1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define TG22 0.4142135623730950488016887242097f
#define TG67 2.4142135623730950488016887242097f
#ifdef WITH_SOBEL
#if cn == 1
#define loadpix(addr) convert_intN(*(__global const TYPE *)(addr))
#else
#define loadpix(addr) convert_intN(vload3(0, (__global const TYPE *)(addr)))
#endif
#define storepix(value, addr) *(__global int *)(addr) = (int)(value)
/*
stage1_with_sobel:
Sobel operator
Calc magnitudes
Non maxima suppression
Double thresholding
*/
__constant int prev[4][2] = {
{ 0, -1 },
{ -1, 1 },
{ -1, 0 },
{ -1, -1 }
};
__constant int next[4][2] = {
{ 0, 1 },
{ 1, -1 },
{ 1, 0 },
{ 1, 1 }
};
inline int3 sobel(int idx, __local const intN *smem)
{
// result: x, y, mag
int3 res;
intN dx = smem[idx + 2] - smem[idx]
+ 2 * (smem[idx + GRP_SIZEX + 6] - smem[idx + GRP_SIZEX + 4])
+ smem[idx + 2 * GRP_SIZEX + 10] - smem[idx + 2 * GRP_SIZEX + 8];
intN dy = smem[idx] - smem[idx + 2 * GRP_SIZEX + 8]
+ 2 * (smem[idx + 1] - smem[idx + 2 * GRP_SIZEX + 9])
+ smem[idx + 2] - smem[idx + 2 * GRP_SIZEX + 10];
#ifdef L2GRAD
intN magN = dx * dx + dy * dy;
#else
intN magN = convert_intN(abs(dx) + abs(dy));
#endif
#if cn == 1
res.z = magN;
res.x = dx;
res.y = dy;
#else
res.z = max(magN.x, max(magN.y, magN.z));
if (res.z == magN.y)
{
dx.x = dx.y;
dy.x = dy.y;
}
else if (res.z == magN.z)
{
dx.x = dx.z;
dy.x = dy.z;
}
res.x = dx.x;
res.y = dy.x;
#endif
return res;
}
__kernel void stage1_with_sobel(__global const uchar *src, int src_step, int src_offset, int rows, int cols,
__global uchar *map, int map_step, int map_offset,
int low_thr, int high_thr)
{
__local intN smem[(GRP_SIZEX + 4) * (GRP_SIZEY + 4)];
int lidx = get_local_id(0);
int lidy = get_local_id(1);
int start_x = GRP_SIZEX * get_group_id(0);
int start_y = GRP_SIZEY * get_group_id(1);
int i = lidx + lidy * GRP_SIZEX;
for (int j = i; j < (GRP_SIZEX + 4) * (GRP_SIZEY + 4); j += GRP_SIZEX * GRP_SIZEY)
{
int x = clamp(start_x - 2 + (j % (GRP_SIZEX + 4)), 0, cols - 1);
int y = clamp(start_y - 2 + (j / (GRP_SIZEX + 4)), 0, rows - 1);
smem[j] = loadpix(src + mad24(y, src_step, mad24(x, cn * (int)sizeof(TYPE), src_offset)));
}
barrier(CLK_LOCAL_MEM_FENCE);
//// Sobel, Magnitude
//
__local int mag[(GRP_SIZEX + 2) * (GRP_SIZEY + 2)];
lidx++;
lidy++;
if (i < GRP_SIZEX + 2)
{
int grp_sizey = min(GRP_SIZEY + 1, rows - start_y);
mag[i] = (sobel(i, smem)).z;
mag[i + grp_sizey * (GRP_SIZEX + 2)] = (sobel(i + grp_sizey * (GRP_SIZEX + 4), smem)).z;
}
if (i < GRP_SIZEY + 2)
{
int grp_sizex = min(GRP_SIZEX + 1, cols - start_x);
mag[i * (GRP_SIZEX + 2)] = (sobel(i * (GRP_SIZEX + 4), smem)).z;
mag[i * (GRP_SIZEX + 2) + grp_sizex] = (sobel(i * (GRP_SIZEX + 4) + grp_sizex, smem)).z;
}
int idx = lidx + lidy * (GRP_SIZEX + 4);
i = lidx + lidy * (GRP_SIZEX + 2);
int3 res = sobel(idx, smem);
mag[i] = res.z;
int x = res.x;
int y = res.y;
barrier(CLK_LOCAL_MEM_FENCE);
//// Threshold + Non maxima suppression
//
/*
Sector numbers
3 2 1
* * *
* * *
0*******0
* * *
* * *
1 2 3
We need to determine arctg(dy / dx) to one of the four directions: 0, 45, 90 or 135 degrees.
