1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "fisheye.hpp"
namespace cv { namespace
{
struct JacobianRow
{
Vec2d df, dc;
Vec4d dk;
Vec3d dom, dT;
double dalpha;
};
void subMatrix(const Mat& src, Mat& dst, const std::vector<uchar>& cols, const std::vector<uchar>& rows);
}}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::fisheye::projectPoints
void cv::fisheye::projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
InputArray K, InputArray D, double alpha, OutputArray jacobian)
{
projectPoints(objectPoints, imagePoints, affine.rvec(), affine.translation(), K, D, alpha, jacobian);
}
void cv::fisheye::projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray _rvec,
InputArray _tvec, InputArray _K, InputArray _D, double alpha, OutputArray jacobian)
{
// will support only 3-channel data now for points
CV_Assert(objectPoints.type() == CV_32FC3 || objectPoints.type() == CV_64FC3);
imagePoints.create(objectPoints.size(), CV_MAKETYPE(objectPoints.depth(), 2));
size_t n = objectPoints.total();
CV_Assert(_rvec.total() * _rvec.channels() == 3 && (_rvec.depth() == CV_32F || _rvec.depth() == CV_64F));
CV_Assert(_tvec.total() * _tvec.channels() == 3 && (_tvec.depth() == CV_32F || _tvec.depth() == CV_64F));
CV_Assert(_tvec.getMat().isContinuous() && _rvec.getMat().isContinuous());
Vec3d om = _rvec.depth() == CV_32F ? (Vec3d)*_rvec.getMat().ptr<Vec3f>() : *_rvec.getMat().ptr<Vec3d>();
Vec3d T = _tvec.depth() == CV_32F ? (Vec3d)*_tvec.getMat().ptr<Vec3f>() : *_tvec.getMat().ptr<Vec3d>();
CV_Assert(_K.size() == Size(3,3) && (_K.type() == CV_32F || _K.type() == CV_64F) && _D.type() == _K.type() && _D.total() == 4);
cv::Vec2d f, c;
if (_K.depth() == CV_32F)
{
Matx33f K = _K.getMat();
f = Vec2f(K(0, 0), K(1, 1));
c = Vec2f(K(0, 2), K(1, 2));
}
else
{
Matx33d K = _K.getMat();
f = Vec2d(K(0, 0), K(1, 1));
c = Vec2d(K(0, 2), K(1, 2));
}
Vec4d k = _D.depth() == CV_32F ? (Vec4d)*_D.getMat().ptr<Vec4f>(): *_D.getMat().ptr<Vec4d>();
JacobianRow *Jn = 0;
if (jacobian.needed())
{
int nvars = 2 + 2 + 1 + 4 + 3 + 3; // f, c, alpha, k, om, T,
jacobian.create(2*(int)n, nvars, CV_64F);
Jn = jacobian.getMat().ptr<JacobianRow>(0);
}
Matx33d R;
Matx<double, 3, 9> dRdom;
Rodrigues(om, R, dRdom);
Affine3d aff(om, T);
const Vec3f* Xf = objectPoints.getMat().ptr<Vec3f>();
const Vec3d* Xd = objectPoints.getMat().ptr<Vec3d>();
Vec2f *xpf = imagePoints.getMat().ptr<Vec2f>();
Vec2d *xpd = imagePoints.getMat().ptr<Vec2d>();
for(size_t i = 0; i < n; ++i)
{
Vec3d Xi = objectPoints.depth() == CV_32F ? (Vec3d)Xf[i] : Xd[i];
Vec3d Y = aff*Xi;
Vec2d x(Y[0]/Y[2], Y[1]/Y[2]);
double r2 = x.dot(x);
double r = std::sqrt(r2);
// Angle of the incoming ray:
double theta = atan(r);
double theta2 = theta*theta, theta3 = theta2*theta, theta4 = theta2*theta2, theta5 = theta4*theta,
theta6 = theta3*theta3, theta7 = theta6*theta, theta8 = theta4*theta4, theta9 = theta8*theta;
double theta_d = theta + k[0]*theta3 + k[1]*theta5 + k[2]*theta7 + k[3]*theta9;
double inv_r = r > 1e-8 ? 1.0/r : 1;
double cdist = r > 1e-8 ? theta_d * inv_r : 1;
Vec2d xd1 = x * cdist;
Vec2d xd3(xd1[0] + alpha*xd1[1], xd1[1]);
Vec2d final_point(xd3[0] * f[0] + c[0], xd3[1] * f[1] + c[1]);
if (objectPoints.depth() == CV_32F)
xpf[i] = final_point;
else
xpd[i] = final_point;
if (jacobian.needed())
{
//Vec3d Xi = pdepth == CV_32F ? (Vec3d)Xf[i] : Xd[i];
//Vec3d Y = aff*Xi;
double dYdR[] = { Xi[0], Xi[1], Xi[2], 0, 0, 0, 0, 0, 0,
0, 0, 0, Xi[0], Xi[1], Xi[2], 0, 0, 0,
0, 0, 0, 0, 0, 0, Xi[0], Xi[1], Xi[2] };
Matx33d dYdom_data = Matx<double, 3, 9>(dYdR) * dRdom.t();
const Vec3d *dYdom = (Vec3d*)dYdom_data.val;
Matx33d dYdT_data = Matx33d::eye();
const Vec3d *dYdT = (Vec3d*)dYdT_data.val;
//Vec2d x(Y[0]/Y[2], Y[1]/Y[2]);
Vec3d dxdom[2];
dxdom[0] = (1.0/Y[2]) * dYdom[0] - x[0]/Y[2] * dYdom[2];
dxdom[1] = (1.0/Y[2]) * dYdom[1] - x[1]/Y[2] * dYdom[2];
Vec3d dxdT[2];
dxdT[0] = (1.0/Y[2]) * dYdT[0] - x[0]/Y[2] * dYdT[2];
dxdT[1] = (1.0/Y[2]) * dYdT[1] - x[1]/Y[2] * dYdT[2];
//double r2 = x.dot(x);
Vec3d dr2dom = 2 * x[0] * dxdom[0] + 2 * x[1] * dxdom[1];
Vec3d dr2dT = 2 * x[0] * dxdT[0] + 2 * x[1] * dxdT[1];
//double r = std::sqrt(r2);
double drdr2 = r > 1e-8 ? 1.0/(2*r) : 1;
Vec3d drdom = drdr2 * dr2dom;
Vec3d drdT = drdr2 * dr2dT;
// Angle of the incoming ray:
//double theta = atan(r);
double dthetadr = 1.0/(1+r2);
Vec3d dthetadom = dthetadr * drdom;
Vec3d dthetadT = dthetadr * drdT;
//double theta_d = theta + k[0]*theta3 + k[1]*theta5 + k[2]*theta7 + k[3]*theta9;
double dtheta_ddtheta = 1 + 3*k[0]*theta2 + 5*k[1]*theta4 + 7*k[2]*theta6 + 9*k[3]*theta8;
Vec3d dtheta_ddom = dtheta_ddtheta * dthetadom;
Vec3d dtheta_ddT = dtheta_ddtheta * dthetadT;
Vec4d dtheta_ddk = Vec4d(theta3, theta5, theta7, theta9);
//double inv_r = r > 1e-8 ? 1.0/r : 1;
//double cdist = r > 1e-8 ? theta_d / r : 1;
Vec3d dcdistdom = inv_r * (dtheta_ddom - cdist*drdom);
Vec3d dcdistdT = inv_r * (dtheta_ddT - cdist*drdT);
Vec4d dcdistdk = inv_r * dtheta_ddk;
//Vec2d xd1 = x * cdist;
Vec4d dxd1dk[2];
Vec3d dxd1dom[2], dxd1dT[2];
dxd1dom[0] = x[0] * dcdistdom + cdist * dxdom[0];
dxd1dom[1] = x[1] * dcdistdom + cdist * dxdom[1];
dxd1dT[0] = x[0] * dcdistdT + cdist * dxdT[0];
dxd1dT[1] = x[1] * dcdistdT + cdist * dxdT[1];
dxd1dk[0] = x[0] * dcdistdk;
dxd1dk[1] = x[1] * dcdistdk;
//Vec2d xd3(xd1[0] + alpha*xd1[1], xd1[1]);
Vec4d dxd3dk[2];
Vec3d dxd3dom[2], dxd3dT[2];
dxd3dom[0] = dxd1dom[0] + alpha * dxd1dom[1];
dxd3dom[1] = dxd1dom[1];
dxd3dT[0] = dxd1dT[0] + alpha * dxd1dT[1];
dxd3dT[1] = dxd1dT[1];
dxd3dk[0] = dxd1dk[0] + alpha * dxd1dk[1];
dxd3dk[1] = dxd1dk[1];
Vec2d dxd3dalpha(xd1[1], 0);
//final jacobian
Jn[0].dom = f[0] * dxd3dom[0];
Jn[1].dom = f[1] * dxd3dom[1];
Jn[0].dT = f[0] * dxd3dT[0];
Jn[1].dT = f[1] * dxd3dT[1];
Jn[0].dk = f[0] * dxd3dk[0];
Jn[1].dk = f[1] * dxd3dk[1];
Jn[0].dalpha = f[0] * dxd3dalpha[0];
Jn[1].dalpha = 0; //f[1] * dxd3dalpha[1];
Jn[0].df = Vec2d(xd3[0], 0);
Jn[1].df = Vec2d(0, xd3[1]);
Jn[0].dc = Vec2d(1, 0);
Jn[1].dc = Vec2d(0, 1);
//step to jacobian rows for next point
Jn += 2;
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::fisheye::distortPoints
void cv::fisheye::distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha)
{
// will support only 2-channel data now for points
