arithm_core.hpp 19.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_ARITHM_CORE_HPP__
#define __OPENCV_ARITHM_CORE_HPP__

#include "arithm_simd.hpp"

namespace cv {

template<typename T1, typename T2=T1, typename T3=T1> struct OpAdd
{
    typedef T1 type1;
    typedef T2 type2;
    typedef T3 rtype;
    T3 operator ()(const T1 a, const T2 b) const { return saturate_cast<T3>(a + b); }
};

template<typename T1, typename T2=T1, typename T3=T1> struct OpSub
{
    typedef T1 type1;
    typedef T2 type2;
    typedef T3 rtype;
    T3 operator ()(const T1 a, const T2 b) const { return saturate_cast<T3>(a - b); }
};

template<typename T1, typename T2=T1, typename T3=T1> struct OpRSub
{
    typedef T1 type1;
    typedef T2 type2;
    typedef T3 rtype;
    T3 operator ()(const T1 a, const T2 b) const { return saturate_cast<T3>(b - a); }
};

template<typename T> struct OpMin
{
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator ()(const T a, const T b) const { return std::min(a, b); }
};

template<typename T> struct OpMax
{
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator ()(const T a, const T b) const { return std::max(a, b); }
};

template<typename T> struct OpAbsDiff
{
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()(T a, T b) const { return a > b ? a - b : b - a; }
};

// specializations to prevent "-0" results
template<> struct OpAbsDiff<float>
{
    typedef float type1;
    typedef float type2;
    typedef float rtype;
    float operator()(float a, float b) const { return std::abs(a - b); }
};
template<> struct OpAbsDiff<double>
{
    typedef double type1;
    typedef double type2;
    typedef double rtype;
    double operator()(double a, double b) const { return std::abs(a - b); }
};

template<typename T> struct OpAnd
{
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a & b; }
};

template<typename T> struct OpOr
{
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a | b; }
};

template<typename T> struct OpXor
{
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a ^ b; }
};

template<typename T> struct OpNot
{
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T ) const { return ~a; }
};

//=============================================================================

template<typename T, class Op, class VOp>
void vBinOp(const T* src1, size_t step1, const T* src2, size_t step2, T* dst, size_t step, int width, int height)
{
#if CV_SSE2 || CV_NEON
    VOp vop;
#endif
    Op op;

    for( ; height--; src1 = (const T *)((const uchar *)src1 + step1),
                        src2 = (const T *)((const uchar *)src2 + step2),
                        dst = (T *)((uchar *)dst + step) )
    {
        int x = 0;

#if CV_NEON || CV_SSE2
#if CV_AVX2
        if( USE_AVX2 )
        {
            for( ; x <= width - 32/(int)sizeof(T); x += 32/sizeof(T) )
            {
                typename VLoadStore256<T>::reg_type r0 = VLoadStore256<T>::load(src1 + x);
                r0 = vop(r0, VLoadStore256<T>::load(src2 + x));
                VLoadStore256<T>::store(dst + x, r0);
            }
        }
#else
#if CV_SSE2
        if( USE_SSE2 )
        {
#endif // CV_SSE2
            for( ; x <= width - 32/(int)sizeof(T); x += 32/sizeof(T) )
            {
                typename VLoadStore128<T>::reg_type r0 = VLoadStore128<T>::load(src1 + x               );
                typename VLoadStore128<T>::reg_type r1 = VLoadStore128<T>::load(src1 + x + 16/sizeof(T));
                r0 = vop(r0, VLoadStore128<T>::load(src2 + x               ));
                r1 = vop(r1, VLoadStore128<T>::load(src2 + x + 16/sizeof(T)));
                VLoadStore128<T>::store(dst + x               , r0);
                VLoadStore128<T>::store(dst + x + 16/sizeof(T), r1);
            }
#if CV_SSE2
        }
#endif // CV_SSE2
#endif // CV_AVX2
#endif // CV_NEON || CV_SSE2

#if CV_AVX2
        // nothing
#elif CV_SSE2
        if( USE_SSE2 )
        {
            for( ; x <= width - 8/(int)sizeof(T); x += 8/sizeof(T) )
            {
                typename VLoadStore64<T>::reg_type r = VLoadStore64<T>::load(src1 + x);
                r = vop(r, VLoadStore64<T>::load(src2 + x));
                VLoadStore64<T>::store(dst + x, r);
            }
        }
#endif

