1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#define CV_2PI 6.283185307179586476925286766559
#ifdef ForwardMap
__kernel void computeAngleRadius(__global float2* cp_sp, __global float* r, float maxRadius_width, float PI2_height, unsigned width, unsigned height)
{
unsigned gid = get_global_id(0);
if (gid < height)
{
float angle = gid * PI2_height;
float2 angle_tri=(float2)(cos(angle), sin(angle));
cp_sp[gid] = angle_tri;
}
if (gid < width)
{
r[gid] = maxRadius_width*gid;
}
}
__kernel void linearPolar(__global float* mx, __global float* my, __global float2* cp_sp, __global float* r, float cx, float cy, unsigned width, unsigned height)
{
__local float l_r[MEM_SIZE];
__local float2 l_double[MEM_SIZE];
unsigned rho = get_global_id(0);
unsigned phi = get_global_id(1);
unsigned local_0 = get_local_id(0);
unsigned local_1 = get_local_id(1);
if (local_1 == 0)
{
unsigned temp_phi=phi + local_0;
if (temp_phi < height)
{
l_double[local_0] = cp_sp[temp_phi];
}
}
if (local_1 == 1 )
{
if (rho < width)
{
l_r[local_0 ] = r[rho];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (rho<width && phi<height)
{
unsigned g_id = rho + phi*width;
float radius = l_r[local_0];
float2 tri= l_double[local_1];
mx[g_id] = fma(radius, tri.x , cx);
my[g_id] = fma(radius, tri.y , cy);
}
}
#elif defined (InverseMap)
__kernel void linearPolar(__global float* mx, __global float* my, float ascale, float pscale, float cx, float cy, int angle_border, unsigned width, unsigned height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if (x < width && y < height)
{
unsigned g_id = x + y*width;
float dx = (float)x - cx;
float dy = (float)y - cy;
float mag = sqrt(dx*dx + dy*dy);
float angle = atan2(dy, dx);
if (angle < 0)
angle = angle + CV_2PI;
mx[g_id] = mag*pscale;
my[g_id] = (angle*ascale) + angle_border;
}
}
#endif