CV_Assert(undistorted.type() == CV_32FC2 || undistorted.type() == CV_64FC2);
distorted.create(undistorted.size(), undistorted.type());
size_t n = undistorted.total();
CV_Assert(K.size() == Size(3,3) && (K.type() == CV_32F || K.type() == CV_64F) && D.total() == 4);
cv::Vec2d f, c;
if (K.depth() == CV_32F)
{
Matx33f camMat = K.getMat();
f = Vec2f(camMat(0, 0), camMat(1, 1));
c = Vec2f(camMat(0, 2), camMat(1, 2));
}
else
{
Matx33d camMat = K.getMat();
f = Vec2d(camMat(0, 0), camMat(1, 1));
c = Vec2d(camMat(0 ,2), camMat(1, 2));
}
Vec4d k = D.depth() == CV_32F ? (Vec4d)*D.getMat().ptr<Vec4f>(): *D.getMat().ptr<Vec4d>();
const Vec2f* Xf = undistorted.getMat().ptr<Vec2f>();
const Vec2d* Xd = undistorted.getMat().ptr<Vec2d>();
Vec2f *xpf = distorted.getMat().ptr<Vec2f>();
Vec2d *xpd = distorted.getMat().ptr<Vec2d>();
for(size_t i = 0; i < n; ++i)
{
Vec2d x = undistorted.depth() == CV_32F ? (Vec2d)Xf[i] : Xd[i];
double r2 = x.dot(x);
double r = std::sqrt(r2);
// Angle of the incoming ray:
double theta = atan(r);
double theta2 = theta*theta, theta3 = theta2*theta, theta4 = theta2*theta2, theta5 = theta4*theta,
theta6 = theta3*theta3, theta7 = theta6*theta, theta8 = theta4*theta4, theta9 = theta8*theta;
double theta_d = theta + k[0]*theta3 + k[1]*theta5 + k[2]*theta7 + k[3]*theta9;
double inv_r = r > 1e-8 ? 1.0/r : 1;
double cdist = r > 1e-8 ? theta_d * inv_r : 1;
Vec2d xd1 = x * cdist;
Vec2d xd3(xd1[0] + alpha*xd1[1], xd1[1]);
Vec2d final_point(xd3[0] * f[0] + c[0], xd3[1] * f[1] + c[1]);
if (undistorted.depth() == CV_32F)
xpf[i] = final_point;
else
xpd[i] = final_point;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::fisheye::undistortPoints
void cv::fisheye::undistortPoints( InputArray distorted, OutputArray undistorted, InputArray K, InputArray D, InputArray R, InputArray P)
{
// will support only 2-channel data now for points
CV_Assert(distorted.type() == CV_32FC2 || distorted.type() == CV_64FC2);
undistorted.create(distorted.size(), distorted.type());
CV_Assert(P.empty() || P.size() == Size(3, 3) || P.size() == Size(4, 3));
CV_Assert(R.empty() || R.size() == Size(3, 3) || R.total() * R.channels() == 3);
CV_Assert(D.total() == 4 && K.size() == Size(3, 3) && (K.depth() == CV_32F || K.depth() == CV_64F));
cv::Vec2d f, c;
if (K.depth() == CV_32F)
{
Matx33f camMat = K.getMat();
f = Vec2f(camMat(0, 0), camMat(1, 1));
c = Vec2f(camMat(0, 2), camMat(1, 2));
}
else
{
Matx33d camMat = K.getMat();
f = Vec2d(camMat(0, 0), camMat(1, 1));
c = Vec2d(camMat(0, 2), camMat(1, 2));
}
Vec4d k = D.depth() == CV_32F ? (Vec4d)*D.getMat().ptr<Vec4f>(): *D.getMat().ptr<Vec4d>();
cv::Matx33d RR = cv::Matx33d::eye();
if (!R.empty() && R.total() * R.channels() == 3)
{
cv::Vec3d rvec;
R.getMat().convertTo(rvec, CV_64F);
RR = cv::Affine3d(rvec).rotation();
}
else if (!R.empty() && R.size() == Size(3, 3))
R.getMat().convertTo(RR, CV_64F);
if(!P.empty())
{
cv::Matx33d PP;
P.getMat().colRange(0, 3).convertTo(PP, CV_64F);
RR = PP * RR;
}
// start undistorting
const cv::Vec2f* srcf = distorted.getMat().ptr<cv::Vec2f>();
const cv::Vec2d* srcd = distorted.getMat().ptr<cv::Vec2d>();
cv::Vec2f* dstf = undistorted.getMat().ptr<cv::Vec2f>();
cv::Vec2d* dstd = undistorted.getMat().ptr<cv::Vec2d>();
size_t n = distorted.total();
int sdepth = distorted.depth();
for(size_t i = 0; i < n; i++ )
{
Vec2d pi = sdepth == CV_32F ? (Vec2d)srcf[i] : srcd[i]; // image point
Vec2d pw((pi[0] - c[0])/f[0], (pi[1] - c[1])/f[1]); // world point
double scale = 1.0;
double theta_d = sqrt(pw[0]*pw[0] + pw[1]*pw[1]);
if (theta_d > 1e-8)
{
// compensate distortion iteratively
double theta = theta_d;
for(int j = 0; j < 10; j++ )
{
double theta2 = theta*theta, theta4 = theta2*theta2, theta6 = theta4*theta2, theta8 = theta6*theta2;
theta = theta_d / (1 + k[0] * theta2 + k[1] * theta4 + k[2] * theta6 + k[3] * theta8);
}
scale = std::tan(theta) / theta_d;
}
Vec2d pu = pw * scale; //undistorted point
// reproject
Vec3d pr = RR * Vec3d(pu[0], pu[1], 1.0); // rotated point optionally multiplied by new camera matrix
Vec2d fi(pr[0]/pr[2], pr[1]/pr[2]); // final
if( sdepth == CV_32F )
dstf[i] = fi;
else
dstd[i] = fi;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::fisheye::undistortPoints
void cv::fisheye::initUndistortRectifyMap( InputArray K, InputArray D, InputArray R, InputArray P,
const cv::Size& size, int m1type, OutputArray map1, OutputArray map2 )
{
CV_Assert( m1type == CV_16SC2 || m1type == CV_32F || m1type <=0 );
map1.create( size, m1type <= 0 ? CV_16SC2 : m1type );
map2.create( size, map1.type() == CV_16SC2 ? CV_16UC1 : CV_32F );
CV_Assert((K.depth() == CV_32F || K.depth() == CV_64F) && (D.depth() == CV_32F || D.depth() == CV_64F));
CV_Assert((P.depth() == CV_32F || P.depth() == CV_64F) && (R.depth() == CV_32F || R.depth() == CV_64F));
CV_Assert(K.size() == Size(3, 3) && (D.empty() || D.total() == 4));
CV_Assert(R.empty() || R.size() == Size(3, 3) || R.total() * R.channels() == 3);
CV_Assert(P.empty() || P.size() == Size(3, 3) || P.size() == Size(4, 3));
cv::Vec2d f, c;
if (K.depth() == CV_32F)
{
Matx33f camMat = K.getMat();
f = Vec2f(camMat(0, 0), camMat(1, 1));
c = Vec2f(camMat(0, 2), camMat(1, 2));
}
else
{
Matx33d camMat = K.getMat();
f = Vec2d(camMat(0, 0), camMat(1, 1));
c = Vec2d(camMat(0, 2), camMat(1, 2));
}
Vec4d k = Vec4d::all(0);
if (!D.empty())
k = D.depth() == CV_32F ? (Vec4d)*D.getMat().ptr<Vec4f>(): *D.getMat().ptr<Vec4d>();
cv::Matx33d RR = cv::Matx33d::eye();
if (!R.empty() && R.total() * R.channels() == 3)
{
cv::Vec3d rvec;
R.getMat().convertTo(rvec, CV_64F);
RR = Affine3d(rvec).rotation();
}
else if (!R.empty() && R.size() == Size(3, 3))
R.getMat().convertTo(RR, CV_64F);
cv::Matx33d PP = cv::Matx33d::eye();
if (!P.empty())
P.getMat().colRange(0, 3).convertTo(PP, CV_64F);
cv::Matx33d iR = (PP * RR).inv(cv::DECOMP_SVD);
for( int i = 0; i < size.height; ++i)
{
float* m1f = map1.getMat().ptr<float>(i);
float* m2f = map2.getMat().ptr<float>(i);
short* m1 = (short*)m1f;
ushort* m2 = (ushort*)m2f;
double _x = i*iR(0, 1) + iR(0, 2),
_y = i*iR(1, 1) + iR(1, 2),
_w = i*iR(2, 1) + iR(2, 2);
for( int j = 0; j < size.width; ++j)
{
double x = _x/_w, y = _y/_w;
double r = sqrt(x*x + y*y);
double theta = atan(r);
double theta2 = theta*theta, theta4 = theta2*theta2, theta6 = theta4*theta2, theta8 = theta4*theta4;
