1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable
#ifdef L2GRAD
inline float calc(int x, int y)
{
return sqrt((float)(x * x + y * y));
}
#else
inline float calc(int x, int y)
{
return (float)abs(x) + abs(y);
}
#endif //
// Smoothing perpendicular to the derivative direction with a triangle filter
// only support 3x3 Sobel kernel
// h (-1) = 1, h (0) = 2, h (1) = 1
// h'(-1) = -1, h'(0) = 0, h'(1) = 1
// thus sobel 2D operator can be calculated as:
// h'(x, y) = h'(x)h(y) for x direction
//
// src input 8bit single channel image data
// dx_buf output dx buffer
// dy_buf output dy buffer
__kernel
void calcSobelRowPass
(
__global const uchar * src,
__global int * dx_buf,
__global int * dy_buf,
int rows,
int cols,
int src_step,
int src_offset,
int dx_buf_step,
int dx_buf_offset,
int dy_buf_step,
int dy_buf_offset
)
{
//src_step /= sizeof(*src);
//src_offset /= sizeof(*src);
dx_buf_step /= sizeof(*dx_buf);
dx_buf_offset /= sizeof(*dx_buf);
dy_buf_step /= sizeof(*dy_buf);
dy_buf_offset /= sizeof(*dy_buf);
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int lidx = get_local_id(0);
int lidy = get_local_id(1);
__local int smem[16][18];
smem[lidy][lidx + 1] = src[gidx + gidy * src_step + src_offset];
if(lidx == 0)
{
smem[lidy][0] = src[max(gidx - 1, 0) + gidy * src_step + src_offset];
smem[lidy][17] = src[min(gidx + 16, cols - 1) + gidy * src_step + src_offset];
}
barrier(CLK_LOCAL_MEM_FENCE);
if(gidy < rows)
{
if(gidx < cols)
{
dx_buf[gidx + gidy * dx_buf_step + dx_buf_offset] =
-smem[lidy][lidx] + smem[lidy][lidx + 2];
dy_buf[gidx + gidy * dy_buf_step + dy_buf_offset] =
smem[lidy][lidx] + 2 * smem[lidy][lidx + 1] + smem[lidy][lidx + 2];
}
}
}
// calculate the magnitude of the filter pass combining both x and y directions
// This is the buffered version(3x3 sobel)
//
// dx_buf dx buffer, calculated from calcSobelRowPass
// dy_buf dy buffer, calculated from calcSobelRowPass
// dx direvitive in x direction output
// dy direvitive in y direction output
// mag magnitude direvitive of xy output
__kernel
void calcMagnitude_buf
(
__global const int * dx_buf,
__global const int * dy_buf,
__global int * dx,
__global int * dy,
__global float * mag,
int rows,
int cols,
int dx_buf_step,
int dx_buf_offset,
int dy_buf_step,
int dy_buf_offset,
int dx_step,
int dx_offset,
int dy_step,
int dy_offset,
int mag_step,
int mag_offset
)
{
dx_buf_step /= sizeof(*dx_buf);
dx_buf_offset /= sizeof(*dx_buf);
dy_buf_step /= sizeof(*dy_buf);
dy_buf_offset /= sizeof(*dy_buf);
dx_step /= sizeof(*dx);
dx_offset /= sizeof(*dx);
dy_step /= sizeof(*dy);
dy_offset /= sizeof(*dy);
mag_step /= sizeof(*mag);
mag_offset /= sizeof(*mag);
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int lidx = get_local_id(0);
int lidy = get_local_id(1);
__local int sdx[18][16];
__local int sdy[18][16];
sdx[lidy + 1][lidx] = dx_buf[gidx + gidy * dx_buf_step + dx_buf_offset];
sdy[lidy + 1][lidx] = dy_buf[gidx + gidy * dy_buf_step + dy_buf_offset];
if(lidy == 0)
{
sdx[0][lidx] = dx_buf[gidx + max(gidy - 1, 0) * dx_buf_step + dx_buf_offset];
sdx[17][lidx] = dx_buf[gidx + min(gidy + 16, rows - 1) * dx_buf_step + dx_buf_offset];
sdy[0][lidx] = dy_buf[gidx + max(gidy - 1, 0) * dy_buf_step + dy_buf_offset];
sdy[17][lidx] = dy_buf[gidx + min(gidy + 16, rows - 1) * dy_buf_step + dy_buf_offset];
}
barrier(CLK_LOCAL_MEM_FENCE);
if(gidx < cols)
{
if(gidy < rows)
{
int x = sdx[lidy][lidx] + 2 * sdx[lidy + 1][lidx] + sdx[lidy + 2][lidx];