#if CV_ENABLE_UNROLLED
        for( ; x <= width - 4; x += 4 )
        {
            T v0 = op(src1[x], src2[x]);
            T v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }
#endif

        for( ; x < width; x++ )
            dst[x] = op(src1[x], src2[x]);
    }
}

template<typename T, class Op, class Op32>
void vBinOp32(const T* src1, size_t step1, const T* src2, size_t step2,
              T* dst, size_t step, int width, int height)
{
#if CV_SSE2 || CV_NEON
    Op32 op32;
#endif
    Op op;

    for( ; height--; src1 = (const T *)((const uchar *)src1 + step1),
                        src2 = (const T *)((const uchar *)src2 + step2),
                        dst = (T *)((uchar *)dst + step) )
    {
        int x = 0;

#if CV_AVX2
        if( USE_AVX2 )
        {
            if( (((size_t)src1|(size_t)src2|(size_t)dst)&31) == 0 )
            {
                for( ; x <= width - 8; x += 8 )
                {
                    typename VLoadStore256Aligned<T>::reg_type r0 = VLoadStore256Aligned<T>::load(src1 + x);
                    r0 = op32(r0, VLoadStore256Aligned<T>::load(src2 + x));
                    VLoadStore256Aligned<T>::store(dst + x, r0);
                }
            }
        }
#elif CV_SSE2
        if( USE_SSE2 )
        {
            if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
            {
                for( ; x <= width - 8; x += 8 )
                {
                    typename VLoadStore128Aligned<T>::reg_type r0 = VLoadStore128Aligned<T>::load(src1 + x    );
                    typename VLoadStore128Aligned<T>::reg_type r1 = VLoadStore128Aligned<T>::load(src1 + x + 4);
                    r0 = op32(r0, VLoadStore128Aligned<T>::load(src2 + x    ));
                    r1 = op32(r1, VLoadStore128Aligned<T>::load(src2 + x + 4));
                    VLoadStore128Aligned<T>::store(dst + x    , r0);
                    VLoadStore128Aligned<T>::store(dst + x + 4, r1);
                }
            }
        }
#endif // CV_AVX2

#if CV_NEON || CV_SSE2
#if CV_AVX2
        if( USE_AVX2 )
        {
            for( ; x <= width - 8; x += 8 )
            {
                typename VLoadStore256<T>::reg_type r0 = VLoadStore256<T>::load(src1 + x);
                r0 = op32(r0, VLoadStore256<T>::load(src2 + x));
                VLoadStore256<T>::store(dst + x, r0);
            }
        }
#else
#if CV_SSE2
        if( USE_SSE2 )
        {
#endif // CV_SSE2
            for( ; x <= width - 8; x += 8 )
            {
                typename VLoadStore128<T>::reg_type r0 = VLoadStore128<T>::load(src1 + x    );
                typename VLoadStore128<T>::reg_type r1 = VLoadStore128<T>::load(src1 + x + 4);
                r0 = op32(r0, VLoadStore128<T>::load(src2 + x    ));
                r1 = op32(r1, VLoadStore128<T>::load(src2 + x + 4));
                VLoadStore128<T>::store(dst + x    , r0);
                VLoadStore128<T>::store(dst + x + 4, r1);
            }
#if CV_SSE2
        }
#endif // CV_SSE2
#endif // CV_AVX2
#endif // CV_NEON || CV_SSE2

#if CV_ENABLE_UNROLLED
        for( ; x <= width - 4; x += 4 )
        {
            T v0 = op(src1[x], src2[x]);
            T v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }
#endif

        for( ; x < width; x++ )
            dst[x] = op(src1[x], src2[x]);
    }
}


template<typename T, class Op, class Op64>
void vBinOp64(const T* src1, size_t step1, const T* src2, size_t step2,
               T* dst, size_t step, int width, int height)
{
#if CV_SSE2
    Op64 op64;
#endif
    Op op;

    for( ; height--; src1 = (const T *)((const uchar *)src1 + step1),
                        src2 = (const T *)((const uchar *)src2 + step2),
                        dst = (T *)((uchar *)dst + step) )
    {
        int x = 0;