double theta_d = theta * (1 + k[0]*theta2 + k[1]*theta4 + k[2]*theta6 + k[3]*theta8);
double scale = (r == 0) ? 1.0 : theta_d / r;
double u = f[0]*x*scale + c[0];
double v = f[1]*y*scale + c[1];
if( m1type == CV_16SC2 )
{
int iu = cv::saturate_cast<int>(u*cv::INTER_TAB_SIZE);
int iv = cv::saturate_cast<int>(v*cv::INTER_TAB_SIZE);
m1[j*2+0] = (short)(iu >> cv::INTER_BITS);
m1[j*2+1] = (short)(iv >> cv::INTER_BITS);
m2[j] = (ushort)((iv & (cv::INTER_TAB_SIZE-1))*cv::INTER_TAB_SIZE + (iu & (cv::INTER_TAB_SIZE-1)));
}
else if( m1type == CV_32FC1 )
{
m1f[j] = (float)u;
m2f[j] = (float)v;
}
_x += iR(0, 0);
_y += iR(1, 0);
_w += iR(2, 0);
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::fisheye::undistortImage
void cv::fisheye::undistortImage(InputArray distorted, OutputArray undistorted,
InputArray K, InputArray D, InputArray Knew, const Size& new_size)
{
Size size = new_size.area() != 0 ? new_size : distorted.size();
cv::Mat map1, map2;
fisheye::initUndistortRectifyMap(K, D, cv::Matx33d::eye(), Knew, size, CV_16SC2, map1, map2 );
cv::remap(distorted, undistorted, map1, map2, INTER_LINEAR, BORDER_CONSTANT);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::fisheye::estimateNewCameraMatrixForUndistortRectify
void cv::fisheye::estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
OutputArray P, double balance, const Size& new_size, double fov_scale)
{
CV_Assert( K.size() == Size(3, 3) && (K.depth() == CV_32F || K.depth() == CV_64F));
CV_Assert(D.empty() || ((D.total() == 4) && (D.depth() == CV_32F || D.depth() == CV_64F)));
int w = image_size.width, h = image_size.height;
balance = std::min(std::max(balance, 0.0), 1.0);
cv::Mat points(1, 4, CV_64FC2);
Vec2d* pptr = points.ptr<Vec2d>();
pptr[0] = Vec2d(w/2, 0);
pptr[1] = Vec2d(w, h/2);
pptr[2] = Vec2d(w/2, h);
pptr[3] = Vec2d(0, h/2);
#if 0
const int N = 10;
cv::Mat points(1, N * 4, CV_64FC2);
Vec2d* pptr = points.ptr<Vec2d>();
for(int i = 0, k = 0; i < 10; ++i)
{
pptr[k++] = Vec2d(w/2, 0) - Vec2d(w/8, 0) + Vec2d(w/4/N*i, 0);
pptr[k++] = Vec2d(w/2, h-1) - Vec2d(w/8, h-1) + Vec2d(w/4/N*i, h-1);
pptr[k++] = Vec2d(0, h/2) - Vec2d(0, h/8) + Vec2d(0, h/4/N*i);
pptr[k++] = Vec2d(w-1, h/2) - Vec2d(w-1, h/8) + Vec2d(w-1, h/4/N*i);
}
#endif
fisheye::undistortPoints(points, points, K, D, R);
cv::Scalar center_mass = mean(points);
cv::Vec2d cn(center_mass.val);
double aspect_ratio = (K.depth() == CV_32F) ? K.getMat().at<float >(0,0)/K.getMat().at<float> (1,1)
: K.getMat().at<double>(0,0)/K.getMat().at<double>(1,1);
// convert to identity ratio
cn[0] *= aspect_ratio;
for(size_t i = 0; i < points.total(); ++i)
pptr[i][1] *= aspect_ratio;
double minx = DBL_MAX, miny = DBL_MAX, maxx = -DBL_MAX, maxy = -DBL_MAX;
for(size_t i = 0; i < points.total(); ++i)
{
miny = std::min(miny, pptr[i][1]);
maxy = std::max(maxy, pptr[i][1]);
minx = std::min(minx, pptr[i][0]);
maxx = std::max(maxx, pptr[i][0]);
}
#if 0
double minx = -DBL_MAX, miny = -DBL_MAX, maxx = DBL_MAX, maxy = DBL_MAX;
for(size_t i = 0; i < points.total(); ++i)
{
if (i % 4 == 0) miny = std::max(miny, pptr[i][1]);
if (i % 4 == 1) maxy = std::min(maxy, pptr[i][1]);
if (i % 4 == 2) minx = std::max(minx, pptr[i][0]);
if (i % 4 == 3) maxx = std::min(maxx, pptr[i][0]);
}
#endif
double f1 = w * 0.5/(cn[0] - minx);
double f2 = w * 0.5/(maxx - cn[0]);
double f3 = h * 0.5 * aspect_ratio/(cn[1] - miny);
double f4 = h * 0.5 * aspect_ratio/(maxy - cn[1]);
double fmin = std::min(f1, std::min(f2, std::min(f3, f4)));
double fmax = std::max(f1, std::max(f2, std::max(f3, f4)));
double f = balance * fmin + (1.0 - balance) * fmax;
f *= fov_scale > 0 ? 1.0/fov_scale : 1.0;
cv::Vec2d new_f(f, f), new_c = -cn * f + Vec2d(w, h * aspect_ratio) * 0.5;
// restore aspect ratio
new_f[1] /= aspect_ratio;
new_c[1] /= aspect_ratio;
if (new_size.area() > 0)
{
double rx = new_size.width /(double)image_size.width;
double ry = new_size.height/(double)image_size.height;
new_f[0] *= rx; new_f[1] *= ry;
new_c[0] *= rx; new_c[1] *= ry;
}
Mat(Matx33d(new_f[0], 0, new_c[0],
0, new_f[1], new_c[1],
0, 0, 1)).convertTo(P, P.empty() ? K.type() : P.type());
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::fisheye::stereoRectify
void cv::fisheye::stereoRectify( InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size& imageSize,
InputArray _R, InputArray _tvec, OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2,
OutputArray Q, int flags, const Size& newImageSize, double balance, double fov_scale)
{
CV_Assert((_R.size() == Size(3, 3) || _R.total() * _R.channels() == 3) && (_R.depth() == CV_32F || _R.depth() == CV_64F));
CV_Assert(_tvec.total() * _tvec.channels() == 3 && (_tvec.depth() == CV_32F || _tvec.depth() == CV_64F));
cv::Mat aaa = _tvec.getMat().reshape(3, 1);
Vec3d rvec; // Rodrigues vector
if (_R.size() == Size(3, 3))
{
cv::Matx33d rmat;
_R.getMat().convertTo(rmat, CV_64F);
rvec = Affine3d(rmat).rvec();
}
else if (_R.total() * _R.channels() == 3)
_R.getMat().convertTo(rvec, CV_64F);
Vec3d tvec;
_tvec.getMat().convertTo(tvec, CV_64F);
// rectification algorithm
rvec *= -0.5; // get average rotation
Matx33d r_r;
Rodrigues(rvec, r_r); // rotate cameras to same orientation by averaging
Vec3d t = r_r * tvec;
Vec3d uu(t[0] > 0 ? 1 : -1, 0, 0);
// calculate global Z rotation
Vec3d ww = t.cross(uu);
double nw = norm(ww);
if (nw > 0.0)
ww *= acos(fabs(t[0])/cv::norm(t))/nw;
Matx33d wr;
Rodrigues(ww, wr);
// apply to both views
Matx33d ri1 = wr * r_r.t();
Mat(ri1, false).convertTo(R1, R1.empty() ? CV_64F : R1.type());
Matx33d ri2 = wr * r_r;
Mat(ri2, false).convertTo(R2, R2.empty() ? CV_64F : R2.type());
Vec3d tnew = ri2 * tvec;
// calculate projection/camera matrices. these contain the relevant rectified image internal params (fx, fy=fx, cx, cy)
Matx33d newK1, newK2;
estimateNewCameraMatrixForUndistortRectify(K1, D1, imageSize, R1, newK1, balance, newImageSize, fov_scale);
estimateNewCameraMatrixForUndistortRectify(K2, D2, imageSize, R2, newK2, balance, newImageSize, fov_scale);
double fc_new = std::min(newK1(1,1), newK2(1,1));
Point2d cc_new[2] = { Vec2d(newK1(0, 2), newK1(1, 2)), Vec2d(newK2(0, 2), newK2(1, 2)) };
// Vertical focal length must be the same for both images to keep the epipolar constraint use fy for fx also.