int y = -sdy[lidy][lidx] + sdy[lidy + 2][lidx];
dx[gidx + gidy * dx_step + dx_offset] = x;
dy[gidx + gidy * dy_step + dy_offset] = y;
mag[(gidx + 1) + (gidy + 1) * mag_step + mag_offset] = calc(x, y);
}
}
}
// calculate the magnitude of the filter pass combining both x and y directions
// This is the non-buffered version(non-3x3 sobel)
//
// dx_buf dx buffer, calculated from calcSobelRowPass
// dy_buf dy buffer, calculated from calcSobelRowPass
// dx direvitive in x direction output
// dy direvitive in y direction output
// mag magnitude direvitive of xy output
__kernel
void calcMagnitude
(
__global const int * dx,
__global const int * dy,
__global float * mag,
int rows,
int cols,
int dx_step,
int dx_offset,
int dy_step,
int dy_offset,
int mag_step,
int mag_offset
)
{
dx_step /= sizeof(*dx);
dx_offset /= sizeof(*dx);
dy_step /= sizeof(*dy);
dy_offset /= sizeof(*dy);
mag_step /= sizeof(*mag);
mag_offset /= sizeof(*mag);
int gidx = get_global_id(0);
int gidy = get_global_id(1);
if(gidy < rows && gidx < cols)
{
mag[(gidx + 1) + (gidy + 1) * mag_step + mag_offset] =
calc(
dx[gidx + gidy * dx_step + dx_offset],
dy[gidx + gidy * dy_step + dy_offset]
);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
// 0.4142135623730950488016887242097 is tan(22.5)
#define CANNY_SHIFT 15
#define TG22 (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5)
//First pass of edge detection and non-maximum suppression
// edgetype is set to for each pixel:
// 0 - below low thres, not an edge
// 1 - maybe an edge
// 2 - is an edge, either magnitude is greater than high thres, or
// Given estimates of the image gradients, a search is then carried out
// to determine if the gradient magnitude assumes a local maximum in the gradient direction.
// if the rounded gradient angle is zero degrees (i.e. the edge is in the north-south direction) the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the west and east directions,
// if the rounded gradient angle is 90 degrees (i.e. the edge is in the east-west direction) the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the north and south directions,
// if the rounded gradient angle is 135 degrees (i.e. the edge is in the north east-south west direction) the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the north west and south east directions,
// if the rounded gradient angle is 45 degrees (i.e. the edge is in the north west-south east direction)the point will be considered to be on the edge if its gradient magnitude is greater than the magnitudes in the north east and south west directions.
//
// dx, dy direvitives of x and y direction
// mag magnitudes calculated from calcMagnitude function
// map output containing raw edge types
__kernel
void calcMap
(
__global const int * dx,
__global const int * dy,
__global const float * mag,
__global int * map,
int rows,
int cols,
float low_thresh,
float high_thresh,
int dx_step,
int dx_offset,
int dy_step,
int dy_offset,
int mag_step,
int mag_offset,
int map_step,
int map_offset
)
{
dx_step /= sizeof(*dx);
dx_offset /= sizeof(*dx);
dy_step /= sizeof(*dy);
dy_offset /= sizeof(*dy);
mag_step /= sizeof(*mag);
mag_offset /= sizeof(*mag);
map_step /= sizeof(*map);
map_offset /= sizeof(*map);
__local float smem[18][18];
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int lidx = get_local_id(0);
int lidy = get_local_id(1);
int grp_idx = get_global_id(0) & 0xFFFFF0;