#if CV_AVX2
        if( USE_AVX2 )
        {
            if( (((size_t)src1|(size_t)src2|(size_t)dst)&31) == 0 )
            {
                for( ; x <= width - 4; x += 4 )
                {
                    typename VLoadStore256Aligned<T>::reg_type r0 = VLoadStore256Aligned<T>::load(src1 + x);
                    r0 = op64(r0, VLoadStore256Aligned<T>::load(src2 + x));
                    VLoadStore256Aligned<T>::store(dst + x, r0);
                }
            }
        }
#elif CV_SSE2
        if( USE_SSE2 )
        {
            if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
            {
                for( ; x <= width - 4; x += 4 )
                {
                    typename VLoadStore128Aligned<T>::reg_type r0 = VLoadStore128Aligned<T>::load(src1 + x    );
                    typename VLoadStore128Aligned<T>::reg_type r1 = VLoadStore128Aligned<T>::load(src1 + x + 2);
                    r0 = op64(r0, VLoadStore128Aligned<T>::load(src2 + x    ));
                    r1 = op64(r1, VLoadStore128Aligned<T>::load(src2 + x + 2));
                    VLoadStore128Aligned<T>::store(dst + x    , r0);
                    VLoadStore128Aligned<T>::store(dst + x + 2, r1);
                }
            }
        }
#endif

        for( ; x <= width - 4; x += 4 )
        {
            T v0 = op(src1[x], src2[x]);
            T v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }

        for( ; x < width; x++ )
            dst[x] = op(src1[x], src2[x]);
    }
}

template<typename T> static void
cmp_(const T* src1, size_t step1, const T* src2, size_t step2,
     uchar* dst, size_t step, int width, int height, int code)
{
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    if( code == CMP_GE || code == CMP_LT )
    {
        std::swap(src1, src2);
        std::swap(step1, step2);
        code = code == CMP_GE ? CMP_LE : CMP_GT;
    }

    Cmp_SIMD<T> vop(code);

    if( code == CMP_GT || code == CMP_LE )
    {
        int m = code == CMP_GT ? 0 : 255;
        for( ; height--; src1 += step1, src2 += step2, dst += step )
        {
            int x = vop(src1, src2, dst, width);
            #if CV_ENABLE_UNROLLED
            for( ; x <= width - 4; x += 4 )
            {
                int t0, t1;
                t0 = -(src1[x] > src2[x]) ^ m;
                t1 = -(src1[x+1] > src2[x+1]) ^ m;
                dst[x] = (uchar)t0; dst[x+1] = (uchar)t1;
                t0 = -(src1[x+2] > src2[x+2]) ^ m;
                t1 = -(src1[x+3] > src2[x+3]) ^ m;
                dst[x+2] = (uchar)t0; dst[x+3] = (uchar)t1;
            }
            #endif
            for( ; x < width; x++ )
                dst[x] = (uchar)(-(src1[x] > src2[x]) ^ m);
        }
    }
    else if( code == CMP_EQ || code == CMP_NE )
    {
        int m = code == CMP_EQ ? 0 : 255;
        for( ; height--; src1 += step1, src2 += step2, dst += step )
        {
            int x = 0;
            #if CV_ENABLE_UNROLLED
            for( ; x <= width - 4; x += 4 )
            {
                int t0, t1;
                t0 = -(src1[x] == src2[x]) ^ m;
                t1 = -(src1[x+1] == src2[x+1]) ^ m;
                dst[x] = (uchar)t0; dst[x+1] = (uchar)t1;
                t0 = -(src1[x+2] == src2[x+2]) ^ m;
                t1 = -(src1[x+3] == src2[x+3]) ^ m;
                dst[x+2] = (uchar)t0; dst[x+3] = (uchar)t1;
            }
            #endif
            for( ; x < width; x++ )
                dst[x] = (uchar)(-(src1[x] == src2[x]) ^ m);
        }
    }
}

template<typename T, typename WT> static void
mul_( const T* src1, size_t step1, const T* src2, size_t step2,
      T* dst, size_t step, int width, int height, WT scale )
{
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);

    Mul_SIMD<T, WT> vop;

    if( scale == (WT)1. )
    {
        for( ; height--; src1 += step1, src2 += step2, dst += step )
        {
            int i = vop(src1, src2, dst, width, scale);
            #if CV_ENABLE_UNROLLED
            for(; i <= width - 4; i += 4 )
            {
                T t0;
                T t1;
                t0 = saturate_cast<T>(src1[i  ] * src2[i  ]);
                t1 = saturate_cast<T>(src1[i+1] * src2[i+1]);
                dst[i  ] = t0;
                dst[i+1] = t1;