// For simplicity, set the principal points for both cameras to be the average
// of the two principal points (either one of or both x- and y- coordinates)
if( flags & cv::CALIB_ZERO_DISPARITY )
cc_new[0] = cc_new[1] = (cc_new[0] + cc_new[1]) * 0.5;
else
cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5;
Mat(Matx34d(fc_new, 0, cc_new[0].x, 0,
0, fc_new, cc_new[0].y, 0,
0, 0, 1, 0), false).convertTo(P1, P1.empty() ? CV_64F : P1.type());
Mat(Matx34d(fc_new, 0, cc_new[1].x, tnew[0]*fc_new, // baseline * focal length;,
0, fc_new, cc_new[1].y, 0,
0, 0, 1, 0), false).convertTo(P2, P2.empty() ? CV_64F : P2.type());
if (Q.needed())
Mat(Matx44d(1, 0, 0, -cc_new[0].x,
0, 1, 0, -cc_new[0].y,
0, 0, 0, fc_new,
0, 0, -1./tnew[0], (cc_new[0].x - cc_new[1].x)/tnew[0]), false).convertTo(Q, Q.empty() ? CV_64F : Q.depth());
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::fisheye::calibrate
double cv::fisheye::calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
int flags , cv::TermCriteria criteria)
{
CV_Assert(!objectPoints.empty() && !imagePoints.empty() && objectPoints.total() == imagePoints.total());
CV_Assert(objectPoints.type() == CV_32FC3 || objectPoints.type() == CV_64FC3);
CV_Assert(imagePoints.type() == CV_32FC2 || imagePoints.type() == CV_64FC2);
CV_Assert(K.empty() || (K.size() == Size(3,3)));
CV_Assert(D.empty() || (D.total() == 4));
CV_Assert(rvecs.empty() || (rvecs.channels() == 3));
CV_Assert(tvecs.empty() || (tvecs.channels() == 3));
CV_Assert((!K.empty() && !D.empty()) || !(flags & CALIB_USE_INTRINSIC_GUESS));
using namespace cv::internal;
//-------------------------------Initialization
IntrinsicParams finalParam;
IntrinsicParams currentParam;
IntrinsicParams errors;
finalParam.isEstimate[0] = 1;
finalParam.isEstimate[1] = 1;
finalParam.isEstimate[2] = 1;
finalParam.isEstimate[3] = 1;
finalParam.isEstimate[4] = flags & CALIB_FIX_SKEW ? 0 : 1;
finalParam.isEstimate[5] = flags & CALIB_FIX_K1 ? 0 : 1;
finalParam.isEstimate[6] = flags & CALIB_FIX_K2 ? 0 : 1;
finalParam.isEstimate[7] = flags & CALIB_FIX_K3 ? 0 : 1;
finalParam.isEstimate[8] = flags & CALIB_FIX_K4 ? 0 : 1;
const int recompute_extrinsic = flags & CALIB_RECOMPUTE_EXTRINSIC ? 1: 0;
const int check_cond = flags & CALIB_CHECK_COND ? 1 : 0;
const double alpha_smooth = 0.4;
const double thresh_cond = 1e6;
double change = 1;
Vec2d err_std;
Matx33d _K;
Vec4d _D;
if (flags & CALIB_USE_INTRINSIC_GUESS)
{
K.getMat().convertTo(_K, CV_64FC1);
D.getMat().convertTo(_D, CV_64FC1);
finalParam.Init(Vec2d(_K(0,0), _K(1, 1)),
Vec2d(_K(0,2), _K(1, 2)),
Vec4d(flags & CALIB_FIX_K1 ? 0 : _D[0],
flags & CALIB_FIX_K2 ? 0 : _D[1],
flags & CALIB_FIX_K3 ? 0 : _D[2],
flags & CALIB_FIX_K4 ? 0 : _D[3]),
_K(0, 1) / _K(0, 0));
}
else
{
finalParam.Init(Vec2d(max(image_size.width, image_size.height) / CV_PI, max(image_size.width, image_size.height) / CV_PI),
Vec2d(image_size.width / 2.0 - 0.5, image_size.height / 2.0 - 0.5));
}
errors.isEstimate = finalParam.isEstimate;
std::vector<Vec3d> omc(objectPoints.total()), Tc(objectPoints.total());
CalibrateExtrinsics(objectPoints, imagePoints, finalParam, check_cond, thresh_cond, omc, Tc);
//-------------------------------Optimization
for(int iter = 0; ; ++iter)
{
if ((criteria.type == 1 && iter >= criteria.maxCount) ||
(criteria.type == 2 && change <= criteria.epsilon) ||
(criteria.type == 3 && (change <= criteria.epsilon || iter >= criteria.maxCount)))
break;
double alpha_smooth2 = 1 - std::pow(1 - alpha_smooth, iter + 1.0);
Mat JJ2, ex3;
ComputeJacobians(objectPoints, imagePoints, finalParam, omc, Tc, check_cond,thresh_cond, JJ2, ex3);
Mat G;
solve(JJ2, ex3, G);
currentParam = finalParam + alpha_smooth2*G;
change = norm(Vec4d(currentParam.f[0], currentParam.f[1], currentParam.c[0], currentParam.c[1]) -
Vec4d(finalParam.f[0], finalParam.f[1], finalParam.c[0], finalParam.c[1]))
/ norm(Vec4d(currentParam.f[0], currentParam.f[1], currentParam.c[0], currentParam.c[1]));
finalParam = currentParam;
if (recompute_extrinsic)
{
CalibrateExtrinsics(objectPoints, imagePoints, finalParam, check_cond,
thresh_cond, omc, Tc);
}
}
//-------------------------------Validation
double rms;
EstimateUncertainties(objectPoints, imagePoints, finalParam, omc, Tc, errors, err_std, thresh_cond,
check_cond, rms);
//-------------------------------
_K = Matx33d(finalParam.f[0], finalParam.f[0] * finalParam.alpha, finalParam.c[0],
0, finalParam.f[1], finalParam.c[1],
0, 0, 1);
if (K.needed()) cv::Mat(_K).convertTo(K, K.empty() ? CV_64FC1 : K.type());
if (D.needed()) cv::Mat(finalParam.k).convertTo(D, D.empty() ? CV_64FC1 : D.type());
if (rvecs.kind()==_InputArray::STD_VECTOR_MAT)
{
int i;
for( i = 0; i < (int)objectPoints.total(); i++ )
{
rvecs.getMat(i)=omc[i];
tvecs.getMat(i)=Tc[i];
}
}
else
{
if (rvecs.needed()) cv::Mat(omc).convertTo(rvecs, rvecs.empty() ? CV_64FC3 : rvecs.type());
if (tvecs.needed()) cv::Mat(Tc).convertTo(tvecs, tvecs.empty() ? CV_64FC3 : tvecs.type());
}
return rms;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// cv::fisheye::stereoCalibrate
double cv::fisheye::stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
OutputArray R, OutputArray T, int flags, TermCriteria criteria)
{
CV_Assert(!objectPoints.empty() && !imagePoints1.empty() && !imagePoints2.empty());
CV_Assert(objectPoints.total() == imagePoints1.total() || imagePoints1.total() == imagePoints2.total());
CV_Assert(objectPoints.type() == CV_32FC3 || objectPoints.type() == CV_64FC3);
CV_Assert(imagePoints1.type() == CV_32FC2 || imagePoints1.type() == CV_64FC2);
CV_Assert(imagePoints2.type() == CV_32FC2 || imagePoints2.type() == CV_64FC2);
CV_Assert(K1.empty() || (K1.size() == Size(3,3)));
CV_Assert(D1.empty() || (D1.total() == 4));
CV_Assert(K2.empty() || (K1.size() == Size(3,3)));
CV_Assert(D2.empty() || (D1.total() == 4));
CV_Assert((!K1.empty() && !K2.empty() && !D1.empty() && !D2.empty()) || !(flags & CALIB_FIX_INTRINSIC));
//-------------------------------Initialization
const int threshold = 50;
const double thresh_cond = 1e6;
const int check_cond = 1;
int n_points = (int)objectPoints.getMat(0).total();
int n_images = (int)objectPoints.total();
double change = 1;
cv::internal::IntrinsicParams intrinsicLeft;
cv::internal::IntrinsicParams intrinsicRight;
cv::internal::IntrinsicParams intrinsicLeft_errors;
cv::internal::IntrinsicParams intrinsicRight_errors;
Matx33d _K1, _K2;
Vec4d _D1, _D2;
if (!K1.empty()) K1.getMat().convertTo(_K1, CV_64FC1);
if (!D1.empty()) D1.getMat().convertTo(_D1, CV_64FC1);