Therefore if abs(dy / dx) belongs to the interval
[0, tg(22.5)] -> 0 direction
[tg(22.5), tg(67.5)] -> 1 or 3
[tg(67,5), +oo) -> 2
Since tg(67.5) = 1 / tg(22.5), if we take
a = abs(dy / dx) * tg(22.5) and b = abs(dy / dx) * tg(67.5)
we can get another intervals
in case a:
[0, tg(22.5)^2] -> 0
[tg(22.5)^2, 1] -> 1, 3
[1, +oo) -> 2
in case b:
[0, 1] -> 0
[1, tg(67.5)^2] -> 1,3
[tg(67.5)^2, +oo) -> 2
that can help to find direction without conditions.
0 - might belong to an edge
1 - pixel doesn't belong to an edge
2 - belong to an edge
*/
int gidx = get_global_id(0);
int gidy = get_global_id(1);
if (gidx >= cols || gidy >= rows)
return;
int mag0 = mag[i];
int value = 1;
if (mag0 > low_thr)
{
int a = (y / (float)x) * TG22;
int b = (y / (float)x) * TG67;
a = min((int)abs(a), 1) + 1;
b = min((int)abs(b), 1);
// a = { 1, 2 }
// b = { 0, 1 }
// a * b = { 0, 1, 2 } - directions that we need ( + 3 if x ^ y < 0)
int dir3 = (a * b) & (((x ^ y) & 0x80000000) >> 31); // if a = 1, b = 1, dy ^ dx < 0
int dir = a * b + 2 * dir3;
int prev_mag = mag[(lidy + prev[dir][0]) * (GRP_SIZEX + 2) + lidx + prev[dir][1]];
int next_mag = mag[(lidy + next[dir][0]) * (GRP_SIZEX + 2) + lidx + next[dir][1]] + (dir & 1);
if (mag0 > prev_mag && mag0 >= next_mag)
{
value = (mag0 > high_thr) ? 2 : 0;
}
}
storepix(value, map + mad24(gidy, map_step, mad24(gidx, (int)sizeof(int), map_offset)));
}
#elif defined WITHOUT_SOBEL
/*
stage1_without_sobel:
Calc magnitudes
Non maxima suppression
Double thresholding
*/
#define loadpix(addr) (__global short *)(addr)
#define storepix(val, addr) *(__global int *)(addr) = (int)(val)
#ifdef L2GRAD
#define dist(x, y) ((int)(x) * (x) + (int)(y) * (y))
#else
#define dist(x, y) (abs(x) + abs(y))
#endif
__constant int prev[4][2] = {
{ 0, -1 },
{ -1, -1 },
{ -1, 0 },
{ -1, 1 }
};
__constant int next[4][2] = {
{ 0, 1 },
{ 1, 1 },
{ 1, 0 },
{ 1, -1 }
};
__kernel void stage1_without_sobel(__global const uchar *dxptr, int dx_step, int dx_offset,
__global const uchar *dyptr, int dy_step, int dy_offset,
__global uchar *map, int map_step, int map_offset, int rows, int cols,
int low_thr, int high_thr)
{
int start_x = get_group_id(0) * GRP_SIZEX;
int start_y = get_group_id(1) * GRP_SIZEY;
int lidx = get_local_id(0);
int lidy = get_local_id(1);
__local int mag[(GRP_SIZEX + 2) * (GRP_SIZEY + 2)];
__local short2 sigma[(GRP_SIZEX + 2) * (GRP_SIZEY + 2)];
#pragma unroll
for (int i = lidx + lidy * GRP_SIZEX; i < (GRP_SIZEX + 2) * (GRP_SIZEY + 2); i += GRP_SIZEX * GRP_SIZEY)
{
int x = clamp(start_x - 1 + i % (GRP_SIZEX + 2), 0, cols - 1);
int y = clamp(start_y - 1 + i / (GRP_SIZEX + 2), 0, rows - 1);
int dx_index = mad24(y, dx_step, mad24(x, cn * (int)sizeof(short), dx_offset));
int dy_index = mad24(y, dy_step, mad24(x, cn * (int)sizeof(short), dy_offset));
__global short *dx = loadpix(dxptr + dx_index);
__global short *dy = loadpix(dyptr + dy_index);
int mag0 = dist(dx[0], dy[0]);
#if cn > 1
short cdx = dx[0], cdy = dy[0];
#pragma unroll
for (int j = 1; j < cn; ++j)
{
int mag1 = dist(dx[j], dy[j]);
if (mag1 > mag0)
{
mag0 = mag1;
cdx = dx[j];
cdy = dy[j];
}
}
dx[0] = cdx;
dy[0] = cdy;
#endif
mag[i] = mag0;
sigma[i] = (short2)(dx[0], dy[0]);
}
barrier(CLK_LOCAL_MEM_FENCE);
int gidx = get_global_id(0);
int gidy = get_global_id(1);
if (gidx >= cols || gidy >= rows)
return;
lidx++;
lidy++;
int mag0 = mag[lidx + lidy * (GRP_SIZEX + 2)];