int grp_idy = get_global_id(1) & 0xFFFFF0;
int tid = lidx + lidy * 16;
int lx = tid % 18;
int ly = tid / 18;
if(ly < 14)
{
smem[ly][lx] = mag[grp_idx + lx + (grp_idy + ly) * mag_step];
}
if(ly < 4 && grp_idy + ly + 14 <= rows && grp_idx + lx <= cols)
{
smem[ly + 14][lx] = mag[grp_idx + lx + (grp_idy + ly + 14) * mag_step];
}
barrier(CLK_LOCAL_MEM_FENCE);
if(gidy < rows && gidx < cols)
{
int x = dx[gidx + gidy * dx_step];
int y = dy[gidx + gidy * dy_step];
const int s = (x ^ y) < 0 ? -1 : 1;
const float m = smem[lidy + 1][lidx + 1];
x = abs(x);
y = abs(y);
// 0 - the pixel can not belong to an edge
// 1 - the pixel might belong to an edge
// 2 - the pixel does belong to an edge
int edge_type = 0;
if(m > low_thresh)
{
const int tg22x = x * TG22;
const int tg67x = tg22x + (x << (1 + CANNY_SHIFT));
y <<= CANNY_SHIFT;
if(y < tg22x)
{
if(m > smem[lidy + 1][lidx] && m >= smem[lidy + 1][lidx + 2])
{
edge_type = 1 + (int)(m > high_thresh);
}
}
else if (y > tg67x)
{
if(m > smem[lidy][lidx + 1]&& m >= smem[lidy + 2][lidx + 1])
{
edge_type = 1 + (int)(m > high_thresh);
}
}
else
{
if(m > smem[lidy][lidx + 1 - s]&& m > smem[lidy + 2][lidx + 1 + s])
{
edge_type = 1 + (int)(m > high_thresh);
}
}
}
map[gidx + 1 + (gidy + 1) * map_step] = edge_type;
}
}
// non local memory version
__kernel
void calcMap_2
(
__global const int * dx,
__global const int * dy,
__global const float * mag,
__global int * map,
int rows,
int cols,
float low_thresh,
float high_thresh,
int dx_step,
int dx_offset,
int dy_step,
int dy_offset,
int mag_step,
int mag_offset,
int map_step,
int map_offset
)
{
dx_step /= sizeof(*dx);
dx_offset /= sizeof(*dx);
dy_step /= sizeof(*dy);
dy_offset /= sizeof(*dy);
mag_step /= sizeof(*mag);
mag_offset /= sizeof(*mag);
map_step /= sizeof(*map);
map_offset /= sizeof(*map);
int gidx = get_global_id(0);
int gidy = get_global_id(1);
if(gidy < rows && gidx < cols)
{
int x = dx[gidx + gidy * dx_step];
int y = dy[gidx + gidy * dy_step];
const int s = (x ^ y) < 0 ? -1 : 1;
const float m = mag[gidx + 1 + (gidy + 1) * mag_step];
x = abs(x);
y = abs(y);
// 0 - the pixel can not belong to an edge
// 1 - the pixel might belong to an edge
// 2 - the pixel does belong to an edge
int edge_type = 0;
if(m > low_thresh)
{
const int tg22x = x * TG22;
const int tg67x = tg22x + (x << (1 + CANNY_SHIFT));
y <<= CANNY_SHIFT;
if(y < tg22x)
{
if(m > mag[gidx + (gidy + 1) * mag_step] && m >= mag[gidx + 2 + (gidy + 1) * mag_step])
{
edge_type = 1 + (int)(m > high_thresh);
}
}
else if (y > tg67x)
{
if(m > mag[gidx + 1 + gidy* mag_step] && m >= mag[gidx + 1 + (gidy + 2) * mag_step])
{
edge_type = 1 + (int)(m > high_thresh);
}
}
else
{
if(m > mag[gidx + 1 - s + gidy * mag_step] && m > mag[gidx + 1 + s + (gidy + 2) * mag_step])
{
edge_type = 1 + (int)(m > high_thresh);
}
}
}
map[gidx + 1 + (gidy + 1) * map_step] = edge_type;
}
}
// [256, 1, 1] threaded, local memory version
__kernel
void calcMap_3
(
__global const int * dx,
__global const int * dy,
__global const float * mag,
__global int * map,
int rows,
int cols,
float low_thresh,
float high_thresh,
int dx_step,
int dx_offset,
int dy_step,
int dy_offset,
int mag_step,
int mag_offset,
int map_step,
int map_offset
)
{
dx_step /= sizeof(*dx);
dx_offset /= sizeof(*dx);
dy_step /= sizeof(*dy);
dy_offset /= sizeof(*dy);
mag_step /= sizeof(*mag);
mag_offset /= sizeof(*mag);
map_step /= sizeof(*map);
map_offset /= sizeof(*map);
__local float smem[18][18];
int lidx = get_local_id(0) % 16;