                t0 = saturate_cast<T>(src1[i+2] * src2[i+2]);
                t1 = saturate_cast<T>(src1[i+3] * src2[i+3]);
                dst[i+2] = t0;
                dst[i+3] = t1;
            }
            #endif
            for( ; i < width; i++ )
                dst[i] = saturate_cast<T>(src1[i] * src2[i]);
        }
    }
    else
    {
        for( ; height--; src1 += step1, src2 += step2, dst += step )
        {
            int i = vop(src1, src2, dst, width, scale);
            #if CV_ENABLE_UNROLLED
            for(; i <= width - 4; i += 4 )
            {
                T t0 = saturate_cast<T>(scale*(WT)src1[i]*src2[i]);
                T t1 = saturate_cast<T>(scale*(WT)src1[i+1]*src2[i+1]);
                dst[i] = t0; dst[i+1] = t1;

                t0 = saturate_cast<T>(scale*(WT)src1[i+2]*src2[i+2]);
                t1 = saturate_cast<T>(scale*(WT)src1[i+3]*src2[i+3]);
                dst[i+2] = t0; dst[i+3] = t1;
            }
            #endif
            for( ; i < width; i++ )
                dst[i] = saturate_cast<T>(scale*(WT)src1[i]*src2[i]);
        }
    }
}


template<typename T> static void
div_i( const T* src1, size_t step1, const T* src2, size_t step2,
      T* dst, size_t step, int width, int height, double scale )
{
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);

    Div_SIMD<T> vop;
    float scale_f = (float)scale;

    for( ; height--; src1 += step1, src2 += step2, dst += step )
    {
        int i = vop(src1, src2, dst, width, scale);
        for( ; i < width; i++ )
        {
            T num = src1[i], denom = src2[i];
            dst[i] = denom != 0 ? saturate_cast<T>(num*scale_f/denom) : (T)0;
        }
    }
}

template<typename T> static void
div_f( const T* src1, size_t step1, const T* src2, size_t step2,
      T* dst, size_t step, int width, int height, double scale )
{
    T scale_f = (T)scale;
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);

    Div_SIMD<T> vop;

    for( ; height--; src1 += step1, src2 += step2, dst += step )
    {
        int i = vop(src1, src2, dst, width, scale);
        for( ; i < width; i++ )
        {
            T num = src1[i], denom = src2[i];
            dst[i] = denom != 0 ? saturate_cast<T>(num*scale_f/denom) : (T)0;
        }
    }
}

template<typename T> static void
recip_i( const T* src2, size_t step2,
         T* dst, size_t step, int width, int height, double scale )
{
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);

    Recip_SIMD<T> vop;
    float scale_f = (float)scale;

    for( ; height--; src2 += step2, dst += step )
    {
        int i = vop(src2, dst, width, scale);
        for( ; i < width; i++ )
        {
            T denom = src2[i];
            dst[i] = denom != 0 ? saturate_cast<T>(scale_f/denom) : (T)0;
        }
    }
}

template<typename T> static void
recip_f( const T* src2, size_t step2,
         T* dst, size_t step, int width, int height, double scale )
{
    T scale_f = (T)scale;
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);

    Recip_SIMD<T> vop;

    for( ; height--; src2 += step2, dst += step )
    {
        int i = vop(src2, dst, width, scale);
        for( ; i < width; i++ )
        {
            T denom = src2[i];
            dst[i] = denom != 0 ? saturate_cast<T>(scale_f/denom) : (T)0;
        }
    }
}

template<typename T, typename WT> static void
addWeighted_( const T* src1, size_t step1, const T* src2, size_t step2,
              T* dst, size_t step, int width, int height, void* _scalars )
{
    const double* scalars = (const double*)_scalars;
    WT alpha = (WT)scalars[0], beta = (WT)scalars[1], gamma = (WT)scalars[2];
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);

    AddWeighted_SIMD<T, WT> vop;

    for( ; height--; src1 += step1, src2 += step2, dst += step )
    {
        int x = vop(src1, src2, dst, width, alpha, beta, gamma);
        #if CV_ENABLE_UNROLLED
        for( ; x <= width - 4; x += 4 )
        {
            T t0 = saturate_cast<T>(src1[x]*alpha + src2[x]*beta + gamma);
            T t1 = saturate_cast<T>(src1[x+1]*alpha + src2[x+1]*beta + gamma);
            dst[x] = t0; dst[x+1] = t1;

            t0 = saturate_cast<T>(src1[x+2]*alpha + src2[x+2]*beta + gamma);
            t1 = saturate_cast<T>(src1[x+3]*alpha + src2[x+3]*beta + gamma);
            dst[x+2] = t0; dst[x+3] = t1;
        }
        #endif
        for( ; x < width; x++ )
            dst[x] = saturate_cast<T>(src1[x]*alpha + src2[x]*beta + gamma);
    }
}

} // cv::


#endif // __OPENCV_ARITHM_CORE_HPP__