if (!K2.empty()) K2.getMat().convertTo(_K2, CV_64FC1);
if (!D2.empty()) D2.getMat().convertTo(_D2, CV_64FC1);
std::vector<Vec3d> rvecs1(n_images), tvecs1(n_images), rvecs2(n_images), tvecs2(n_images);
if (!(flags & CALIB_FIX_INTRINSIC))
{
calibrate(objectPoints, imagePoints1, imageSize, _K1, _D1, rvecs1, tvecs1, flags, TermCriteria(3, 20, 1e-6));
calibrate(objectPoints, imagePoints2, imageSize, _K2, _D2, rvecs2, tvecs2, flags, TermCriteria(3, 20, 1e-6));
}
intrinsicLeft.Init(Vec2d(_K1(0,0), _K1(1, 1)), Vec2d(_K1(0,2), _K1(1, 2)),
Vec4d(_D1[0], _D1[1], _D1[2], _D1[3]), _K1(0, 1) / _K1(0, 0));
intrinsicRight.Init(Vec2d(_K2(0,0), _K2(1, 1)), Vec2d(_K2(0,2), _K2(1, 2)),
Vec4d(_D2[0], _D2[1], _D2[2], _D2[3]), _K2(0, 1) / _K2(0, 0));
if ((flags & CALIB_FIX_INTRINSIC))
{
cv::internal::CalibrateExtrinsics(objectPoints, imagePoints1, intrinsicLeft, check_cond, thresh_cond, rvecs1, tvecs1);
cv::internal::CalibrateExtrinsics(objectPoints, imagePoints2, intrinsicRight, check_cond, thresh_cond, rvecs2, tvecs2);
}
intrinsicLeft.isEstimate[0] = flags & CALIB_FIX_INTRINSIC ? 0 : 1;
intrinsicLeft.isEstimate[1] = flags & CALIB_FIX_INTRINSIC ? 0 : 1;
intrinsicLeft.isEstimate[2] = flags & CALIB_FIX_INTRINSIC ? 0 : 1;
intrinsicLeft.isEstimate[3] = flags & CALIB_FIX_INTRINSIC ? 0 : 1;
intrinsicLeft.isEstimate[4] = flags & (CALIB_FIX_SKEW | CALIB_FIX_INTRINSIC) ? 0 : 1;
intrinsicLeft.isEstimate[5] = flags & (CALIB_FIX_K1 | CALIB_FIX_INTRINSIC) ? 0 : 1;
intrinsicLeft.isEstimate[6] = flags & (CALIB_FIX_K2 | CALIB_FIX_INTRINSIC) ? 0 : 1;
intrinsicLeft.isEstimate[7] = flags & (CALIB_FIX_K3 | CALIB_FIX_INTRINSIC) ? 0 : 1;
intrinsicLeft.isEstimate[8] = flags & (CALIB_FIX_K4 | CALIB_FIX_INTRINSIC) ? 0 : 1;
intrinsicRight.isEstimate[0] = flags & CALIB_FIX_INTRINSIC ? 0 : 1;
intrinsicRight.isEstimate[1] = flags & CALIB_FIX_INTRINSIC ? 0 : 1;
intrinsicRight.isEstimate[2] = flags & CALIB_FIX_INTRINSIC ? 0 : 1;
intrinsicRight.isEstimate[3] = flags & CALIB_FIX_INTRINSIC ? 0 : 1;
intrinsicRight.isEstimate[4] = flags & (CALIB_FIX_SKEW | CALIB_FIX_INTRINSIC) ? 0 : 1;
intrinsicRight.isEstimate[5] = flags & (CALIB_FIX_K1 | CALIB_FIX_INTRINSIC) ? 0 : 1;
intrinsicRight.isEstimate[6] = flags & (CALIB_FIX_K2 | CALIB_FIX_INTRINSIC) ? 0 : 1;
intrinsicRight.isEstimate[7] = flags & (CALIB_FIX_K3 | CALIB_FIX_INTRINSIC) ? 0 : 1;
intrinsicRight.isEstimate[8] = flags & (CALIB_FIX_K4 | CALIB_FIX_INTRINSIC) ? 0 : 1;
intrinsicLeft_errors.isEstimate = intrinsicLeft.isEstimate;
intrinsicRight_errors.isEstimate = intrinsicRight.isEstimate;
std::vector<uchar> selectedParams;
std::vector<int> tmp(6 * (n_images + 1), 1);
selectedParams.insert(selectedParams.end(), intrinsicLeft.isEstimate.begin(), intrinsicLeft.isEstimate.end());
selectedParams.insert(selectedParams.end(), intrinsicRight.isEstimate.begin(), intrinsicRight.isEstimate.end());
selectedParams.insert(selectedParams.end(), tmp.begin(), tmp.end());
//Init values for rotation and translation between two views
cv::Mat om_list(1, n_images, CV_64FC3), T_list(1, n_images, CV_64FC3);
cv::Mat om_ref, R_ref, T_ref, R1, R2;
for (int image_idx = 0; image_idx < n_images; ++image_idx)
{
cv::Rodrigues(rvecs1[image_idx], R1);
cv::Rodrigues(rvecs2[image_idx], R2);
R_ref = R2 * R1.t();
T_ref = cv::Mat(tvecs2[image_idx]) - R_ref * cv::Mat(tvecs1[image_idx]);
cv::Rodrigues(R_ref, om_ref);
om_ref.reshape(3, 1).copyTo(om_list.col(image_idx));
T_ref.reshape(3, 1).copyTo(T_list.col(image_idx));
}
cv::Vec3d omcur = cv::internal::median3d(om_list);
cv::Vec3d Tcur = cv::internal::median3d(T_list);
cv::Mat J = cv::Mat::zeros(4 * n_points * n_images, 18 + 6 * (n_images + 1), CV_64FC1),
e = cv::Mat::zeros(4 * n_points * n_images, 1, CV_64FC1), Jkk, ekk;
for(int iter = 0; ; ++iter)
{
if ((criteria.type == 1 && iter >= criteria.maxCount) ||
(criteria.type == 2 && change <= criteria.epsilon) ||
(criteria.type == 3 && (change <= criteria.epsilon || iter >= criteria.maxCount)))
break;
J.create(4 * n_points * n_images, 18 + 6 * (n_images + 1), CV_64FC1);
e.create(4 * n_points * n_images, 1, CV_64FC1);
Jkk.create(4 * n_points, 18 + 6 * (n_images + 1), CV_64FC1);
ekk.create(4 * n_points, 1, CV_64FC1);
cv::Mat omr, Tr, domrdomckk, domrdTckk, domrdom, domrdT, dTrdomckk, dTrdTckk, dTrdom, dTrdT;
for (int image_idx = 0; image_idx < n_images; ++image_idx)
{
Jkk = cv::Mat::zeros(4 * n_points, 18 + 6 * (n_images + 1), CV_64FC1);
cv::Mat object = objectPoints.getMat(image_idx).clone();
cv::Mat imageLeft = imagePoints1.getMat(image_idx).clone();
cv::Mat imageRight = imagePoints2.getMat(image_idx).clone();
cv::Mat jacobians, projected;
//left camera jacobian
cv::Mat rvec = cv::Mat(rvecs1[image_idx]);
cv::Mat tvec = cv::Mat(tvecs1[image_idx]);
cv::internal::projectPoints(object, projected, rvec, tvec, intrinsicLeft, jacobians);
cv::Mat(cv::Mat((imageLeft - projected).t()).reshape(1, 1).t()).copyTo(ekk.rowRange(0, 2 * n_points));
jacobians.colRange(8, 11).copyTo(Jkk.colRange(24 + image_idx * 6, 27 + image_idx * 6).rowRange(0, 2 * n_points));
jacobians.colRange(11, 14).copyTo(Jkk.colRange(27 + image_idx * 6, 30 + image_idx * 6).rowRange(0, 2 * n_points));
jacobians.colRange(0, 2).copyTo(Jkk.colRange(0, 2).rowRange(0, 2 * n_points));
jacobians.colRange(2, 4).copyTo(Jkk.colRange(2, 4).rowRange(0, 2 * n_points));
jacobians.colRange(4, 8).copyTo(Jkk.colRange(5, 9).rowRange(0, 2 * n_points));
jacobians.col(14).copyTo(Jkk.col(4).rowRange(0, 2 * n_points));
//right camera jacobian
cv::internal::compose_motion(rvec, tvec, omcur, Tcur, omr, Tr, domrdomckk, domrdTckk, domrdom, domrdT, dTrdomckk, dTrdTckk, dTrdom, dTrdT);
rvec = cv::Mat(rvecs2[image_idx]);
tvec = cv::Mat(tvecs2[image_idx]);
cv::internal::projectPoints(object, projected, omr, Tr, intrinsicRight, jacobians);
cv::Mat(cv::Mat((imageRight - projected).t()).reshape(1, 1).t()).copyTo(ekk.rowRange(2 * n_points, 4 * n_points));
cv::Mat dxrdom = jacobians.colRange(8, 11) * domrdom + jacobians.colRange(11, 14) * dTrdom;
cv::Mat dxrdT = jacobians.colRange(8, 11) * domrdT + jacobians.colRange(11, 14)* dTrdT;
cv::Mat dxrdomckk = jacobians.colRange(8, 11) * domrdomckk + jacobians.colRange(11, 14) * dTrdomckk;
cv::Mat dxrdTckk = jacobians.colRange(8, 11) * domrdTckk + jacobians.colRange(11, 14) * dTrdTckk;
dxrdom.copyTo(Jkk.colRange(18, 21).rowRange(2 * n_points, 4 * n_points));
dxrdT.copyTo(Jkk.colRange(21, 24).rowRange(2 * n_points, 4 * n_points));
dxrdomckk.copyTo(Jkk.colRange(24 + image_idx * 6, 27 + image_idx * 6).rowRange(2 * n_points, 4 * n_points));