short x = (sigma[lidx + lidy * (GRP_SIZEX + 2)]).x;
short y = (sigma[lidx + lidy * (GRP_SIZEX + 2)]).y;
int value = 1;
if (mag0 > low_thr)
{
int a = (y / (float)x) * TG22;
int b = (y / (float)x) * TG67;
a = min((int)abs(a), 1) + 1;
b = min((int)abs(b), 1);
int dir3 = (a * b) & (((x ^ y) & 0x80000000) >> 31);
int dir = a * b + 2 * dir3;
int prev_mag = mag[(lidy + prev[dir][0]) * (GRP_SIZEX + 2) + lidx + prev[dir][1]];
int next_mag = mag[(lidy + next[dir][0]) * (GRP_SIZEX + 2) + lidx + next[dir][1]] + (dir & 1);
if (mag0 > prev_mag && mag0 >= next_mag)
{
value = (mag0 > high_thr) ? 2 : 0;
}
}
storepix(value, map + mad24(gidy, map_step, mad24(gidx, (int)sizeof(int), map_offset)));
}
#undef TG22
#undef CANNY_SHIFT
#elif defined STAGE2
/*
stage2:
hysteresis (add edges labeled 0 if they are connected with an edge labeled 2)
*/
#define loadpix(addr) *(__global int *)(addr)
#define storepix(val, addr) *(__global int *)(addr) = (int)(val)
#define LOCAL_TOTAL (LOCAL_X*LOCAL_Y)
#define l_stack_size (4*LOCAL_TOTAL)
#define p_stack_size 8
__constant short move_dir[2][8] = {
{ -1, -1, -1, 0, 0, 1, 1, 1 },
{ -1, 0, 1, -1, 1, -1, 0, 1 }
};
__kernel void stage2_hysteresis(__global uchar *map, int map_step, int map_offset, int rows, int cols)
{
map += map_offset;
int x = get_global_id(0);
int y0 = get_global_id(1) * PIX_PER_WI;
int lid = get_local_id(0) + get_local_id(1) * LOCAL_X;
__local ushort2 l_stack[l_stack_size];
__local int l_counter;
if (lid == 0)
l_counter = 0;
barrier(CLK_LOCAL_MEM_FENCE);
#pragma unroll
for (int y = y0; y < min(y0 + PIX_PER_WI, rows); ++y)
{
if (x < cols)
{
int type = loadpix(map + mad24(y, map_step, x * (int)sizeof(int)));
if (type == 2)
{
l_stack[atomic_inc(&l_counter)] = (ushort2)(x, y);
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
ushort2 p_stack[p_stack_size];
int p_counter = 0;
while(l_counter != 0)
{
int mod = l_counter % LOCAL_TOTAL;
int pix_per_thr = l_counter / LOCAL_TOTAL + ((lid < mod) ? 1 : 0);
#pragma unroll
for (int i = 0; i < pix_per_thr; ++i)
{
ushort2 pos = l_stack[ atomic_dec(&l_counter) - 1 ];
#pragma unroll
for (int j = 0; j < 8; ++j)
{
ushort posx = pos.x + move_dir[0][j];
ushort posy = pos.y + move_dir[1][j];
if (posx < 0 || posy < 0 || posx >= cols || posy >= rows)
continue;
__global uchar *addr = map + mad24(posy, map_step, posx * (int)sizeof(int));
int type = loadpix(addr);
if (type == 0)
{
p_stack[p_counter++] = (ushort2)(posx, posy);
storepix(2, addr);
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
while (p_counter > 0)
{
l_stack[ atomic_inc(&l_counter) ] = p_stack[--p_counter];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
#elif defined GET_EDGES
// Get the edge result. egde type of value 2 will be marked as an edge point and set to 255. Otherwise 0.
// map edge type mappings
// dst edge output
__kernel void getEdges(__global const uchar *mapptr, int map_step, int map_offset, int rows, int cols,
__global uchar *dst, int dst_step, int dst_offset)
{
int x = get_global_id(0);
int y0 = get_global_id(1) * PIX_PER_WI;
#pragma unroll
for (int y = y0; y < min(y0 + PIX_PER_WI, rows); ++y)
{
int map_index = mad24(map_step, y, mad24(x, (int)sizeof(int), map_offset));
int dst_index = mad24(dst_step, y, x) + dst_offset;
__global const int * map = (__global const int *)(mapptr + map_index);
dst[dst_index] = (uchar)(-(map[0] >> 1));
}
}
#endif