,0),
Scalar(255,255,0),
Scalar(0,255,0),
Scalar(0,128,255),
Scalar(0,255,255),
Scalar(0,0,255),
Scalar(255,0,255)
};
int maskSize = buildVoronoi ? CV_DIST_MASK_5 : maskSize0;
int distType = buildVoronoi ? CV_DIST_L2 : distType0;
Mat edge = gray >= edgeThresh, dist, labels, dist8u;
if( !buildVoronoi )
distanceTransform( edge, dist, distType, maskSize );
else
distanceTransform( edge, dist, labels, distType, maskSize );
if( !buildVoronoi )
{
// begin "painting" the distance transform result
dist *= 5000;
pow(dist, 0.5, dist);
Mat dist32s, dist8u1, dist8u2;
dist.convertTo(dist32s, CV_32S, 1, 0.5);
dist32s &= Scalar::all(255);
dist32s.convertTo(dist8u1, CV_8U, 1, 0);
dist32s *= -1;
dist32s += Scalar::all(255);
dist32s.convertTo(dist8u2, CV_8U);
Mat planes[] = {dist8u1, dist8u2, dist8u2};
merge(planes, 3, dist8u);
}
else
{
dist8u.create(labels.size(), CV_8UC3);
for( int i = 0; i < labels.rows; i++ )
{
const int* ll = (const int*)labels.ptr(i);
const float* dd = (const float*)dist.ptr(i);
uchar* d = (uchar*)dist8u.ptr(i);
for( int j = 0; j < labels.cols; j++ )
{
int idx = ll[j] == 0 || dd[j] == 0 ? 0 : (ll[j]-1)%8 + 1;
int b = cvRound(colors[idx][0]);
int g = cvRound(colors[idx][1]);
int r = cvRound(colors[idx][2]);
d[j*3] = (uchar)b;
d[j*3+1] = (uchar)g;
d[j*3+2] = (uchar)r;
}
}
}
imshow("Distance Map", dist8u );
}
int main( int argc, char** argv )
{
char* filename = argc == 2 ? argv[1] : (char*)"stuff.jpg";
gray = imread(filename, 0);
if(gray.empty())
{
help();
return -1;
}
help();
namedWindow("Distance Map", 1);
createTrackbar("Brightness Threshold", "Distance Map", &edgeThresh, 255, onTrackbar, 0);
for(;;)
{
// Call to update the view
onTrackbar(0, 0);
int c = cvWaitKey(0);
if( (char)c == 27 )
break;
if( (char)c == 'c' || (char)c == 'C' )
distType0 = CV_DIST_C;
else if( (char)c == '1' )
distType0 = CV_DIST_L1;
else if( (char)c == '2' )
distType0 = CV_DIST_L2;
else if( (char)c == '3' )
maskSize0 = CV_DIST_MASK_3;
else if( (char)c == '5' )
maskSize0 = CV_DIST_MASK_5;
else if( (char)c == '0' )
maskSize0 = CV_DIST_MASK_PRECISE;
else if( (char)c == 'v' )
buildVoronoi = !buildVoronoi;
else if( (char)c == ' ' )
{
if( buildVoronoi )
{
buildVoronoi = false;
maskSize0 = CV_DIST_MASK_3;
distType0 = CV_DIST_C;
}
else if( distType0 == CV_DIST_C )
distType0 = CV_DIST_L1;
else if( distType0 == CV_DIST_L1 )
distType0 = CV_DIST_L2;
else if( maskSize0 == CV_DIST_MASK_3 )
maskSize0 = CV_DIST_MASK_5;
else if( maskSize0 == CV_DIST_MASK_5 )
maskSize0 = CV_DIST_MASK_PRECISE;
else if( maskSize0 == CV_DIST_MASK_PRECISE )
buildVoronoi = true;
}
}
return 0;
}