dxrdTckk.copyTo(Jkk.colRange(27 + image_idx * 6, 30 + image_idx * 6).rowRange(2 * n_points, 4 * n_points));
jacobians.colRange(0, 2).copyTo(Jkk.colRange(9 + 0, 9 + 2).rowRange(2 * n_points, 4 * n_points));
jacobians.colRange(2, 4).copyTo(Jkk.colRange(9 + 2, 9 + 4).rowRange(2 * n_points, 4 * n_points));
jacobians.colRange(4, 8).copyTo(Jkk.colRange(9 + 5, 9 + 9).rowRange(2 * n_points, 4 * n_points));
jacobians.col(14).copyTo(Jkk.col(9 + 4).rowRange(2 * n_points, 4 * n_points));
//check goodness of sterepair
double abs_max = 0;
for (int i = 0; i < 4 * n_points; i++)
{
if (fabs(ekk.at<double>(i)) > abs_max)
{
abs_max = fabs(ekk.at<double>(i));
}
}
CV_Assert(abs_max < threshold); // bad stereo pair
Jkk.copyTo(J.rowRange(image_idx * 4 * n_points, (image_idx + 1) * 4 * n_points));
ekk.copyTo(e.rowRange(image_idx * 4 * n_points, (image_idx + 1) * 4 * n_points));
}
cv::Vec6d oldTom(Tcur[0], Tcur[1], Tcur[2], omcur[0], omcur[1], omcur[2]);
//update all parameters
cv::subMatrix(J, J, selectedParams, std::vector<uchar>(J.rows, 1));
int a = cv::countNonZero(intrinsicLeft.isEstimate);
int b = cv::countNonZero(intrinsicRight.isEstimate);
cv::Mat deltas;
solve(J.t() * J, J.t()*e, deltas);
intrinsicLeft = intrinsicLeft + deltas.rowRange(0, a);
intrinsicRight = intrinsicRight + deltas.rowRange(a, a + b);
omcur = omcur + cv::Vec3d(deltas.rowRange(a + b, a + b + 3));
Tcur = Tcur + cv::Vec3d(deltas.rowRange(a + b + 3, a + b + 6));
for (int image_idx = 0; image_idx < n_images; ++image_idx)
{
rvecs1[image_idx] = cv::Mat(cv::Mat(rvecs1[image_idx]) + deltas.rowRange(a + b + 6 + image_idx * 6, a + b + 9 + image_idx * 6));
tvecs1[image_idx] = cv::Mat(cv::Mat(tvecs1[image_idx]) + deltas.rowRange(a + b + 9 + image_idx * 6, a + b + 12 + image_idx * 6));
}
cv::Vec6d newTom(Tcur[0], Tcur[1], Tcur[2], omcur[0], omcur[1], omcur[2]);
change = cv::norm(newTom - oldTom) / cv::norm(newTom);
}
double rms = 0;
const Vec2d* ptr_e = e.ptr<Vec2d>();
for (size_t i = 0; i < e.total() / 2; i++)
{
rms += ptr_e[i][0] * ptr_e[i][0] + ptr_e[i][1] * ptr_e[i][1];
}
rms /= ((double)e.total() / 2.0);
rms = sqrt(rms);
_K1 = Matx33d(intrinsicLeft.f[0], intrinsicLeft.f[0] * intrinsicLeft.alpha, intrinsicLeft.c[0],
0, intrinsicLeft.f[1], intrinsicLeft.c[1],
0, 0, 1);
_K2 = Matx33d(intrinsicRight.f[0], intrinsicRight.f[0] * intrinsicRight.alpha, intrinsicRight.c[0],
0, intrinsicRight.f[1], intrinsicRight.c[1],
0, 0, 1);
Mat _R;
Rodrigues(omcur, _R);
if (K1.needed()) cv::Mat(_K1).convertTo(K1, K1.empty() ? CV_64FC1 : K1.type());
if (K2.needed()) cv::Mat(_K2).convertTo(K2, K2.empty() ? CV_64FC1 : K2.type());
if (D1.needed()) cv::Mat(intrinsicLeft.k).convertTo(D1, D1.empty() ? CV_64FC1 : D1.type());
if (D2.needed()) cv::Mat(intrinsicRight.k).convertTo(D2, D2.empty() ? CV_64FC1 : D2.type());
if (R.needed()) _R.convertTo(R, R.empty() ? CV_64FC1 : R.type());
if (T.needed()) cv::Mat(Tcur).convertTo(T, T.empty() ? CV_64FC1 : T.type());
return rms;
}
namespace cv{ namespace {
void subMatrix(const Mat& src, Mat& dst, const std::vector<uchar>& cols, const std::vector<uchar>& rows)
{
CV_Assert(src.channels() == 1);
int nonzeros_cols = cv::countNonZero(cols);
Mat tmp(src.rows, nonzeros_cols, CV_64F);
for (int i = 0, j = 0; i < (int)cols.size(); i++)
{
if (cols[i])
{
src.col(i).copyTo(tmp.col(j++));
}
}
int nonzeros_rows = cv::countNonZero(rows);
dst.create(nonzeros_rows, nonzeros_cols, CV_64F);
for (int i = 0, j = 0; i < (int)rows.size(); i++)
{
if (rows[i])
{
tmp.row(i).copyTo(dst.row(j++));
}
}
}
}}
cv::internal::IntrinsicParams::IntrinsicParams():
f(Vec2d::all(0)), c(Vec2d::all(0)), k(Vec4d::all(0)), alpha(0), isEstimate(9,0)
{
}
cv::internal::IntrinsicParams::IntrinsicParams(Vec2d _f, Vec2d _c, Vec4d _k, double _alpha):
f(_f), c(_c), k(_k), alpha(_alpha), isEstimate(9,0)
{
}
cv::internal::IntrinsicParams cv::internal::IntrinsicParams::operator+(const Mat& a)
{
CV_Assert(a.type() == CV_64FC1);
IntrinsicParams tmp;
const double* ptr = a.ptr<double>();
int j = 0;
tmp.f[0] = this->f[0] + (isEstimate[0] ? ptr[j++] : 0);
tmp.f[1] = this->f[1] + (isEstimate[1] ? ptr[j++] : 0);
tmp.c[0] = this->c[0] + (isEstimate[2] ? ptr[j++] : 0);
tmp.alpha = this->alpha + (isEstimate[4] ? ptr[j++] : 0);
tmp.c[1] = this->c[1] + (isEstimate[3] ? ptr[j++] : 0);
tmp.k[0] = this->k[0] + (isEstimate[5] ? ptr[j++] : 0);
tmp.k[1] = this->k[1] + (isEstimate[6] ? ptr[j++] : 0);
tmp.k[2] = this->k[2] + (isEstimate[7] ? ptr[j++] : 0);
tmp.k[3] = this->k[3] + (isEstimate[8] ? ptr[j++] : 0);
tmp.isEstimate = isEstimate;
return tmp;
}
cv::internal::IntrinsicParams& cv::internal::IntrinsicParams::operator =(const Mat& a)
{
CV_Assert(a.type() == CV_64FC1);
const double* ptr = a.ptr<double>();
int j = 0;
this->f[0] = isEstimate[0] ? ptr[j++] : 0;
this->f[1] = isEstimate[1] ? ptr[j++] : 0;
this->c[0] = isEstimate[2] ? ptr[j++] : 0;
this->c[1] = isEstimate[3] ? ptr[j++] : 0;
this->alpha = isEstimate[4] ? ptr[j++] : 0;
this->k[0] = isEstimate[5] ? ptr[j++] : 0;
this->k[1] = isEstimate[6] ? ptr[j++] : 0;
this->k[2] = isEstimate[7] ? ptr[j++] : 0;
this->k[3] = isEstimate[8] ? ptr[j++] : 0;
return *this;
}
void cv::internal::IntrinsicParams::Init(const cv::Vec2d& _f, const cv::Vec2d& _c, const cv::Vec4d& _k, const double& _alpha)
{
this->c = _c;
this->f = _f;
this->k = _k;
this->alpha = _alpha;
}
void cv::internal::projectPoints(cv::InputArray objectPoints, cv::OutputArray imagePoints,
cv::InputArray _rvec,cv::InputArray _tvec,
const IntrinsicParams& param, cv::OutputArray jacobian)
{
CV_Assert(!objectPoints.empty() && objectPoints.type() == CV_64FC3);
Matx33d K(param.f[0], param.f[0] * param.alpha, param.c[0],
0, param.f[1], param.c[1],
0, 0, 1);
fisheye::projectPoints(objectPoints, imagePoints, _rvec, _tvec, K, param.k, param.alpha, jacobian);
}
void cv::internal::ComputeExtrinsicRefine(const Mat& imagePoints, const Mat& objectPoints, Mat& rvec,
Mat& tvec, Mat& J, const int MaxIter,
const IntrinsicParams& param, const double thresh_cond)
{
CV_Assert(!objectPoints.empty() && objectPoints.type() == CV_64FC3);
CV_Assert(!imagePoints.empty() && imagePoints.type() == CV_64FC2);
Vec6d extrinsics(rvec.at<double>(0), rvec.at<double>(1), rvec.at<double>(2),
tvec.at<double>(0), tvec.at<double>(1), tvec.at<double>(2));
double change = 1;
int iter = 0;
while (change > 1e-10 && iter < MaxIter)
{
std::vector<Point2d> x;
Mat jacobians;
projectPoints(objectPoints, x, rvec, tvec, param, jacobians);
Mat ex = imagePoints - Mat(x).t();
ex = ex.reshape(1, 2);