int lidy = get_local_id(0) / 16;
int grp_pix = get_global_id(0); // identifies which pixel is processing currently in the target block
int grp_ind = get_global_id(1); // identifies which block of pixels is currently processing
int grp_idx = (grp_ind % (cols/16)) * 16;
int grp_idy = (grp_ind / (cols/16)) * 16; //(grp_ind / (cols/16)) * 16
int gidx = grp_idx + lidx;
int gidy = grp_idy + lidy;
int tid = get_global_id(0) % 256;
int lx = tid % 18;
int ly = tid / 18;
if(ly < 14)
{
smem[ly][lx] = mag[grp_idx + lx + (grp_idy + ly) * mag_step];
}
if(ly < 4 && grp_idy + ly + 14 <= rows && grp_idx + lx <= cols)
{
smem[ly + 14][lx] = mag[grp_idx + lx + (grp_idy + ly + 14) * mag_step];
}
barrier(CLK_LOCAL_MEM_FENCE);
if(gidy < rows && gidx < cols)
{
int x = dx[gidx + gidy * dx_step];
int y = dy[gidx + gidy * dy_step];
const int s = (x ^ y) < 0 ? -1 : 1;
const float m = smem[lidy + 1][lidx + 1];
x = abs(x);
y = abs(y);
// 0 - the pixel can not belong to an edge
// 1 - the pixel might belong to an edge
// 2 - the pixel does belong to an edge
int edge_type = 0;
if(m > low_thresh)
{
const int tg22x = x * TG22;
const int tg67x = tg22x + (x << (1 + CANNY_SHIFT));
y <<= CANNY_SHIFT;
if(y < tg22x)
{
if(m > smem[lidy + 1][lidx] && m >= smem[lidy + 1][lidx + 2])
{
edge_type = 1 + (int)(m > high_thresh);
}
}
else if (y > tg67x)
{
if(m > smem[lidy][lidx + 1]&& m >= smem[lidy + 2][lidx + 1])
{
edge_type = 1 + (int)(m > high_thresh);
}
}
else
{
if(m > smem[lidy][lidx + 1 - s]&& m > smem[lidy + 2][lidx + 1 + s])
{
edge_type = 1 + (int)(m > high_thresh);
}
}
}
map[gidx + 1 + (gidy + 1) * map_step] = edge_type;
}
}
#undef CANNY_SHIFT
#undef TG22
//////////////////////////////////////////////////////////////////////////////////////////
// do Hysteresis for pixel whose edge type is 1
//
// If candidate pixel (edge type is 1) has a neighbour pixel (in 3x3 area) with type 2, it is believed to be part of an edge and
// marked as edge. Each thread will iterate for 16 times to connect local edges.
// Candidate pixel being identified as edge will then be tested if there is nearby potiential edge points. If there is, counter will
// be incremented by 1 and the point location is stored. These potiential candidates will be processed further in next kernel.
//
// map raw edge type results calculated from calcMap.
// st the potiential edge points found in this kernel call
// counter the number of potiential edge points
__kernel
void edgesHysteresisLocal
(
__global int * map,
__global ushort2 * st,
volatile __global unsigned int * counter,
int rows,
int cols,
int map_step,
int map_offset
)
{
map_step /= sizeof(*map);
map_offset /= sizeof(*map);
__local int smem[18][18];
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int lidx = get_local_id(0);
int lidy = get_local_id(1);
int grp_idx = get_global_id(0) & 0xFFFFF0;
int grp_idy = get_global_id(1) & 0xFFFFF0;
int tid = lidx + lidy * 16;
int lx = tid % 18;
int ly = tid / 18;
if(ly < 14)
{
smem[ly][lx] = map[grp_idx + lx + (grp_idy + ly) * map_step + map_offset];
}
if(ly < 4 && grp_idy + ly + 14 <= rows && grp_idx + lx <= cols)
{
smem[ly + 14][lx] = map[grp_idx + lx + (grp_idy + ly + 14) * map_step + map_offset];
}
barrier(CLK_LOCAL_MEM_FENCE);
if(gidy < rows && gidx < cols)
{
int n;
#pragma unroll
for (int k = 0; k < 16; ++k)
{
n = 0;
if (smem[lidy + 1][lidx + 1] == 1)
{
n += smem[lidy ][lidx ] == 2;
n += smem[lidy ][lidx + 1] == 2;
n += smem[lidy ][lidx + 2] == 2;