J = jacobians.colRange(8, 14).clone();
SVD svd(J, SVD::NO_UV);
double condJJ = svd.w.at<double>(0)/svd.w.at<double>(5);
if (condJJ > thresh_cond)
change = 0;
else
{
Vec6d param_innov;
solve(J, ex.reshape(1, (int)ex.total()), param_innov, DECOMP_SVD + DECOMP_NORMAL);
Vec6d param_up = extrinsics + param_innov;
change = norm(param_innov)/norm(param_up);
extrinsics = param_up;
iter = iter + 1;
rvec = Mat(Vec3d(extrinsics.val));
tvec = Mat(Vec3d(extrinsics.val+3));
}
}
}
cv::Mat cv::internal::ComputeHomography(Mat m, Mat M)
{
int Np = m.cols;
if (m.rows < 3)
{
vconcat(m, Mat::ones(1, Np, CV_64FC1), m);
}
if (M.rows < 3)
{
vconcat(M, Mat::ones(1, Np, CV_64FC1), M);
}
divide(m, Mat::ones(3, 1, CV_64FC1) * m.row(2), m);
divide(M, Mat::ones(3, 1, CV_64FC1) * M.row(2), M);
Mat ax = m.row(0).clone();
Mat ay = m.row(1).clone();
double mxx = mean(ax)[0];
double myy = mean(ay)[0];
ax = ax - mxx;
ay = ay - myy;
double scxx = mean(abs(ax))[0];
double scyy = mean(abs(ay))[0];
Mat Hnorm (Matx33d( 1/scxx, 0.0, -mxx/scxx,
0.0, 1/scyy, -myy/scyy,
0.0, 0.0, 1.0 ));
Mat inv_Hnorm (Matx33d( scxx, 0, mxx,
0, scyy, myy,
0, 0, 1 ));
Mat mn = Hnorm * m;
Mat L = Mat::zeros(2*Np, 9, CV_64FC1);
for (int i = 0; i < Np; ++i)
{
for (int j = 0; j < 3; j++)
{
L.at<double>(2 * i, j) = M.at<double>(j, i);
L.at<double>(2 * i + 1, j + 3) = M.at<double>(j, i);
L.at<double>(2 * i, j + 6) = -mn.at<double>(0,i) * M.at<double>(j, i);
L.at<double>(2 * i + 1, j + 6) = -mn.at<double>(1,i) * M.at<double>(j, i);
}
}
if (Np > 4) L = L.t() * L;
SVD svd(L);
Mat hh = svd.vt.row(8) / svd.vt.row(8).at<double>(8);
Mat Hrem = hh.reshape(1, 3);
Mat H = inv_Hnorm * Hrem;
if (Np > 4)
{
Mat hhv = H.reshape(1, 9)(Rect(0, 0, 1, 8)).clone();
for (int iter = 0; iter < 10; iter++)
{
Mat mrep = H * M;
Mat J = Mat::zeros(2 * Np, 8, CV_64FC1);
Mat MMM;
divide(M, Mat::ones(3, 1, CV_64FC1) * mrep(Rect(0, 2, mrep.cols, 1)), MMM);
divide(mrep, Mat::ones(3, 1, CV_64FC1) * mrep(Rect(0, 2, mrep.cols, 1)), mrep);
Mat m_err = m(Rect(0,0, m.cols, 2)) - mrep(Rect(0,0, mrep.cols, 2));
m_err = Mat(m_err.t()).reshape(1, m_err.cols * m_err.rows);
Mat MMM2, MMM3;
multiply(Mat::ones(3, 1, CV_64FC1) * mrep(Rect(0, 0, mrep.cols, 1)), MMM, MMM2);
multiply(Mat::ones(3, 1, CV_64FC1) * mrep(Rect(0, 1, mrep.cols, 1)), MMM, MMM3);
for (int i = 0; i < Np; ++i)
{
for (int j = 0; j < 3; ++j)
{
J.at<double>(2 * i, j) = -MMM.at<double>(j, i);
J.at<double>(2 * i + 1, j + 3) = -MMM.at<double>(j, i);
}
for (int j = 0; j < 2; ++j)
{
J.at<double>(2 * i, j + 6) = MMM2.at<double>(j, i);
J.at<double>(2 * i + 1, j + 6) = MMM3.at<double>(j, i);
}
}
divide(M, Mat::ones(3, 1, CV_64FC1) * mrep(Rect(0,2,mrep.cols,1)), MMM);
Mat hh_innov = (J.t() * J).inv() * (J.t()) * m_err;
Mat hhv_up = hhv - hh_innov;
Mat tmp;
vconcat(hhv_up, Mat::ones(1,1,CV_64FC1), tmp);
Mat H_up = tmp.reshape(1,3);
hhv = hhv_up;
H = H_up;
}
}
return H;
}
cv::Mat cv::internal::NormalizePixels(const Mat& imagePoints, const IntrinsicParams& param)
{
CV_Assert(!imagePoints.empty() && imagePoints.type() == CV_64FC2);
Mat distorted((int)imagePoints.total(), 1, CV_64FC2), undistorted;
const Vec2d* ptr = imagePoints.ptr<Vec2d>(0);
Vec2d* ptr_d = distorted.ptr<Vec2d>(0);
for (size_t i = 0; i < imagePoints.total(); ++i)
{
ptr_d[i] = (ptr[i] - param.c).mul(Vec2d(1.0 / param.f[0], 1.0 / param.f[1]));
ptr_d[i][0] = ptr_d[i][0] - param.alpha * ptr_d[i][1];
}
cv::fisheye::undistortPoints(distorted, undistorted, Matx33d::eye(), param.k);
return undistorted;
}
void cv::internal::InitExtrinsics(const Mat& _imagePoints, const Mat& _objectPoints, const IntrinsicParams& param, Mat& omckk, Mat& Tckk)
{
CV_Assert(!_objectPoints.empty() && _objectPoints.type() == CV_64FC3);
CV_Assert(!_imagePoints.empty() && _imagePoints.type() == CV_64FC2);
Mat imagePointsNormalized = NormalizePixels(_imagePoints.t(), param).reshape(1).t();
Mat objectPoints = Mat(_objectPoints.t()).reshape(1).t();
Mat objectPointsMean, covObjectPoints;
Mat Rckk;
int Np = imagePointsNormalized.cols;
calcCovarMatrix(objectPoints, covObjectPoints, objectPointsMean, COVAR_NORMAL | COVAR_COLS);
SVD svd(covObjectPoints);
Mat R(svd.vt);
if (norm(R(Rect(2, 0, 1, 2))) < 1e-6)
R = Mat::eye(3,3, CV_64FC1);
if (determinant(R) < 0)
R = -R;
Mat T = -R * objectPointsMean;
Mat X_new = R * objectPoints + T * Mat::ones(1, Np, CV_64FC1);
Mat H = ComputeHomography(imagePointsNormalized, X_new(Rect(0,0,X_new.cols,2)));
double sc = .5 * (norm(H.col(0)) + norm(H.col(1)));
H = H / sc;
Mat u1 = H.col(0).clone();
u1 = u1 / norm(u1);
Mat u2 = H.col(1).clone() - u1.dot(H.col(1).clone()) * u1;
u2 = u2 / norm(u2);
Mat u3 = u1.cross(u2);
Mat RRR;
hconcat(u1, u2, RRR);
hconcat(RRR, u3, RRR);
Rodrigues(RRR, omckk);
Rodrigues(omckk, Rckk);
Tckk = H.col(2).clone();
Tckk = Tckk + Rckk * T;
Rckk = Rckk * R;
Rodrigues(Rckk, omckk);
}
void cv::internal::CalibrateExtrinsics(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints,
const IntrinsicParams& param, const int check_cond,
const double thresh_cond, InputOutputArray omc, InputOutputArray Tc)
{
CV_Assert(!objectPoints.empty() && (objectPoints.type() == CV_32FC3 || objectPoints.type() == CV_64FC3));
CV_Assert(!imagePoints.empty() && (imagePoints.type() == CV_32FC2 || imagePoints.type() == CV_64FC2));
CV_Assert(omc.type() == CV_64FC3 || Tc.type() == CV_64FC3);
if (omc.empty()) omc.create(1, (int)objectPoints.total(), CV_64FC3);
if (Tc.empty()) Tc.create(1, (int)objectPoints.total(), CV_64FC3);
const int maxIter = 20;
for(int image_idx = 0; image_idx < (int)imagePoints.total(); ++image_idx)
{
Mat omckk, Tckk, JJ_kk;
Mat image, object;
objectPoints.getMat(image_idx).convertTo(object, CV_64FC3);
imagePoints.getMat (image_idx).convertTo(image, CV_64FC2);
InitExtrinsics(image, object, param, omckk, Tckk);
ComputeExtrinsicRefine(image, object, omckk, Tckk, JJ_kk, maxIter, param, thresh_cond);
if (check_cond)
{
SVD svd(JJ_kk, SVD::NO_UV);
CV_Assert(svd.w.at<double>(0) / svd.w.at<double>((int)svd.w.total() - 1) < thresh_cond);
}
omckk.reshape(3,1).copyTo(omc.getMat().col(image_idx));
Tckk.reshape(3,1).copyTo(Tc.getMat().col(image_idx));
}
}
void cv::internal::ComputeJacobians(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints,
const IntrinsicParams& param, InputArray omc, InputArray Tc,
const int& check_cond, const double& thresh_cond, Mat& JJ2, Mat& ex3)
{
CV_Assert(!objectPoints.empty() && (objectPoints.type() == CV_32FC3 || objectPoints.type() == CV_64FC3));
CV_Assert(!imagePoints.empty() && (imagePoints.type() == CV_32FC2 || imagePoints.type() == CV_64FC2));
CV_Assert(!omc.empty() && omc.type() == CV_64FC3);
CV_Assert(!Tc.empty() && Tc.type() == CV_64FC3);
int n = (int)objectPoints.total();
JJ2 = Mat::zeros(9 + 6 * n, 9 + 6 * n, CV_64FC1);
ex3 = Mat::zeros(9 + 6 * n, 1, CV_64FC1 );
for (int image_idx = 0; image_idx < n; ++image_idx)
{
Mat image, object;
objectPoints.getMat(image_idx).convertTo(object, CV_64FC3);
imagePoints.getMat (image_idx).convertTo(image, CV_64FC2);
Mat om(omc.getMat().col(image_idx)), T(Tc.getMat().col(image_idx));
std::vector<Point2d> x;
Mat jacobians;
projectPoints(object, x, om, T, param, jacobians);
Mat exkk = image.t() - Mat(x);
Mat A(jacobians.rows, 9, CV_64FC1);
jacobians.colRange(0, 4).copyTo(A.colRange(0, 4));
jacobians.col(14).copyTo(A.col(4));
jacobians.colRange(4, 8).copyTo(A.colRange(5, 9));
A = A.t();
Mat B = jacobians.colRange(8, 14).clone();
B = B.t();
JJ2(Rect(0, 0, 9, 9)) += A * A.t();
JJ2(Rect(9 + 6 * image_idx, 9 + 6 * image_idx, 6, 6)) = B * B.t();
JJ2(Rect(9 + 6 * image_idx, 0, 6, 9)) = A * B.t();
JJ2(Rect(0, 9 + 6 * image_idx, 9, 6)) = JJ2(Rect(9 + 6 * image_idx, 0, 6, 9)).t();
ex3.rowRange(0, 9) += A * exkk.reshape(1, 2 * exkk.rows);
ex3.rowRange(9 + 6 * image_idx, 9 + 6 * (image_idx + 1)) = B * exkk.reshape(1, 2 * exkk.rows);
if (check_cond)
{
Mat JJ_kk = B.t();
SVD svd(JJ_kk, SVD::NO_UV);
CV_Assert(svd.w.at<double>(0) / svd.w.at<double>(svd.w.rows - 1) < thresh_cond);
}
}
std::vector<uchar> idxs(param.isEstimate);
idxs.insert(idxs.end(), 6 * n, 1);
subMatrix(JJ2, JJ2, idxs, idxs);
subMatrix(ex3, ex3, std::vector<uchar>(1, 1), idxs);
}
void cv::internal::EstimateUncertainties(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints,
const IntrinsicParams& params, InputArray omc, InputArray Tc,
IntrinsicParams& errors, Vec2d& std_err, double thresh_cond, int check_cond, double& rms)
{
CV_Assert(!objectPoints.empty() && (objectPoints.type() == CV_32FC3 || objectPoints.type() == CV_64FC3));
CV_Assert(!imagePoints.empty() && (imagePoints.type() == CV_32FC2 || imagePoints.type() == CV_64FC2));
CV_Assert(!omc.empty() && omc.type() == CV_64FC3);
CV_Assert(!Tc.empty() && Tc.type() == CV_64FC3);
Mat ex((int)(objectPoints.getMat(0).total() * objectPoints.total()), 1, CV_64FC2);
for (int image_idx = 0; image_idx < (int)objectPoints.total(); ++image_idx)
{
Mat image, object;
objectPoints.getMat(image_idx).convertTo(object, CV_64FC3);
imagePoints.getMat (image_idx).convertTo(image, CV_64FC2);
Mat om(omc.getMat().col(image_idx)), T(Tc.getMat().col(image_idx));
std::vector<Point2d> x;
projectPoints(object, x, om, T, params, noArray());
Mat ex_ = image.t() - Mat(x);
ex_.copyTo(ex.rowRange(ex_.rows * image_idx, ex_.rows * (image_idx + 1)));
}
meanStdDev(ex, noArray(), std_err);
std_err *= sqrt((double)ex.total()/((double)ex.total() - 1.0));
Vec<double, 1> sigma_x;
meanStdDev(ex.reshape(1, 1), noArray(), sigma_x);
sigma_x *= sqrt(2.0 * (double)ex.total()/(2.0 * (double)ex.total() - 1.0));
Mat JJ2, ex3;
ComputeJacobians(objectPoints, imagePoints, params, omc, Tc, check_cond, thresh_cond, JJ2, ex3);
sqrt(JJ2.inv(), JJ2);
errors = 3 * sigma_x(0) * JJ2.diag();
rms = sqrt(norm(ex, NORM_L2SQR)/ex.total());
}
void cv::internal::dAB(InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB)
{
CV_Assert(A.getMat().cols == B.getMat().rows);
CV_Assert(A.type() == CV_64FC1 && B.type() == CV_64FC1);
int p = A.getMat().rows;
int n = A.getMat().cols;
int q = B.getMat().cols;
dABdA.create(p * q, p * n, CV_64FC1);
dABdB.create(p * q, q * n, CV_64FC1);
dABdA.getMat() = Mat::zeros(p * q, p * n, CV_64FC1);
dABdB.getMat() = Mat::zeros(p * q, q * n, CV_64FC1);
for (int i = 0; i < q; ++i)
{
for (int j = 0; j < p; ++j)
{
int ij = j + i * p;
for (int k = 0; k < n; ++k)
{
int kj = j + k * p;
dABdA.getMat().at<double>(ij, kj) = B.getMat().at<double>(k, i);
}
}
}
for (int i = 0; i < q; ++i)
{
A.getMat().copyTo(dABdB.getMat().rowRange(i * p, i * p + p).colRange(i * n, i * n + n));
}
}
void cv::internal::JRodriguesMatlab(const Mat& src, Mat& dst)
{
Mat tmp(src.cols, src.rows, src.type());
if (src.rows == 9)
{
Mat(src.row(0).t()).copyTo(tmp.col(0));
Mat(src.row(1).t()).copyTo(tmp.col(3));
Mat(src.row(2).t()).copyTo(tmp.col(6));
Mat(src.row(3).t()).copyTo(tmp.col(1));
Mat(src.row(4).t()).copyTo(tmp.col(4));
Mat(src.row(5).t()).copyTo(tmp.col(7));
Mat(src.row(6).t()).copyTo(tmp.col(2));
Mat(src.row(7).t()).copyTo(tmp.col(5));
Mat(src.row(8).t()).copyTo(tmp.col(8));
}
else
{
Mat(src.col(0).t()).copyTo(tmp.row(0));
Mat(src.col(1).t()).copyTo(tmp.row(3));
Mat(src.col(2).t()).copyTo(tmp.row(6));
Mat(src.col(3).t()).copyTo(tmp.row(1));
Mat(src.col(4).t()).copyTo(tmp.row(4));
Mat(src.col(5).t()).copyTo(tmp.row(7));
Mat(src.col(6).t()).copyTo(tmp.row(2));
Mat(src.col(7).t()).copyTo(tmp.row(5));
Mat(src.col(8).t()).copyTo(tmp.row(8));
}
dst = tmp.clone();
}
void cv::internal::compose_motion(InputArray _om1, InputArray _T1, InputArray _om2, InputArray _T2,
Mat& om3, Mat& T3, Mat& dom3dom1, Mat& dom3dT1, Mat& dom3dom2,
Mat& dom3dT2, Mat& dT3dom1, Mat& dT3dT1, Mat& dT3dom2, Mat& dT3dT2)
{
Mat om1 = _om1.getMat();
Mat om2 = _om2.getMat();
Mat T1 = _T1.getMat().reshape(1, 3);
Mat T2 = _T2.getMat().reshape(1, 3);
//% Rotations:
Mat R1, R2, R3, dR1dom1(9, 3, CV_64FC1), dR2dom2;
Rodrigues(om1, R1, dR1dom1);
Rodrigues(om2, R2, dR2dom2);
JRodriguesMatlab(dR1dom1, dR1dom1);
JRodriguesMatlab(dR2dom2, dR2dom2);
R3 = R2 * R1;
Mat dR3dR2, dR3dR1;
dAB(R2, R1, dR3dR2, dR3dR1);
Mat dom3dR3;
Rodrigues(R3, om3, dom3dR3);
JRodriguesMatlab(dom3dR3, dom3dR3);
dom3dom1 = dom3dR3 * dR3dR1 * dR1dom1;
dom3dom2 = dom3dR3 * dR3dR2 * dR2dom2;
dom3dT1 = Mat::zeros(3, 3, CV_64FC1);
dom3dT2 = Mat::zeros(3, 3, CV_64FC1);
//% Translations:
Mat T3t = R2 * T1;
Mat dT3tdR2, dT3tdT1;
dAB(R2, T1, dT3tdR2, dT3tdT1);
Mat dT3tdom2 = dT3tdR2 * dR2dom2;
T3 = T3t + T2;
dT3dT1 = dT3tdT1;
dT3dT2 = Mat::eye(3, 3, CV_64FC1);
dT3dom2 = dT3tdom2;
dT3dom1 = Mat::zeros(3, 3, CV_64FC1);
}
double cv::internal::median(const Mat& row)
{
CV_Assert(row.type() == CV_64FC1);
CV_Assert(!row.empty() && row.rows == 1);
Mat tmp = row.clone();
sort(tmp, tmp, 0);
if ((int)tmp.total() % 2) return tmp.at<double>((int)tmp.total() / 2);
else return 0.5 *(tmp.at<double>((int)tmp.total() / 2) + tmp.at<double>((int)tmp.total() / 2 - 1));
}
cv::Vec3d cv::internal::median3d(InputArray m)
{
CV_Assert(m.depth() == CV_64F && m.getMat().rows == 1);
Mat M = Mat(m.getMat().t()).reshape(1).t();
return Vec3d(median(M.row(0)), median(M.row(1)), median(M.row(2)));
}