n += smem[lidy + 1][lidx ] == 2;
n += smem[lidy + 1][lidx + 2] == 2;
n += smem[lidy + 2][lidx ] == 2;
n += smem[lidy + 2][lidx + 1] == 2;
n += smem[lidy + 2][lidx + 2] == 2;
}
if (n > 0)
smem[lidy + 1][lidx + 1] = 2;
}
const int e = smem[lidy + 1][lidx + 1];
map[gidx + 1 + (gidy + 1) * map_step] = e;
n = 0;
if(e == 2)
{
n += smem[lidy ][lidx ] == 1;
n += smem[lidy ][lidx + 1] == 1;
n += smem[lidy ][lidx + 2] == 1;
n += smem[lidy + 1][lidx ] == 1;
n += smem[lidy + 1][lidx + 2] == 1;
n += smem[lidy + 2][lidx ] == 1;
n += smem[lidy + 2][lidx + 1] == 1;
n += smem[lidy + 2][lidx + 2] == 1;
}
if(n > 0)
{
unsigned int ind = atomic_inc(counter);
st[ind] = (ushort2)(gidx + 1, gidy + 1);
}
}
}
__constant int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
__constant int c_dy[8] = {-1, -1, -1, 0, 0, 1, 1, 1};
#define stack_size 512
__kernel
void edgesHysteresisGlobal
(
__global int * map,
__global ushort2 * st1,
__global ushort2 * st2,
volatile __global int * counter,
int rows,
int cols,
int count,
int map_step,
int map_offset
)
{
map_step /= sizeof(*map);
map_offset /= sizeof(*map);
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int lidx = get_local_id(0);
int lidy = get_local_id(1);
int grp_idx = get_group_id(0);
int grp_idy = get_group_id(1);
volatile __local unsigned int s_counter;
__local unsigned int s_ind;
__local ushort2 s_st[stack_size];
if(lidx == 0)
{
s_counter = 0;
}
barrier(CLK_LOCAL_MEM_FENCE);
int ind = grp_idy * get_num_groups(0) + grp_idx;
if(ind < count)
{
ushort2 pos = st1[ind];
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows)
{
if (lidx < 8)
{
pos.x += c_dx[lidx];
pos.y += c_dy[lidx];
if (map[pos.x + pos.y * map_step] == 1)
{
map[pos.x + pos.y * map_step] = 2;
ind = atomic_inc(&s_counter);
s_st[ind] = pos;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
while (s_counter > 0 && s_counter <= stack_size - get_num_groups(0))
{
const int subTaskIdx = lidx >> 3;
const int portion = min(s_counter, get_num_groups(0) >> 3);
pos.x = pos.y = 0;
if (subTaskIdx < portion)
pos = s_st[s_counter - 1 - subTaskIdx];
barrier(CLK_LOCAL_MEM_FENCE);
if (lidx == 0)
s_counter -= portion;
barrier(CLK_LOCAL_MEM_FENCE);
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows)
{
pos.x += c_dx[lidx & 7];
pos.y += c_dy[lidx & 7];
if (map[pos.x + map_offset + pos.y * map_step] == 1)
{
map[pos.x + map_offset + pos.y * map_step] = 2;
ind = atomic_inc(&s_counter);
s_st[ind] = pos;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (s_counter > 0)
{
if (lidx == 0)
{
ind = atomic_add(counter, s_counter);
s_ind = ind - s_counter;
}
barrier(CLK_LOCAL_MEM_FENCE);
ind = s_ind;
for (int i = lidx; i < s_counter; i += get_num_groups(0))
{
st2[ind + i] = s_st[i];
}
}
}
}
}
#undef stack_size
//Get the edge result. egde type of value 2 will be marked as an edge point and set to 255. Otherwise 0.
// map edge type mappings
// dst edge output
__kernel
void getEdges
(
__global const int * map,
__global uchar * dst,
int rows,
int cols,
int map_step,
int map_offset,
int dst_step,
int dst_offset
)
{
map_step /= sizeof(*map);
map_offset /= sizeof(*map);
//dst_step /= sizeof(*dst);
//dst_offset /= sizeof(*dst);
int gidx = get_global_id(0);
int gidy = get_global_id(1);
if(gidy < rows && gidx < cols)
{
//dst[gidx + gidy * dst_step] = map[gidx + 1 + (gidy + 1) * map_step] == 2 ? 255: 0;
dst[gidx + gidy * dst_step] = (uchar)(-(map[gidx + 1 + (gidy + 1) * map_step] / 2));
}
}